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Abstract. This paper introduces a dedicated authenticated encryption
algorithm AEGIS; AEGIS allows for the protection of associated data
which makes it very suitable for protecting network packets. AEGIS-
128 uses five AES round functions to process a 16-byte message block
(one step); AES-256 uses six AES round functions. The security analysis
shows that both algorithms offer a high level of security. On the Intel
Sandy Bridge Core i5 processor, the speed of AEGIS is around 0.7 clock
cycles/byte (cpb) for 4096-byte messages. This is comparable in speed
to the CTR mode (that offers only encryption) and substantially faster
than the CCM, GCM and OCB modes.
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1 Introduction

The protection of a message typically requires the protection of both confiden-
tiality and authenticity. There are two main approaches to authenticate and
encrypt a message. One approach is to treat the encryption and authentication
separately. The plaintext is encrypted with a block cipher or stream cipher, and
a MAC algorithm is used to authenticate the ciphertext. For example, we may
apply AES [17] in CBC mode [18] to the plaintext, then apply AES-CMAC [22]
(or Pelican MAC [6] or HMAC [19]) to the ciphertext to generate an authen-
tication tag. This approach is relatively easy to analyze since the security of
authentication and encryption can be analyzed almost separately. Bellare and
Namprempre have performed a detailed analysis of this type of authenticated
encryption for randomized encryption [2]. Another approach is to apply an inte-
grated authenticated encryption algorithm to the message; one can expect that
this is more efficient since authentication and encryption can share part of the
computation.

There are three approaches to design an integrated authenticated encryption
algorithm. The first approach is to use a block cipher in a special mode (the block
cipher is treated as a black box). The research on this approach started about ten



years ago [9, 12, 14]. There are now two NIST recommended modes of operation
for authenticated encryption, namely, CCM [20] and GCM [21]. OCB [24, 25, 15]
is a widely known authenticated encryption mode, and OCB2 is an ISO standard.
The second approach is to use a stream cipher (the stream cipher is treated as a
black box). The keystream is divided into two parts: one part for encryption and
another part for authentication. A typical example of this approach is Grain-
128a [1]. The third approach is to design dedicated authenticated encryption
algorithms. In this approach, a message is used to update the state of the cipher,
and message authentication can be achieved almost for free. Two examples of this
approach are Helix [8] and Phelix [26]. The attack against Phelix [27] shows that
it is unlikely that this type of authenticated encryption algorithm can withstand
nonce-reuse attacks if it requires much less computation than a block cipher.

In this paper, we propose a dedicated authenticated encryption algorithm
AEGIS following the third approach above. AEGIS is constructed from the AES
encryption round function (not the last round). AEGIS-128 processes a 16-byte
message block with 5 AES round functions, and AEGIS-256 uses 6 AES round
functions. The computational cost of AEGIS is about half that of AES. AEGIS
is very fast. On the Intel Sandy Bridge processor Core-i5, the encryption speeds
of AEGIS-128 and AEGIS-256 are about 0.66 cpb and 0.70 cpb, respectively.
The speeds are close to that of AES in counter (CTR) mode, and are about 8
times that of AES encryption in CBC mode. AEGIS offers a very high security.
As long as the nonce is not reused, it is impossible to recover the AEGIS state
and key faster than exhaustive key search (under the assumption that a 128-bit
authentication tag is used, and the forgery attack cannot be repeated for the
same key for more than 2128 times). AEGIS is suitable for network communica-
tion since it is straightforward to use AEGIS to protect a packet while leaving
the packet header (associated data) unencrypted.

This paper is organized as follows. The operations, variables and functions
are introduced in Sect. 2. The specifications of AEGIS-128 and AEGIS-256 are
given in Sect. 3 and Sect. 4, respectively. Section 5 gives the security analysis
of AEGIS-128 and AEGIS-256. The software performance of AEGIS is given in
Sect. 6. The design rationale is given in Sect. 7. Section 8 concludes this paper.

