
Cryptanalysis of the Stream Cipher DECIM�

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun, bart.preneel}@esat.kuleuven.be

Abstract. DECIM is a hardware oriented stream cipher with an 80-bit
key and a 64-bit IV. In this paper, we point out two serious flaws in
DECIM. One flaw is in the initialization of DECIM. It allows to recover
about half of the key bits bit-by-bit when one key is used with about 220

random IVs; only the first two bytes of each keystream are needed in the
attack. The amount of computation required in the attack is negligible.
Another flaw is in the keystream generation algorithm of DECIM. The
keystream is heavily biased: any two adjacent keystream bits are equal
with probability about 1

2 + 2−9. A message could be recovered from the
ciphertext if that message is encrypted by DECIM for about 218 times.
DECIM with an 80-bit key and an 80-bit IV is also vulnerable to these
attacks.

1 Introduction

DECIM [1] is a stream cipher that has been submitted to the ECRYPT stream
cipher project [4]. The main feature of DECIM is the use of the ABSG decimation
mechanism [1], an idea similar to the shrinking generator [3,6]. Another excellent
feature is that a 32-bit buffer is used in DECIM to ensure that at each step
DECIM generates one output bit.

In this paper, we point out two flaws in DECIM, one in the initialization
algorithm, and another one in the keystream generation algorithm. The flaw in
the initialization allows for any easy key recovery from the keystreams when one
key is used with about 220 random IVs. The flaw in the keystream generation
algorithm results in a heavy bias in the keystream, hence the cipher is vulnerable
to a broadcast attack.

In Sect. 2 we describe the DECIM cipher. Section 3 presents an key recovery
attack on DECIM. The key recovery attack on DECIM is improved in Sect. 4.
The broadcast attack on DECIM is described in Sect. 5. Section 6 shows that
DECIM with an 80-bit IV is also vulnerable to the attacks. Section 7 concludes
this paper.

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 30–40, 2006.
c© International Association for Cryptologic Research 2006

Cryptanalysis of the Stream Cipher DECIM 31

2 Stream Cipher DECIM

DECIM uses the ABSG decimation mechanism in the keystream generation in
order to achieve high security and design simplicity. The keystream generation
process and the key/IV setup are illustrated in Sect. 2.1 and 2.2, respectively.

2.1 Keystream Generation

The keystream generation diagram of DECIM is given in Fig. 1. DECIM has a
regularly clocked LFSR which is defined by the feedback polynomial

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 +
X131 + X94 + X77 + X46 + X17 + X16 + X5 + 1

over GF (2). The related recursion is given as

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn .

At each stage, two bits are generated from the LFSR as follows:

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) ,

where the Boolean function f is defined as

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij xik
.

The binary sequence y consists of all the yt,1 and yt,2 as

y = y0,1y0,2y1,1y1,2 · · · yt,1yt,2 · · ·

The keystream sequence z is generated from the binary sequence y through the
ABSG decimation algorithm. The sequence y is split into subsequences of the
form (b̄, bi, b̄), with i ≥ 0 and b ∈ {0, 1}; b̄ denotes the complement of b in {0, 1}.
For every subsequence (b̄, bi, b̄), the output bit is b for i = 0, and b̄ otherwise.
The ABSG algorithm is given below

Input: (y0, y1, ...)
Set: i ← 0; j ← 0;
Repeat the following steps:

e ← yi, zj ← yi+1, i ← i + 1;
while (yi = ē) i ← i + 1;
i ← i + 1; output zj ; j ← j + 1;

Remarks. The above description of the ABSG and the pseudo-code of ABSG are
quoted from [1]. However the outputs of the pseudo-code are the complements

32 H. Wu and B. Preneel

Fig. 1. Keystream Generation Diagram of DECIM [1]

of that of the ABSG algorithm. Anyway, this difference has no effect on the
security of DECIM. In the rest of the paper, we assume that the DECIM uses
the pseudo-code of ABSG given above.

