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Abstract. Polynomial Authentication and Signature Scheme (PASS) is a new
public key authentication and signature scheme proposed by NTRU
Cryptosystems Inc.  It is based on the hard problems related to constrained
polynomial evaluation.  In this paper, we break PASS with the proposed
parameters. We show how to forge valid authentication transcripts or digital
signatures in PASS with knowledge of the public key only and without
knowing any previous authentication transcripts or signatures.

1   Introduction

A group of highly efficient public key cryptosystems, including NTRU [1, 2] for
asymmetrical encryption and PASS [3] for digital authentication and signature, were
proposed recently by Hoffstein, Pipher, and Silverman from NTRU Cryptosystem,
Inc.  This group of cryptosystems is based on the hard problems of partial evaluation
of constrained polynomial over polynomial rings.  An outstanding feature of the
proposed cryptosystems is that key generation, encryption/decryption, authentication
and digital signature operations can be performed highly efficiently.

NTRU, after its first appearance at Crypto’96, has received a great deal of
attentions in the cryptographic community.  Odlyzko first pointed out the meet-in-the-
middle attack on NTRU and this was followed by the lattice attacks on NTRU from
Coppersmith and Shamir [4]. The reaction attack proposed recently by Hall, Goldberg
and Schneier [5] also has effect on NTRU. The current suggested parameters for
NTRU and corresponding security estimates take into account all the above attacks.
For a discussion on security of NTRU with respect all these attacks, the reader is
refereed to the NTRU Cryptosystem�s homepage (http://www.ntru.com/document
center.htm).

The NTRU cryptosystem has also received a lot of attentions from industry. Sony
Corporation of America has made an investment in NTRU, and Tao Group Ltd of
Reading, England, signed an agreement with NTRU which will make the
incorporation of encryption technologies into handheld and consumer devices
(http://www.ntru.com/pressreleases/). The NTRU public key encryption scheme was
submitted to IEEE P1363 group as a potential IEEE public key cryptosystem standard
(http://grouper.ieee.org/ groups/1363/addendum.html).
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More recently, Hoffstein, Pipher, and Silverman from NTRU Cryptosystem Inc
proposed PASS, a public key cryptosystem for authentication and digital signature
[3]. Like NTRU, PASS features extremely light computational requirements for both
the prover and the verifier. The hard problem underlying the security of PASS is
related to properties of short polynomials. Since short polynomials can be made to
correspond to short vectors in a lattice, it is important to carefully consider the
possibility of attack by lattice reduction methods in the design of PASS. The authors
of PASS were well aware of lattice reduction methods such as the LLL [6] and the
improved LLL lattice reduction methods [7, 8] and they designed PASS to be secure
against these attacks.

In this paper, we present the cryptanalysis of PASS. We show that PASS with the
proposed parameters is not sound, i. e., it is easy to forge one’s authentication
transcripts or signatures knowing only the public key and without any knowledge of
the private key or any previous authentication transcripts or signatures. The amount of
computation required to launch the attacks is small enough to be carried out very
comfortably on a PC.

This paper is organized as follows.  Section 2 presents the PASS authentication and
signature scheme.  Two attacks to PASS authentication and signature schemes are
given in Section 3 and Section 4, respectively.  Section 5 concludes the paper.

2   Description of PASS

Define a ring of truncated polynomials as

)1/(])[/( −= NxxqZZR  (1)

where q  is a prime number and N  is a divisor of 1−q .  A typical element g  of R

is denoted as a polynomial or a vector
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A polynomial is called short if its norm is small.  Since multiplication in R  is
1 mod −Nx , it is equivalent to a cyclic convolution product.  For example, the product

of f  and g is given by
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Since the multiplication of gfh ⋅=  is 1 mod −Nx , it follows that

qgfh mod)()()( ααα ⋅=

for every α  satisfying qN mod1≡α .

A set S  of t  distinct non-zero elements qZZ /∈α  is chosen as a system wide

parameter.  Each element α  of S  is chosen such that qN mod1≡α  and S∈−1α .