2 Operations, Variables and Functions

2.1 Operations

The following operations are used in AEGIS:

⊕ : bit-wise exclusive OR
& : bit-wise AND
‖ : concatenation
dxe : ceiling operation, dxe is the smallest integer not less than x
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2.2 Variables and constants

The following variables and constants are used in AEGIS:

AD : associated data (this data will not be encrypted or decrypted).
ADi : a 16-byte associated data block (the last block may be a partial

block).
adlen : bit length of the associated data with 0 ≤ adlen < 264 .
C : ciphertext.
Ci : a 16-byte ciphertext block (the last block may be a partial block).
const : a 32-byte constant in the hexadecimal format; const = 00 ‖ 01 ‖

01 ‖ 02 ‖ 03 ‖ 05 ‖ 08 ‖ 0d ‖ 15 ‖ 22 ‖ 37 ‖ 59 ‖ 90 ‖ e9 ‖ 79 ‖
62 ‖ db ‖ 3d ‖ 18 ‖ 55 ‖ 6d ‖ c2 ‖ 2f ‖ f1 ‖ 20 ‖ 11 ‖ 31 ‖ 42 ‖
73 ‖ b5 ‖ 28 ‖ dd. This is the Fibonacci sequence modulo 256.

const0 : first 16 bytes of const.
const1 : last 16 bytes of const.
IV 128 : 128-bit initialization vector of AEGIS-128.
IV 256 : 256-bit initialization vector of AEGIS-256.
IV 256,0 : first half of IV 256 .
IV 256,1 : second half of IV 256 .
K128 : 128-bit key of AEGIS-128.
K256 : 256-bit key of AEGIS-256.
K256,0 : first half of K256 .
K256,1 : second half of K256 .
msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264 .
mi : a 16-byte data block.
P : plaintext.
Pi : a 16-byte plaintext block (the last block may be a partial block).
Si : state at the beginning of the ith step.
Si,j : j-th 16-byte element of the state Si . For AEGIS-128, 0 ≤ j ≤ 4;

for AEGIS-256, 0 ≤ j ≤ 5.
T : authentication tag.
t : bit length of the authentication tag with 64 ≤ t ≤ 128.
u : u = dadlen128 e .

v : v = dmsglen
128 e .

2.3 Functions

The AES encryption round function (not the last round) is used in AEGIS:

AESRound(A,B): A is the 16-byte state, B is the 16-byte round key. This func-
tion mapping 2 16-byte inputs to a 16-byte output can be implemented efficiently
on recent x86 processors using the AES instruction m128 aesenc si128(A, B),
where A and B are two 128-bit integers m128i.
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3 AEGIS-128

In this section, we describe AEGIS-128. With a 128-bit key and a 128-bit initial-
ization vector, AEGIS-128 encrypts and authenticates a message. The associated
data length and the plaintext length are less than 264 bits. The authentication
tag length is less than or equal to 128 bits. We strongly recommend the use of
a 128-bit tag.

3.1 The state update function of AEGIS-128

The state update function updates the 80-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate128(Si,mi) is given as follows:

Si+1,0 = AESRound(Si,4, Si,0 ⊕mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);

The state update function is shown in Fig. 1 :

Fig. 1. The state update function of AEGIS-128. R indicates the AES encryption round
function without XORing with the round key and w is a temporary 16-byte word.

3.2 The initialization of AEGIS-128

The initialization of AEGIS-128 consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S−10,0 = K128 ⊕ IV 128;
S−10,1 = const1;
S−10,2 = const0;
S−10,3 = K128 ⊕ const0;
S−10,4 = K128 ⊕ const1;
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2. For i = −5 to −1, m2i = K128; m2i+1 = K128 ⊕ IV 128;

3. For i = −10 to −1, Si+1 = StateUpdate128(Si,mi) ;

3.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that if
adlen = 0, the state will not be updated.

2. For i = 0 to dadlen128 e − 1, we update the state:

Si+1 = StateUpdate128(Si, ADi) ;

3.4 The encryption of AEGIS-128

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = dadlen128 e and v = dmsglen
128 e. For i = 0 to v−1, we perform encryption

and update the state:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate128(Su+i, Pi) ;

3.5 The finalization of AEGIS-128

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Su+v,3 ⊕ (adlen ‖ msglen), where adlen and msglen are repre-
sented as 64-bit integers.

2. For i = u+ v to u+ v + 6, we update the state:

Si+1 = StateUpdate128(Si, tmp) ;

3. We generate the authentication tag from the state Su+v+7 as follows:
T ′ =

⊕4
i=0Su+v+7,i ;

The authentication tag T consists of the first t bits of T ′.
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3.6 The decryption and verification of AEGIS-128

The exact values of key size, IV size, and tag size should be known to the de-
cryption and verification processes. The decryption starts with the initialization
and the processing of authenticated data. Then the ciphertext is decrypted as
follows:

1. If the last ciphertext block is not a full block, decrypt only the partial ci-
phertext block. The partial plaintext block is padded with 0 bits, and the
padded full plaintext block is used to update the state.