DECIM is designed to output one bit every two stages. A 32-bit buffer is used
to ensure that the probability that there is no output bit is extremely small
(2−89).

2.2 Initialization

The secret key K is an 80-bit key. The 64-bit IV is expanded to an 80-bit vector
by adding zeros from position 64 up to position 79. The initial value of the LFSR
state is loaded as follows

si =

⎧
⎨

⎩

Ki ∨ IVi for 0 ≤ i ≤ 55
Ki−56 ∧ IVi−56 for 56 ≤ i ≤ 111
Ki−112 ⊕ IVi−112 for 112 ≤ i ≤ 191

The LFSR is clocked 192 times. After the t-th clocking, yt,1 and yt,2 are XORed
to the xt,192 as

st+192 = st+192 ⊕ yt,1 ⊕ yt,2 .

Then one of two permutations π1 and π2 is applied to permute 7 elements st+5,
st+31, st+59, st+100, st+144, st+177, st+186. Two bits yt,1 and yt,2 are input to the
ABSG, if the output of the ABSG is 1, then π1 is applied; if the output of the
ABSG is 0 or if there is no output, then π2 is applied. The two permutations
are defined as

π1 = (1 6 3)(4 5 2 7), π2 = (1 4 7 3 5 2 6) .

Cryptanalysis of the Stream Cipher DECIM 33

3 Key Recovery Attack on DECIM

In this section, we develop attacks to recover the secret key of DECIM. This
non-optimized attack applies when the same secret key is used with a number of
random IVs, and the first 3 bytes of each keystream are known. The optimized
attack is given in the next section.

3.1 The Effects of the Permutations π1 and π2

The two permutations in the initialization stage of DECIM provide high non-
linearity to the initialization process. However, the permutations also cause some
bits in the LFSR to be updated in an improper way. This has a very negative
impact on the security of DECIM.

The permutation π1 is poorly designed. In order to investigate the effects of
this permutation, we analyze a weak version by assuming that only this per-
mutation is used in the initialization process, i.e., we replace π2 with π1. The
values of 140 elements in the LFSR (s5,s6,. . . ,s58, and s100,s101,. . . ,s185) would
never be updated by the initialization process. For example, s21 would always
become s192+6. The details are given below. We trace the bit s21, after 16 steps
it becomes s16+5 due to the shift of the LFSR. Then it becomes s16+177 due to
the permutation π1. After 33 steps, it becomes s49+144 due to the shift of the
LFSR. Then it becomes s49+31 due to the permutation π1. After 26 steps, it
becomes s75+5 due to the shift of the LFSR. Then it becomes s75+177 due to the
permutation π1. This process repeats and at the end of the initialization process,
it becomes s192+6.

The first bit of the keystream is given as y192,2; it is computed as y192,2 =
f(s192+6, s192+8, s192+60, s192+116, s192+145, s192+181, s192+191). By tracing the
bits of the LFSR during the initialization process, we know that s192+6 ⇐ s21,
s192+8 ⇐ s23, s192+116 ⇐ s132, s192+145 ⇐ s160, s192+181 ⇐ s33. If every key and
IV pair is randomly generated, then according to the loading of the key and IV,
we know that s21, s23, and s33 take value 1 with probability 0.75. Thus according
to the definition of the function f , the value of y192,2 is 0 with probability 0.582.
So the first bit of the keystream is heavily biased. It shows that the effect of the
permutation π1 is terrible.

In DECIM, there are two permutations, π1 and π2. They are chosen according
to the output of ABSG: π1 is chosen with probability 1

3 , π2 with probability 2
3 .

Due to these two permutations, the number of bits that are not updated by the
initialization process is reduced to 54.5 (obtained by running 216 random key
and IV pairs). It shows that the permutations π1 and π2 which are chosen by
the output of ABSG have a negative impact on the security of DECIM.