Also public are four subsets of R , denoted as fL , gL , cL  and hL , respectively, and

defined as follows. Fix a positive integer 2/Nd f < . Define fL  to be the set of all

polynomials f  in R  such that f  has fd  coefficients equal to each of 1 and -1, with

all other coefficients equal to 0. The norm of f  is thus fd2 . And gL  and cL  are

defined similarly using gd  and cd .  hL  is defined as the set of polynomials h  in R

satisfying qh hγ<||   for a specified hγ .

PASS is based on the fact that the product of two extremely short polynomials is
still a short polynomial.

2.1   PASS Authentication Scheme

Alice, the prover, has a private key consisting of two polynomials f  and f ′  that are

chosen randomly from fL .  Her public key is the values of )(αf  and )(αf ′  for all

S∈α , where S is the public system parameter given above.  To prove to Bob, the
verifier, that she possesses the secret key f , f ′  associated to her public key, Alice

proceeds as follows:

� Alice randomly chooses g, g´ from gL  and reveals the values of )(αg

and )(αg ′  for all S∈α .  This is Alice’s commitment.

� Bob randomly chooses a challenge 0c  and sends 0c  to Alice.  0c  is

hashed with the commitment to produce polynomials: cLcccc ∈4321 ,,, .

� Alice reveals the polynomial gfcgfcgfcfgch ′′+′+′+= 4321 .

� Bob verifies that
1) )||.,.(  qheiLh hh γ<∈
2) +′+= )()()()()()()( 21 ααααααα gfcgfch

                )()()()()()( 43 αααααα gfcgfc ′′+′
for all the S∈α .
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2.2   PASS Signature Scheme

The private key and the public key in the signature scheme are the same as that in the
authentication scheme.  Alice, the signer, is to sign a message M  with her private
key.  She proceeds as follows:

� Alice randomly chooses the polynomials g, g´ from gL  and computes )(Sg

(i. e., { )(αg | S∈α }) and )(Sg′ .

� Alice hashes M  with )(Sg  and )(Sg ′  to construct polynomials:

cLcccc ∈4321 ,,, .

� Alice computes h  as

gfcgfcgfcfgch ′′+′+′+= 4321

� The signature is )),(),(( hSgSg ′ .

� The verification process in the signature scheme is the same as that in the
authentication scheme, except that cLcccc ∈4321 ,,,  are generated from g(S),
g'(S), and M instead of the challenge.

2.3   A Specific Example of PASS

The following parameters are suggested for PASS in [3]:

3842/ ,768 ,769 ==== NtNq

2.2 ,1 ,256 ,256 ==== hcgf ddd γ

where N  is simply chosen as 1−q .  It is estimated in [3] that PASS with such

suggested parameters would be more secure than 1024 bit RSA since it takes longer
time to recover the PASS private key.  Unfortunately, as we will demonstrate in the
remaining part of the paper that PASS with these parameters is extremely weak and
can be broken with small amount of computations.

3   Cryptanalysis of the PASS Authentication Scheme

It was conjectured in [3] that for large N  and t  slightly larger than 2/N , PASS
would be sound.  However, such conjecture is not true.  We will present an attack in
this section to forge the authentication transcript independent of the sizes of N  and
t .

In PASS, recovering the private key f  and f ′  from the public key is expected to

be difficult.  Moreover, for polynomials f  and f ′  chosen randomly from fL , given
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)(αf  and )(αf ′  for all S∈α , it is difficult to find short polynomials (with small

norms) xf  and xf ′  to satisfy )()( αα ff x =  and )()( αα ff x
′=′  for all S∈α .

However, we notice that in order to satisfy

)()()()()()()()()()()()()( 4321 ααααααααααααα gfcgfcgfcgfch ′′+′+′+=

for all S∈α (i.e., the second condition verified by the verifier Bob), it is not
necessary for xf  and xf ′  to satisfy )()( αα ff x =  and )()( αα ff x

′=′  for all S∈α .