2. For i = 0 to v − 1, we perform decryption and update the state.

Pi = Ci ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate128(Su+i, Pi) ;

The finalization in the decryption process is the same as that in the encryp-
tion process. We emphasize that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of AEGIS-128 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV ). This requirement also applies to AEGIS-256.

4 AEGIS-256

In this section, we describe AEGIS-256. With a 256-bit key and a 256-bit initial-
ization vector, AEGIS-256 encrypts and authenticates a message. The associated
data length and the plaintext length are less than 264 bits. The authentication
tag length is less than or equal to 128 bits. We strongly recommend the use of
a 128-bit tag.

4.1 The state update function of AEGIS-256

The state update function updates the 96-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate256(Si,mi) is illustrated as follows:

Si+1,0 = AESRound(Si,5, Si,0 ⊕mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);
Si+1,5 = AESRound(Si,4, Si,5);

4.2 The initialization of AEGIS-256

The initialization of AEGIS-256 consists of loading the key and IV into the
state, and running the cipher for 16 steps with the key and IV being used as
message.
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1. Load the key and IV into the state as follows:
S−16,0 = K256,0 ⊕ IV 256,0;
S−16,1 = K256,1 ⊕ IV 256,1;
S−16,2 = const1;
S−16,3 = const0;
S−16,4 = K256,0 ⊕ const0;
S−16,5 = K256,1 ⊕ const1;

2. For i = −4 to −1,
m4i = K256,0 ;
m4i+1 = K256,1 ;
m4i+2 = K256,0 ⊕ IV 256,0 ;
m4i+3 = K256,1 ⊕ IV 256,1 .

3. For i = −16 to −1, Si+1 = StateUpdate256(Si,mi) ;

4.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that if
adlen = 0, the state will not get updated.

2. For i = 0 to dadlen128 e − 1, we update the state.

Si+1 = StateUpdate256(Si, ADi) ;

4.4 The encryption of AEGIS-256

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = dadlen128 e and v = dmsglen
128 e. For i = 0 to v−1, we perform encryption

and update the state:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ Su+i,5 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate256(Su+i, Pi) ;

4.5 The finalization of AEGIS-256

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.
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1. Let tmp = Su+v,3 ⊕ (adlen ‖ msglen), where adlen and msglen are repre-
sented as 64-bit integers.

2. For i = u+ v to u+ v + 6, we update the state:

Si+1 = StateUpdate256(Si, tmp) ;

3. We generate the authentication tag from the state Su+v+7 as follows:
T ′ =

⊕5
i=0Su+v+7,i ;

The authentication tag T consists of the first t bits of T ′.

5 The Security of AEGIS

The following requirements should be satisfied in order to use AEGIS securely.

1. Each key should be generated uniformly at random.
2. Each key and IV pair should not be used to protect more than one message;

and each key and IV pair should not be used with two different tag sizes.
3. If verification fails, the decrypted plaintext and the wrong authentication

tag should not be given as output.

If the above requirements are satisfied, we have the following security claims:

Claim 1. The success rate of a forgery attack is 2−t, where t is the tag size. If
the forgery attack is repeated n times, the success rate of a forgery
attack is about n× 2−t.

Claim 2. The state and key cannot be recovered faster than exhaustive key
search if the forgery attack is not successful. We recommend the use
of a 128-bit tag size for AEGIS in order to resist repeated forgery
attacks. (Note that with 128-bit tag, the state of AEGIS-256 can
be recovered faster than exhaustive key search if a forgery attack is
repeated for about 2128 times for the same key and IV pair.)