3.2 Recovering K21

In the initialization process, we monitor the bit s21. s21 becomes s192+6 with
probability 1

27 . If s192+6 takes the value 0, and all the other bits in the LFSR at
the 192-th step are distributed uniformly, then the value of the first bit of the

34 H. Wu and B. Preneel

keystream is 0 with probability q0 = 56
128 . If s192+6 is takes the value 1, and all

the other bits of the LFSR at the 192-th step are distributed uniformly, then
the value of the first bit of the keystream is 0 with probability q1 = 72

128 . Denote
the probability that the value of the first keystream bit is 0 when s21 = 0 as p0,
and the probability that the value of the first keystream bit is 0 when s21 = 1
as p1. Then Δp = p1 − p0 = 1

27 × (q1 − q0) = 2−7.75. In an experiment we chose
220 random IVs for s21 = 0, and another 220 random IVs for s21 = 1, and we
found that Δp = 2−7.99. The experimental result confirms that the theoretical
result Δp = 2−7.75 is correct.

The above property can be applied to recover K21 as follows. Suppose that the
same key is used with N random IVs to generate keystreams. For the keystreams
with IV21 = 0, we compute the probability that the value of the first bit is
0, and denote this probability as p′0. For the keystreams with IV21 = 1, we
compute the probability that the value of the first bit is 0, and denote this
probability as p′1. If p′1 > p′0, we decide that K21 = 0; otherwise, K21 = 1. For
N = (Δp

2)−2 × 2 = 218.5, the attack can determine the value of K21 with success
rate 0.977.

3.3 Recovering K22K23 . . . K30

By tracing the bits in the initialization process, we notice that each s22+i is
mapped to s192+7+i with probability 1

27 for 0 ≤ i ≤ 8 (each of them is only
mapped by π1 at st+5). We know that s22+i = K22+i ∨ IV22+i , and s192+7+i,
s192+9+i are used in the generation of y193+i,2 for 0 ≤ i ≤ 10. In this section, we
show that the key bits K22K23K24 . . . K30 can be recovered from the keystream.

An attack similar to that given in Sect. 3.2 can be applied to recover the value
of K23 from the first keystream bits generated from 218.5 IVs.

In order to determine the values of K22 and K24, we observe the second bit of
the keystream. Due to the disturbance of the ABSG, y193,2 becomes the second
keystream bit with probability 0.5. Thus Δp′ = 0.5 × Δp = 2−8.75. To recover
K22 and K24, we need 220.5 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K25, we observe the second and third bits of
the keystream. y194,2 becomes the second bit of the keystream with probability
1
8 , and becomes the third bit of the keystream with probability 1

4 . Thus Δp′′ =
1
2 ×(1

4 + 1
8)×Δp = 2−10.165. To recover K25, we need 222.3 IVs in order to obtain

a success probability of 0.977.
We omit the details of recovering K26 · · ·K29. To recover K30, we observe the

fifth, sixth and seventh bits of the keystream. y199,2 would become one of these
three bits with probability 77

256 . Thus Δp′′′ = 1
3 × 77

256 ×Δp = 2−11.068. To recover
K29, we need 223.5514 IVs in order to obtain the success rate 0.977.

3.4 Recovering K9K10 . . . K19

By tracing the bits in the initialization process, we notice that each s9+i is
mapped to s192+166+i with probability 1

27 for 0 ≤ i ≤ 10 (each of them is only
mapped by π1 at st+5). We know that s9+i = K9+i ∨ IV9+i, and s192+166+i is

Cryptanalysis of the Stream Cipher DECIM 35

used in the generation of y194+i,1 for 0 ≤ i ≤ 10. The attacks given in this section
are similar to those given above. We only illustrate how to recover K9 and K19.

In order to determine the value of K9, we observe the second bit of the
keystream. y194,1 becomes the second bit of the keystream with probability 1

4 .
Thus Δp(4) = 1

4 × Δp = 2−9.75. To recover K9, we need 222.5 IVs in order to
obtain a success probability of 0.977.