The reason is that if 0)()( =′= αα gg  for a particular S∈α , then )(αxf  and

)(αxf ′  can be set to any arbitrary values at that α .  If we can construct short

polynomials g  and g ′  such that 0)()( =′= αα gg  for most of the S∈α , then the

short polynomials xf  and xf ′  only need to satisfy )()( αα ff x =  and )()( αα ff x
′=′

for a few S∈α  and they can be constructed easily.  In the following, we show how
to generate the short polynomials g  and g ′  with 0)()( =′= αα gg  for most of the

S∈α .

Theorem 1.  Let R  be the ring defined in (1), q  be a prime number, 1−= qN  and

p  be a divisor of N .  If Rg ∈  and the coefficients of g  are with period p , i.e.,

Nkpii gg mod)( +=  for any value of k , then there are at most p  non-zero elements of

ZqZ /  satisfying 0)( ≠αg .

Proof:  The polynomial g  with period p  can be denoted as

)1)(()( /21
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Note that qN  mod 01 ≡−α , thus the necessary condition for 0)( ≠αg  is that

qp mod01 ≡−α . Since there are at most p  distinct solutions in ZqZ /  for

01 ≡−pα  qmod , there are at most p  non-zero elements in ZqZ /  satisfying

0)( ≠αg .

According to theorem 1, the short polynomials g  and g ′  with 0)()( =′= αα gg

for most of the S∈α  can be constructed easily if N  has small factors.  We simply
choose their coefficients from the set 1 ,0 ,1{− } to generate short polynomials and

with short period. Since the proposed value of N  is 823768 ×= , there are a number
of small factors of N  for g  and g ′  to be constructed easily.  For example, if we set

the coefficients of short polynomials g  and g ′  with period 6, then most likely there

will be about 3812/)6768( =−  values of S∈α  with 0)()( =′= αα gg  since the
elements of S are chosen in [3] without being aware of this attack.
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After obtaining the desired short polynomials g  and g ′ , we then proceed to

construct the short polynomials xf  and xf ′ .  Denote 1S  as the subset of S  containing

all those S∈α  with 0)()( =′= αα gg  and denote 12 SSS −= .  Now, short

polynomials xf  and xf ′  are only required to satisfy )()( αα ff x =  and )()( αα ff x
′=′

for all 2S∈α . The construction of xf  and xf ′  becomes much easier especially when

the number of elements in 2S  is sufficiently small.  For example, if there are only 3

elements in 2S , even an exhaustive search (by randomly choosing the coefficients

from the set 1 ,0 ,1{− }) can be applied to determine the short polynomials xf  and xf ′

since only about 8.283 2769 =  trials are needed in this scenario.  It should be noted that
such computations are done prior to the authentication process.  With the four short
polynomials g , g ′ , xf  and xf ′ , valid authentication transcripts can be produced. This
attack is valid as long as N has many small factors, like 768, regardless of the size of
the challenge.

To summarize the result in this section, the PASS authentication scheme with the
proposed parameters is not secure, i.e. it is not sound.  A cheater, who knows only
Alice’s public key, can produce valid authentication transcripts on Alice’s behalf
easily without knowing Alice’s private key.  The amount of computation required is
small and no previous authentication transcripts are needed in the attack.

4   Cryptanalysis of the PASS Signature Scheme

The attack described in Section 3 can be applied directly to break the PASS signature
scheme. 

The attack in Section 3 depends essentially on the fact that 768=N  has small
factors.  It is thus necessary to choose N  as a prime number instead of 1−q .  In this

section, another attack is applied to the PASS signature scheme even if N  is chosen
as a prime number.  In this attack, the small space of cL  would enable signatures

being forged easily.
We notice that the h  can be written as

gfcgfcgfcfgch ′′+′+′+= 4321

       gfrfcgfrfc ′′++′+= )()( 2211

      2211 hchc +=

where 113 rcc ⋅= , 224 rcc ⋅= , gfrfh )( 11
′+=  and gfrfh ′′+= )( 22 .  We could