5.1 The security of the initialization

A difference in IV is the main threat to the security of the initialization of
AEGIS. A difference in IV would eventually propagate into the ciphertexts,
and thus it is possible to apply a differential attack against AEGIS. In AEGIS-
128, there are 50 AES round functions (10 steps) in the initialization. If there
is a difference in IV , the difference would pass through more than 10 AES
round functions. In AEGIS-256, there are 96 AES round functions (16 steps)
in the initialization. If there is a difference in IV , the difference would pass
through more than 16 AES round functions. Furthermore, in order to prevent
the difference in the state being eliminated completely in the middle of the
initialization, we inject the IV difference repeatedly into the state (5 and 8
times into the state of AEGIS-128 and AEGIS-256, respectively). We expect
that a differential attack against the initialization would be more expensive than
exhaustive key search.
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5.2 The security of the encryption process

We emphasize here that AEGIS encryption is a stream cipher with a large state
that is updated continuously. The attacks against a block cipher cannot be ap-
plied directly to AEGIS. The state update function involves five AES round
functions in AEGIS-128, and six AES round functions in AEGIS-256. We should
ensure that IV is not reused for the same key; otherwise, the states of AEGIS
can be recovered easily with either known-plaintext attacks or chosen plaintext
attacks. For example, if we re-use an IV and inject a difference into Pi, the
difference would propagate into Ci+2, and part of the state can be attacked by
analyzing the difference pair (∆Pi, ∆Ci+2). If an authenticated encryption algo-
rithm is secure for re-used IV s, we expect that such an algorithm can only be
as fast as a block cipher, as pointed out in [27]. This can be argued as follows:
once an IV is re-used, the attacks that are relevant for a block cipher can be
applied to attack the state.

Statistical Attacks. If the IV is used only once for each key, it is impossible to
apply a differential attack to the encryption process. It is extremely difficult to
apply a linear attack (or correlation attack) to recover the secret state since the
state of AEGIS is updated in a nonlinear way. In general, it would be difficult
to apply any statistical attack to recover the secret state due to the nonlinear
state update function (the statistical correlation between any two states vanishes
quickly as the distance between them increases).

LEX [3, 4] is an AES-based stream cipher that generates keystream from part
of the state. We would like to mention here that AEGIS is not vulnerable to the
attack against LEX [7]. There is a fundamental reason why LEX is vulnerable
to a statistical attack while AEGIS is not: the round keys used in LEX are fixed,
while the whole state of AEGIS is updated continuously in a nonlinear way.

5.3 The security of message authentication

There are two main approaches to attack a MAC algorithm. One approach is to
recover the secret key or secret state, another approach is to introduce/detect an
internal state collision. Besides these two approaches, when we analyze the secu-
rity of message authentication, we need to consider that the AEGIS encryption
may affect the security of message authentication.

Recovering key or state. From Sect. 5.1, we expect that the secret key cannot
be recovered faster than exhaustive search by attacking the initialization. From
Sect. 5.2, we expect that the state cannot be recovered faster than exhaustive
search by attacking the encryption process if the IV is used only once. Similarly,
we expect that the state cannot be recovered faster than exhaustive search by
attacking the tag generation process if IV is not reused.

An attacker can still inject a difference into the state in the tag verification
process and obtain the decrypted plaintext if the forgery attack is allowed to be
repeated for multiple times for the same key and IV pair. In a forgery attack,
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the decrypted plaintext is known to the attacker with probability 2−t (if the
verification is successful). It becomes possible to recover the state if the forgery
attack is repeated many times. We recommend the use of 128-bit tag so that
recovering the state requires at least 2128 forgery attempts.

The security level of the AEGIS-256 state is only 128 bits with a 128-bit tag
(if we consider that a forgery attack becomes successful). However, we believe
that repeating the forgery attack for around 2128 times to recover a state is
impractical.

Internal collisions. A powerful attack against MAC is to introduce and detect
internal collisions. A general approach based on the birthday attack was given by
Preneel and van Oorschot [23]: an internal collision can be detected after a key
is used to generate the authentication tags of about 2n/2 chosen messages, where
n is the state size and tag size in bits. The internal collision can be exploited
to forge the tags of new messages. The birthday attack was later applied to
other MAC algorithms [28]. AEGIS resists this type of attacks due to its large
state size. Another approach to introduce internal collision is through differential
cryptanalysis. Suppose that the difference cancellation in the state occurs with
probability 2−a; then we can detect an internal collision after a secret key is used
to generate the tags of those 2a message pairs. The resulting internal collision
can be used to forge the tags of new messages.