In order to determine the value of K19, we observe the 8-th, 9-th and 10-th
bits of the keystream. y204,1 becomes one of these three bits with probability
0.25966. Thus Δp(5) = 1

3 × 0.25966 × Δp = 2−11.28. To recover K19, we need
223.98 IVs in order to obtain a success probability of 0.977.

3.5 Recovering K32K33 . . . K46

By tracing the bits in the initialization process, we notice that each s144+i is
mapped to s192+16+i with probability 1

27 for 0 ≤ i ≤ 14 (each of them is only
mapped by π1 at st+5). We know that s144+i = K32+i ⊕ IV32+i, and s192+16+i

is used in the generation of y200+i,1 for 0 ≤ i ≤ 14.
Since for s144+i (0 ≤ i ≤ 14), the key bits are XORed with the IV bits, the

attack is slightly modified. For example, if the probability of 0 in the keystream
for IV32 = 0 is higher than the probability of 0 in the keystream for IV32 = 1,
then we predict that K32 = 0; otherwise, K32 = 1. We only illustrate how to
recover K32 and K46.

In order to determine the value of K32, we observe the sixth, seventh and
eighth bits of the keystream. y200,2 becomes one of these three bits with prob-
ability 0.28027. Thus Δp(6) = 1

3 × 0.28027 × Δp = 2−11.17. To recover K32, we
need 223.755 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K46, we assume that starting from the
fourth bit of the sequence y, each bit becomes the output with probability 1

3 .
Then y214,2 becomes one of the 12th, 13th, . . . , 18th bits of the keystream with
probability 0.16637. Thus Δp(7) = 1

7 × 0.16637×Δp = 2−13.145. To recover K29,
we need 226.482 IVs in order to obtain a success probability of 0.977.

The attacks given in this section recover 36 bits of the secret key with about
226 random IVs. For each IV, only the first 3 bytes of the keystream are needed
in the attack.

4 Improving the Key Recovery Attack

In the above attacks, we deal with the bits affected only by π1 at st+5 during
the initialization (the bits affected by π2 are not considered in the attack). In
order to improve the attack, we have used a computer program to trace all the
possibilities for each bit si (0 ≤ i ≤ 175) during the initialization process to
find out the distribution of that bit at the end of initialization. Then we have
searched the optimal attack for that bit. We have performed the experiment,
and found that 44 key bits can be recovered with less than 220 IVs, and only the
first 2 bytes of the keystream are required in the attack. The experiment results
are given in Table 1 in Appendix A.

36 H. Wu and B. Preneel

5 The Keystream of DECIM is Heavily Biased

The nonlinear function f in DECIM is extremely simple. However this Boolean
function is balanced but not 1-resilent. Unfortunately the ABSG decimation
mechanism and the buffer in the output function fail to eliminate the bias ex-
isting in the output of f , hence the keystream is heavily biased.

5.1 The Keystream is Biased

We start with analyzing the function f

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij xik
.

If any bit of the input of f is equal to 1, then f outputs a ‘1’ with probability
72
128 ; otherwise it outputs a ‘1’ with probability 56

128 . Thus for f(xi1 , ..., xi7) and
f(x′

i1 , ..., x
′
i7), if one bit of one input is always equal to one bit of another input

(i.e., xia = x′
ib

where 0 ≤ a, b ≤ 7), then the outputs related to these two inputs
would be equal with probability (56

128)2 + (72
128)2 = 65

128 .
Note that yt,1 and yt,2 are computed as follows

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) .