specify two polynomials 1r  and 2r  (the simplest way is to set 121 == rr ).  We then

choose arbitrarily two short polynomials 1h  and 2h .  Another two polynomials g  and

g ′  are computed to satisfy )())()()(()( 11 agfrfh αααα ′+=  and =)(2 αh

)())()()(( 2 αααα gfrf ′′+  for all the S∈α .  Here g  and g ′  are not required to be

short polynomials.  After obtaining g  and g ′ , we compute 321 ,, ccc  and 4c .  If
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113 rcc ⋅=  and 224 rcc ⋅=  with the pre-specified polynomials 1r  and 2r , we forged

successfully a signature )),(),(( hSgSg ′  in which

2211 hchch +=

The probability of success of one trial is about 2||/1 cL .  Repeat this attack by

choosing different polynomials 1h  and 2h , the signature could finally be forged with

about 2||5.0 cL×  trials, which is about 3.372−  for N = 768 and 1=cd .

The detailed attack is given in the rest of this section.  Let f  and f ′  be Alice’s

private key and )(αf  and )(αf ′  be the corresponding public key for all ∈α S =

{ 1α , 2α , …, tα }. The attack is as follows.

1.     Arbitrarily choose Rrr ∈21,  such that for any cLc ∈ , cLcr ∈⋅ .

2.    Compute )(’)()( 11 iiii frf αααβ +=  and )(’)()( 22 iiii frf αααβ +=  for

i = 1, 2, …, t.  Assume that 0,0 21 ≠≠ ii ββ  for all i = 1, 2, …, t (we will

deal with the case when some of them are 0 later).
3.    Let 21, FF  be two functions such that iiii FF 2211 )(,)( βαβα ==  for i = 1,

2, …, t.  Choose two arbitrary short polynomials 1h , 2h .  Compute the

polynomials 21,GG  satisfying 222111 , GFhGFh ==  on S .

4.   Hash message M with )(),( 21 SGSG  to generate 4321  and ,, cccc . If the

generated 4321  and ,, cccc  happen to satisfy 224113  and crccrc == , we set

2211 hchch +=  and 1Gg = , 2’ Gg = .  Otherwise, go to step 3 and repeat

the attack.
5.    (h, g(S), g’(S)) is a valid signature of M.

In step 4, we note that the generated 4321  and ,, cccc  satisfy 224113  and crccrc ==  with

probability 1/ 2|| cL .  That is the success rate for one trial.

In this attack, step 1 and step 4 can be carried out easily as shown in the Theorem 2
and 3 in the Appendix, respectively.

In step 2 we assume that 0,0 21 ≠≠ ii ββ  for all ti ,...,2,1= .  Such assumption is,

however, not always true.  In the following, we improve the attack so that it works
even if up to four elements of },...,2,1|{ 1 tii =β  and four elements of

},...,2,1|{ 2 tii =β  are zero. We start with the following two facts.

Fact 1. Let cLcc ∈21, . If each of 1h , 2h  has 4−N  small coefficients and four

arbitrary coefficients, 2211 hchch +=  is with norm qh 2.2|| < .

It is because that
1) h  has 16−N  small coefficients and 16 arbitrary coefficients;
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2) For the small coefficients, the sum of 2

ih  is less than 28.0 q  if qhi 8.0< .  This

is fulfilled if each of the small coefficients of 21,hh  is smaller than q2.0 .

3) From the definition of norm in Section 2, 4/22 qhi <  for any ih .

4) Thus 22
1

0

2 8.04 qqh
N

i
i +<∑

−

=

.  It implies qh 2.2|| < ;

Fact 2. Let RF ∈  and 0)( =αF  for up to 4 }0{/ −⊂∈ qZZSα .  Based on

Theorem 4 in the Appendix, it is easy to construct a RG ∈ , such that H )( FGH =
has 4−N  arbitrarily small coefficients.