An attacker can inject a difference into the state in the decryption and tag
verification process by modifying the ciphertext. However, AEGIS provides an
extremely large security margin against this type of attack since differences are
introduced into a large state. Obviously the security of AEGIS against forgery
attack is stronger than that of Pelican MAC when the message or the tag gets
modified. In Pelican MAC, four AES round functions are used to process each
16-byte message block; while in AEGIS, at least five AES round functions are
used. Furthermore, the state size of AEGIS-128 is at least 5 times that of Pelican
MAC, and it becomes much more difficult to eliminate the difference in the large
state. A simple description of our analysis is given below. We notice that the
first difference being injected into ciphertext would pass through five round func-
tions without being affected by another ciphertext difference in AEGIS-128, and
there are at least 26 active Sboxes being involved. Furthermore, when a difference
passes through five AES round functions, the difference would be injected into
each 16-byte element in the state. The difference cancellation in the state would
involve at least 52 active Sboxes (at least 26 active Sboxes for generating the
difference patterns, and 26 active Sboxes for generating the proper differences for
difference cancellation). If we consider only a single differential path, the proba-
bility of the difference cancellation in the state is less than 2−6×52 = 2−312. This
means that generating a state collision in the verification process requires at
least 2312 modifications to the ciphertext. Note that the differential attack here
is slightly different from that against block cipher since the AEGIS verification
process would guarantee that each forgery attack generates only one useful dif-
ference pair (the failed forgery attacks would not give outputs). The complexity
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2312 is significantly larger than that of the forgery based key recovery attack
(2128, as illustrated at the beginning of Sect. 5.3). It shows that AEGIS-128 is
strong against forgery attack when the ciphertext or tag gets modified. Multiple
differential paths would not have a significant effect on the forgery attack here,
since each differential path has to cancel its own differences being left in the
state. Attacking AEGIS-256 is more difficult since it involves a larger state and
more AES round functions.

We now analyze whether the noninvertible AEGIS state update function
affects the security of the authentication of AEGIS. In AEGIS, a difference in
the state could be eliminated even if there is no difference being introduced
to cancel it. However, it would only happen if the difference in every 16-byte
element is able to eliminate the difference in the next element after passing
through an AES round function. It means that at least 26 active Sboxes are
involved in this difference elimination process in AEGIS-128, and generating
these particular differences in the state involves more than 26 additional active
Sboxes. We consider that this type of weak state difference has a negligible effect
on the security of the authentication of AEGIS.

The analysis given above shows that the authentication of AEGIS is very strong.

5.4 Other attacks

There are weak states in AEGIS. In one type of weak states, all the 16-byte
elements in a state are equal: consequently all the 16-byte elements in the next
state would be equal (if the message block is 0). However, there are only 2128 such
states, so this type of weak state appears with probabilities 2−512 and 2−640 for
AEGIS-128 and AEGIS-256, respectively. In another type of weak states, the four
columns in each 16-byte element are equal and every 16-byte element has such a
property: in this case, the same property would appear in the next state (if the
message block also has such a property). However, there are only 232×5 = 2160

such states in AEGIS-128 and 232×6 = 2192 such states in AEGIS-256, so we
expect that this type of weak state appears with probabilities 2−480 and 2−608

for AEGIS-128 and AEGIS-256, respectively.

6 The Performance of AEGIS

To process a 16-byte message block, AEGIS-128 and AEGIS-256 use five and six
AES round functions, respectively. In AEGIS, the critical path for processing
a 16-byte message block is about one AES round. The computational cost of
AEGIS is about half that of AES for each message block, thus the speed of
AEGIS is about twice that of AES when they are implemented using table
lookups. For implementations based on bit-slicing techniques (e.g. Käsper and
Schwabe [13]), the difference is smaller as AEGIS allows for 5 or 6 parallel AES
operations rather than 8. AEGIS is very efficient when it is implemented using
the AES new instructions (AES-NI) available on some x86 processors since 2010.
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With parallel AES round functions at each step, AEGIS can fully utilize the 3-
stage pipeline in AES-NI in Intel Westmere processor, and can utilize most of
the 8-stage pipeline in the AES-NI on the Intel Sandy Bridge processor. When
implemented using AES-NI on the Sandy Bridge processor, the speed of AEGIS
is about 8 times that of AES in CBC mode (encryption), and it is slightly faster
than AES-CTR.

We implemented AEGIS in C code using AES-NI. We tested the speed on
Intel Core i5-2540M 2.6GHz processor (Sandy Bridge) running 64-bit Ubuntu
11.04 and turning off the Turbo Boost. The compiler being used is gcc 4.5.2, and
the options “-O3 -msse2 -maes -mavx” are used. In our test, associated data is
not considered, and 128-bit tag is used. The test is performed by processing a
message repeatedly and printing out the final message. To ensure that the tag
generation is not removed in the compiler optimization process, we use the tag
as IV for the next message. To ensure that the tag verification is not removed
in the compiler optimization process, we count the number of failed verifications
and print out the final result.