Denote A = {1, 32, 40, 101, 164, 178, 187}, B = {6, 8, 60, 116, 145, 181, 191}, and
denote each element of A by ai, and each element of B by bi (1 ≤ i ≤ 7). Then
yt,1 = yt+ai−aj ,1 and yt,2 = yt+bi−bj ,2 with probability 65

128 for 1 ≤ i, j ≤ 7 and
i
= j. And yt+bi−aj ,1 = yt,2 with probability 65

128 for 1 ≤ i, j ≤ 7. It shows that
the binary sequence y is heavily biased.

The heavily biased sequence y is used as input to the ABSG decimation
algorithm. It results in a heavily biased output. In the attack, we are interested in
those biases in y that would not be significantly reduced by the ABSG Algorithm.
Thus we will analyze the bias of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2) to
find out how they affect the randomness of the output of ABSG.

For example, we analyze the effect of the bias of (yt+3,1, yt,2). yt+3,1 = yt,2 with
probability 65

128 . Denote the i-th bit of the sequence y by yi. Thus yi = yi+5 with
probability 129

256 . (yi, yi+5) would affect the bias of the output of the ABSG in two
approaches. One approach is that (yi, yi+5) becomes (zj , zj+2) with probability
1
4 (case 1: yi = yi−1, yi+2
= yi+1 and yi+3 = yi+2; case 2: yi
= yi−1, yi+1 = yi−1
and yi+3 = yi+2). Thus for this approach, the bias of (yi, yi+5) causes zj = zj+2
with probability 513

1024 . Another approach is that if yi = yi−1 and yi+2 = yi+1,
then (yi, yi+4) becomes (zj , zj+2). Note that yi+4 = yi−1 with probability 129

256 ,
so zj = zj+2 with probability 129

256 . This approach happens with probability 1
4 .

Thus the bias of (yi, yi+5) causes zj = zj+2 with probability 513
1024 . Combining

these two approaches, we know that zj = zj+2 with probability 257
512 .

We continue analyzing the above example since the output of ABSG deci-
mation algorithm should pass through the buffer before becoming keystream.

Cryptanalysis of the Stream Cipher DECIM 37

By analyzing the ABSG decimation algorithm and the buffer, we notice that
if (yi, yi+5) becomes zj = zj+2 after the ABSG decimation algorithm, then it
becomes z′k = z′k+1 with probability 0.6135 after passing through the buffer; if
(yi, yi+4) becomes zj = zj+2 after the ABSG decimation algorithm, then it be-
comes z′k = z′k+1 with probability 0.5189 after passing through the buffer. Thus
after passing through the buffer, the two approaches lead to z′k = z′k+1 with
probability 1

2 + 0.6135 × 1
1024 + 0.5189 × 1

1024 = 1
2 + 2−9.82.

A similar analysis can be applied to the biases resulting from (yt+4,1, yt,2) and
(yt,2, yt+2,2). The bias of (yt,2, yt+2,2) would cause z′k = z′k+1 with probability
about 1

2 + 2−10.84, and the bias of (yt+4,1, yt,2) would cause z′k = z′k+1 with
probability about 1

2 + 2−11.73.
Combining the effects of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2), the bias

of z′k = z′k+1 is about 1
2 + 2−9.82 + 2−10.84 + 2−11.73 = 1

2 + 2−9.00.
Now we verify the above analysis with an experiment. We have generated

about 230 keystream bits from DECIM and found that z′k = z′k+1 is about
1
2 + 2−8.67. The experimental result shows that the theoretical result is close to
that obtained from the experiment.

5.2 Broadcast Attack

Due to the bias in the keystream, part of the message could be recovered from
the ciphertexts if the same message is encrypted many times using DECIM with
random key and IV pairs. A similar attack has been applied to RC4 by Mantin
and Shamir [5].

Suppose that one message bit is encrypted N times, and each keystream bit
is 0 with probability 1

2 + Δp with Δp > 0. Denote the number of ‘0’ in the
ciphertext bits by n0. If n0 > N

2 , we conclude that the message bit is equal to
‘0’; otherwise, we conclude that the message bit is equal to ‘1’. For N = Δp−2,
the message bit is recovered with a success probability of 0.977.