With Fact 1 and Fact 2, our attack can be applied in the situation where up to four
elements of },...,2,1|{ 1 tii =β  and four elements of },...,2,1|{ 2 tii =β  are zero.  For

768=N  and 2/Nt = , the probability that more than four elements of
},...,2,1|{ 1 tii =β  or more than four elements of },...,2,1|{ 2 tii =β  are 0 is only about

122− . So the improved attack would succeed without being significantly affected by
the values of i1β  and i2β .

Similar attack could be applied to the PASS authentication scheme.  The valid
authentication transcript can be generated with probability 2||/1 cL .  This value is

about 3.382−  for the proposed parameters.  The PASS authentication scheme with the
proposed parameters is thus not secure with respect to this attack.

5   Conclusion

PASS is a highly efficient public key authentication and signature scheme that was
designed to resist LLL lattice reduction method and the improved LLL method. The
authors of PASS estimated that the breaking time for the proposed parameter

768=N  is approximately 4.73×1018 MIP-years [3]. In this paper we showed that the
above claim is false and that PASS with the proposed parameter is not sound.  That is,
one can forge authentication transcripts or signatures without recovering the private
key and with small amount of computations.

We presented two attacks to PASS. Both attacks apply to the PASS authentication
scheme and the PASS signature scheme, though we only demonstrated the first attack
to the PASS authentication scheme in Section 3 and the second attack to the PASS
signature scheme in Section 4. The first attack succeeded in forging authentication
transcripts (or signatures) by exploiting the fact that the proposed parameter 768=N
has small factors. To resist this attack, we suggest choosing N  as a prime number.
However, a prime N  can not resist the second attack presented in Section 4, which
succeeded in breaking PASS using the fact that the space cL  is too small.
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Enlarging q  is not an effective counter measure against our second attack since q

must be very large in order to give PASS a reasonable security. In that case, its
computational efficiency will degrade significantly. Modifications may be applied to
other parameters of PASS such as cgf ddd ,, , etc; however, their security implications

must be considered very carefully since the corresponding hγ  must be changed in that

case. And  hγ  is a key factor for the security of PASS under other attacks such as

LLL attack.
Generally, we believe that any further modification to PASS should take the

attacks presented in this paper into consideration.
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Appendix

Theorem 2. There exists a polynomial )1/(])[/( −=∈ NxxqZZRr  such that for any

cLc ∈ , the product cLcr ∈⋅  .

Proof: The validity of this theorem is trivial by noting that ix  fulfills the requirement
for any i.

Theorem 3. Let RF ∈  and 0)( ≠αF  for }0{/ −⊂∈ qZZSα . For any RH ∈ , it is

easy to construct a RG ∈ , such that )()()( ααα HGF =  for all S∈α .
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Proof: Given H , the values of )(αH  for all non-zero S∈α  can be computed.

Define )(/)()( ααα FHG =  for S∈α  and arbitrarily set )(αG  for ∈α
SqZZ −− }0{/ . The coefficients of G  can be computed directly since
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is a non-singular matrix for different Nααα ,...,, 21 .
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Lemma 1.The rank of F equals to the amount of }0{/ −∈ qZZα  satisfying F(a) � 0.

Proof. Let 1
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N xbxbbE L  and 1

110

−
−+++= N

N xcxccFE L , we must have
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Consider all the E satisfying FE = 0.  All these E (their coefficient vectors) consist of
a linear space.  It is the null space of F.  Every such E must satisfy E(a)=0 for those a
such that F(a)�0. By counting the number of such E we reach Lemma 1.

Theorem 4. Let RF ∈  and 0)( =αF  for exactly k  }0{/ −∈ qZZα . It is easy to

construct a RG ∈  so that the polynomial FGH =  is with kN −  arbitrarily small
coefficients.



288         H. Wu et al.

Proof. From Lemma 1 the rank of F is kN − .  There are k  linear independent rows
in F. Without loss of generality, assume that the first kN −  rows are linear
independent.  Arbitrarily set the last kN − coefficients of H  as small numbers

kNN hhh ,...,, 21 −− .  Solve G  from
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