The performance is given in Table 1. For 4096-byte messages, the speed of
AEGIS is around 0.7 cpb. According to Table 1, the performance of AEGIS is
better than that of CCM, GCM and OCB3, ALE [5] and ASC-1 [11]. ALE and
ASC-1 are two new authenticated encryption algorithms using AES instructions.
In Table 1, the speed for multiple messages is not included since it is a common
practice to compare the speeds for a single message. (For multiple long messages,
the speeds of ALE and CCM are 1.2 and 3.1 cpb, respectively [5].) Note that the
speeds given in Table 1 are for reference only since the ciphers are not evaluated
under the same conditions.

Table 1. The speed comparison (in cycles per byte) for different message length. A
plus sign (+) indicates that the data are from the ALE designers and the performance
is measured on the Intel i5-2400 microprocessor.

64B 128B 256B 512B 1024B 4096B

AES-128-CTR+ — 1.61 1.22 0.99 0.87 0.77
AES-128-CCM 7.26 6.31 5.65 5.19 5.17 5.05
AES-128-GCM+ — 4.95 3.88 3.33 3.05 2.90
AES-128-OCB3+ — 2.69 1.79 1.34 1.12 0.88
ALE+ — 6.63 5.11 4.34 3.96 3.68
ASC-1+ — 7.74 4.80 3.69 2.88 2.64

AEGIS-128(EAa) 3.37 1.99 1.30 0.96 0.80 0.66

AEGIS-128(DVb) 3.78 2.17 1.36 1.02 0.84 0.67
AEGIS-256(EA) 3.51 2.10 1.34 1.03 0.86 0.70
AEGIS-256(DV) 4.00 2.35 1.51 1.09 0.90 0.74

a EA: Encryption-Authentication
b DV: Decryption-Verification
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In Table 1, AEGIS decryption-verification is slightly slower than encryption-
authentication for two reasons: a ciphertext block needs to be decrypted first
before it can be applied to update the state; and the verification process is
slightly more expensive than tag generation. AEGIS-128 is only slightly slower
than AEGIS-256 for long messages, although the computational cost of AEGIS-
256 is about 20% more than that of AEGIS-128. The reason is that on the Sandy
Bridge microprocessor, AES-NI is implemented with an eight-stage pipeline,
and both AEGIS-128 and AEGIS-256 do not fully utilize the pipeline, so the
performance of AEGIS-128 is close to that of AEGIS-256. On the Intel Westmere
microprocessors with a 3-stage AES-NI, AEGIS-256 is about 20% slower than
AEGIS-128.

7 Design Rationale

The goal of AEGIS is to achieve high performance and strong security. To achieve
high performance, we use the AES round function which is now implemented on
the latest Intel and AMD microprocessors as Intel AES New Instructions (AES-
NI). AES-NI is very efficient for achieving diffusion and confusion on a modern
microprocessor. In the design of AEGIS, we use several parallel AES round func-
tions in each step so as to use most of the pipeline stages in AES instruction. AES
instructions are implemented on Intel Westmere (06 25H, 06 2CH, 06 2FH) mi-
croprocessors with a three-stage pipeline (6 clock cycles), and are implemented
on Intel Sandy Bridge (06 2AH) microprocessors with an eight-stage pipeline (8
clock cycles) [10]. Using several parallel AES round functions in AEGIS signifi-
cantly improves its performance by utilizing the pipeline of AES-NI.

To achieve strong encryption security, we ensure that the IV difference is
randomized at the initialization stage, and the state cannot be recovered from
the ciphertext. There are 10 steps and 16 steps in the initialization of AEGIS-
128 and AEGIS-256, so we expect that the initialization of AEGIS is strong.
To ensure that the state cannot be recovered from the ciphertext faster than
brute force key search, we use a state in the design (80 bytes for AEGIS-128
and 96 bytes for AEGIS-256) in order to ensure that at least 20 and 30 AES
round functions are involved in the state recovery attack against AEGIS-128
and AEGIS-256, respectively (the detailed analysis was omitted due to space
restrictions). We avoid using a 64-byte state in AEGIS-128 since only 12 AES
round functions would be involved in the state recovery attack, and we are not
comfortable with its security.