Thus if one message is encrypted about 218 times with different keys and IVs,
the message could be recovered from the ciphertexts.

6 Attacks on DECIM with 80-bit IV

The keystream generation algorithm of DECIM with an 80-bit IV is the same as
DECIM with a 64-bit IV. Thus DECIM with an 80-bit IV still generates heavily
biased keystream and it is vulnerable to the broadcast attack.

The initialization process of DECIM with an 80-bit IV is slightly different
from the 64-bit IV version. The key and IV are loaded into the LFSR as

si =

⎧
⎨

⎩

0 for 0 ≤ i ≤ 31
Ki−32 ⊕ IVi−32 for 32 ≤ i ≤ 111
Ki−112 for 112 ≤ i ≤ 191

Similar to the attack given in Sect. 4, we have carried out an experiment to
compute the IVs required to recover each bit. With 221 IVs, 41 bits of the secret

38 H. Wu and B. Preneel

key could be recovered. Only the first 2 bytes of the keystream are required in
the attack. The experiment results are given in Table 2 in Appendix A.

7 Conclusion

In this paper, we have developed two attacks against the stream cipher DECIM.
The key could be recovered easily from the keystream with about 220 random
IVs. And the keystream of DECIM is heavily biased. The results indicate that
DECIM is very weak.

Recently, the designers of DECIM have proposed DECIM v2 [2]. DECIM v2
is much simpler than DECIM. The initialization of DECIM v2 uses 768 steps
of the keystream generation algorithm with the output bit being XORed to the
LFSR. The filter is changed and f is one-resilient. DECIM v2 is not vulnerable
to the attacks presented in this paper.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful
comments.

References

1. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, H. Sibert. “Decim -
A New Stream Cipher for Hardware Applications,” ECRYPT Stream Cipher Project
Report 2005/004. Available at http://www.ecrypt.eu.org/stream/

2. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L.
Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, H. Sib-
ert. “DECIM v2,” ECRYPT Stream Cipher Project Report 2006/004. Available at
http://www.ecrypt.eu.org/stream/

3. D. Coppersmith, H. Krawczyk, and Y. Mansour. “The Shrinking Generator,” in
Advances in Cryptology - CRYPTO’93, volume 773 of Lecture Notes in Computer
Science, pages 22-39. Springer-Verlag, 1993.

4. ECRYPT Stream Cipher Project, at http://www.ecrypt.eu.org/stream/
5. I. Mantin, A. Shamir. “A Practical Attack on Broadcast RC4,” in Fast Software

Encryption (FSE 2001), LNCS2335, pp. 152-164, Springer-Verlag, 2001.
6. W. Meier and O. Staffelbach. “The Self-Shrinking Generator,” in Advances in Cryp-

tology - EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages
205-214, Springer-Verlag, 1994.

A The Number of IVs Required to Break DECIM

Table 1 gives the number of IVs required to break DECIM with a 64-bit IV. 44
key bits can be recovered with less than 220 IVs. Table 2 gives the number of

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

Cryptanalysis of the Stream Cipher DECIM 39

Table 1. Number of IVs required to recover the key bits (64-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s112 ⇒ s192+60 18.95 K1 s57 ⇒ s192+122 20.83
K2 s58 ⇒ s192+116 18.80 K3 s115 ⇒ s192+104 20.46
K4 s116 ⇒ s192+105 21.41 K5 s117 ⇒ s192+106 21.54
K6 s118 ⇒ s192+107 21.67 K7 s119 ⇒ s192+108 21.72
K8 s120 ⇒ s192+145 21.21 K9 s121 ⇒ s192+110 21.92
K10 s10 ⇒ s192+116 17.69 K11 s11 ⇒ s192+117 19.62
K12 s68 ⇒ s192+6 18.88 K13 s69 ⇒ s192+7 20.82
K14 s70 ⇒ s192+8 18.82 K15 s127 ⇒ s192+116 16.66
K16 s128 ⇒ s192+117 18.70 K17 s17 ⇒ s192+6 16.92
K18 s18 ⇒ s192+7 18.82 K19 s19 ⇒ s192+8 16.80
K20 s20 ⇒ s192+9 18.73 K21 s21 ⇒ s192+6 18.59
K22 s22 ⇒ s192+7 20.67 K23 s23 ⇒ s192+8 18.70
K24 s80 ⇒ s192+146 20.80 K25 s25 ⇒ s192+116 17.97
K26 s138 ⇒ s192+6 17.79 K27 s139 ⇒ s192+7 19.87
K28 s140 ⇒ s192+8 17.86 K29 s141 ⇒ s192+9 19.67
K30 s142 ⇒ s192+10 21.46 K31 s31 ⇒ s192+182 18.36
K32 s32 ⇒ s192+183 20.70 K33 s33 ⇒ s192+113 20.97
K34 s34 ⇒ s192+114 21.03 K35 s91 ⇒ s192+116 19.95
K36 s36 ⇒ s192+116 15.55 K37 s37 ⇒ s192+117 17.56
K38 s94 ⇒ s192+145 18.94 K39 s39 ⇒ s192+104 19.62
K40 s152 ⇒ s192+60 16.43 K41 s153 ⇒ s192+116 17.90
K42 s154 ⇒ s192+117 19.93 K43 s43 ⇒ s192+108 20.61
K44 s156 ⇒ s192+145 16.90 K45 s157 ⇒ s192+146 18.96
K46 s46 ⇒ s192+35 20.45 K47 s47 ⇒ s192+6 16.68
K48 s160 ⇒ s192+145 18.68 K49 s161 ⇒ s192+181 15.59
K50 s162 ⇒ s192+182 17.59 K51 s51 ⇒ s192+116 15.62
K52 s52 ⇒ s192+117 17.64 K53 s53 ⇒ s192+118 19.47
K54 s54 ⇒ s192+119 20.05 K55 s55 ⇒ s192+120 20.61
K56 s168 ⇒ s192+76 22.27 K57 s169 ⇒ s192+103 18.43
K58 s170 ⇒ s192+104 18.17 K59 s171 ⇒ s192+105 18.93
K60 s172 ⇒ s192+106 19.11 K61 s173 ⇒ s192+107 19.24
K62 s174 ⇒ s192+108 19.42 K63 s175 ⇒ s192+109 19.58

IVs required to break DECIM with an 80-bit IV. 41 key bits can be recovered
with less than 221 IVs. Only the first 2 bytes of the keystream are required in
the attack, and the amount of computation required in the attacks is negligible.

We explain Table 1 with K0 as an example. K0 is related to s112 since s112 =
K0 ⊕ IV0. s112 is mapped to s192+60 with probability 0.0318 (this probability
is obtained by tracing s112 through the initialization process). Thus K0 could
be recovered by observing the first bits of the keystreams. About 218.95 IVs are
required to achieve a success probability of 0.977.

40 H. Wu and B. Preneel

Table 2. Number of IVs required to recover the key bits (80-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s32 ⇒ s192+183 20.70 K1 s33 ⇒ s192+113 20.97
K2 s34 ⇒ s192+114 21.03 K3 s35 ⇒ s192+115 21.13
K4 s36 ⇒ s192+116 15.55 K5 s37 ⇒ s192+117 17.56
K6 s38 ⇒ s192+118 19.43 K7 s39 ⇒ s192+104 19.62
K8 s40 ⇒ s192+105 20.37 K9 s41 ⇒ s192+121 20.30
K10 s42 ⇒ s192+107 20.48 K11 s43 ⇒ s192+108 20.61
K12 s44 ⇒ s192+109 20.77 K13 s45 ⇒ s192+34 20.70
K14 s46 ⇒ s192+35 20.45 K15 s47 ⇒ s192+6 16.68
K16 s48 ⇒ s192+7 18.72 K17 s49 ⇒ s192+8 16.68
K18 s50 ⇒ s192+9 18.66 K19 s51 ⇒ s192+116 15.62
K20 s52 ⇒ s192+117 17.64 K21 s53 ⇒ s192+118 19.47
K22 s54 ⇒ s192+119 20.05 K23 s55 ⇒ s192+120 20.61
K24 s56 ⇒ s192+121 20.63 K25 s57 ⇒ s192+122 20.83
K26 s58 ⇒ s192+116 18.80 K27 s59 ⇒ s192+12 23.00
K28 s60 ⇒ s192+13 23.41 K29 s61 ⇒ s192+14 23.66
K30 s62 ⇒ s192+15 23.78 K31 s63 ⇒ s192+16 24.09
K32 s64 ⇒ s192+17 24.00 K33 s65 ⇒ s192+18 24.19
K34 s66 ⇒ s192+19 24.22 K35 s67 ⇒ s192+5 23.44
K36 s68 ⇒ s192+6 18.88 K37 s69 ⇒ s192+7 20.82
K38 s70 ⇒ s192+8 18.82 K39 s71 ⇒ s192+60 16.77
K40 s72 ⇒ s192+61 18.75 K41 s73 ⇒ s192+62 20.59
K42 s74 ⇒ s192+63 21.11 K43 s75 ⇒ s192+64 21.71
K44 s76 ⇒ s192+65 21.67 K45 s77 ⇒ s192+66 21.85
K46 s78 ⇒ s192+67 21.81 K47 s79 ⇒ s192+145 18.82
K48 s80 ⇒ s192+146 20.80 K49 s81 ⇒ s192+70 22.05
K50 s82 ⇒ s192+71 22.18 K51 s83 ⇒ s192+72 22.40
K52 s84 ⇒ s192+73 22.43 K53 s85 ⇒ s192+74 22.42
K54 s86 ⇒ s192+75 22.43 K55 s87 ⇒ s192+76 22.55
K56 s88 ⇒ s192+154 24.02 K57 s89 ⇒ s192+155 24.04
K58 s90 ⇒ s192+156 24.15 K59 s91 ⇒ s192+116 19.95
K60 s92 ⇒ s192+117 21.97 K61 s93 ⇒ s192+118 23.77
K62 s94 ⇒ s192+145 18.94 K63 s95 ⇒ s192+146 20.91
K64 s96 ⇒ s192+147 22.79 K65 s97 ⇒ s192+148 23.33
K66 s98 ⇒ s192+149 23.77 K67 s99 ⇒ s192+150 23.64
K68 s100 ⇒ s192+63 22.65 K69 s101 ⇒ s192+4 23.12
K70 s102 ⇒ s192+65 23.66 K71 s103 ⇒ s192+178 23.80
K72 s104 ⇒ s192+179 23.77 K73 s105 ⇒ s192+145 20.94
K74 s106 ⇒ s192+181 18.24 K75 s107 ⇒ s192+182 19.97
K76 s108 ⇒ s192+183 21.81 K77 s109 ⇒ s192+6 20.86
K78 s110 ⇒ s192+7 22.83 K79 s111 ⇒ s192+8 20.94

	Introduction
	Stream Cipher DECIM
	Keystream Generation
	Initialization

	Key Recovery Attack on DECIM
	The Effects of the Permutations 1 and 2
	Recovering K21
	Recovering K22K23 �K30
	Recovering K9 K10 �K19
	Recovering K32K33 �K46

	Improving the Key Recovery Attack
	The Keystream of DECIM is Heavily Biased
	The Keystream is Biased
	Broadcast Attack

	Attacks on DECIM with 80-bit IV
	Conclusion
	The Number of IVs Required to Break DECIM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