To achieve strong authentication security, we try to ensure that any differ-
ence being introduced into the state would result in a particular difference with
sufficiently small probability, so that it is difficult to launch a forgery attack.
Our design is partly motivated by the design of Pelican MAC [6]. In Pelican
MAC, a difference would pass through 4 AES round functions before meeting
with another difference, so at least 25 active Sboxes are involved. The security
proof against differential forgery attack is very simple for Pelican MAC (how-
ever, there is a birthday type attack against Pelican MAC due to its 128-bit size
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[28]). In AEGIS, the first difference in the state would pass through at least 5
AES round functions before being affected by another difference. In addition,
when a difference passes through AES round functions, the differences are in-
jected into every element in the state, so it becomes more difficult to eliminate
the difference in the state.

8 Conclusion

In this paper, we introduced a dedicated authenticated encryption algorithm
AEGIS. AEGIS is fast for both short and long messages, and it is the fastest
authenticated encryption algorithm on the microprocessors with the AES in-
struction set. We performed a security analysis of the encryption and authenti-
cation of AEGIS. Our analysis shows that the encryption and authentication of
AEGIS are strong. We welcome the security analysis of this new authenticated
encryption algorithm.

Finally we state that AEGIS is not patented and it is freely available for all
applications.
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A Test Vectors

The test vectors (in hexadecimal format) of AEGIS-128 and AEGIS-256 are
given below.

A.1 Test vectors of AEGIS-128

associated data: 0 bits plaintext: 128 bits

K128 = 00000000000000000000000000000000

IV128 = 00000000000000000000000000000000

plaintext = 00000000000000000000000000000000

ciphertext = 951b050fa72b1a2fc16d2e1f01b07d7e

tag = a7d2a99773249542f422217ee888d5f1

associated data: 128 bits plaintext: 128 bits

K128 = 00000000000000000000000000000000

IV128 = 00000000000000000000000000000000

assoc. data = 00000000000000000000000000000000

plaintext = 00000000000000000000000000000000

ciphertext = 10b0dee65a97d751205c128a992473a1

tag = 46dcb9ee93c46cf13731d41b9646c131

associated data: 32 bits plaintext: 128 bits

K128 = 00010000000000000000000000000000

IV128 = 00000200000000000000000000000000

assoc. data = 00010203

plaintext = 00000000000000000000000000000000

ciphertext = 2b78f5c1618da39afbb2920f5dae02b0

tag = 74759cd0e19314650d6c635b563d80fd

associated data: 64 bits plaintext: 256 bits

K128 = 10010000000000000000000000000000

IV128 = 10000200000000000000000000000000

assoc. data = 0001020304050607

plaintext = 000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

ciphertext = e08ec10685d63c7364eca78ff6e1a1dd

fdfc15d5311a7f2988a0471a13973fd7

tag = 27e84b6c4cc46cb6ece8f1f3e4aa0e78
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A.2 Test vectors of AEGIS-256

associated data: 0 bits plaintext: 128 bits

K128 = 00000000000000000000000000000000

00000000000000000000000000000000

IV128 = 00000000000000000000000000000000

00000000000000000000000000000000

plaintext = 00000000000000000000000000000000

ciphertext = b98f03a947807713d75a4fff9fc277a6

tag = a008acb1d372d73932ec5e6df9aca70a

associated data: 128 bits plaintext: 128 bits

K128 = 00000000000000000000000000000000

00000000000000000000000000000000

IV128 = 00000000000000000000000000000000

00000000000000000000000000000000

assoc. data = 00000000000000000000000000000000

plaintext = 00000000000000000000000000000000

ciphertext = b286705e6ccf368974ade9ff5550a4c5

tag = 367f3f14897b31c6a66eb7b540eccc8b

associated data: 32 bits plaintext: 128 bits

K128 = 00010000000000000000000000000000

00000000000000000000000000000000

IV128 = 00000200000000000000000000000000

00000000000000000000000000000000

assoc. data = 00010203

plaintext = 00000000000000000000000000000000

ciphertext = 1f452a22fc07f2471ab4345d7ab121b1

tag = 0d80d9c73cd4b8b3422b66cdaa45ae8a

associated data: 64 bits plaintext: 256 bits

K128 = 10010000000000000000000000000000

00000000000000000000000000000000

IV128 = 10000200000000000000000000000000

00000000000000000000000000000000

assoc. data = 0001020304050607

plaintext = 000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

ciphertext = f373079ed84b2709faee373584585d60

accd191db310ef5d8b11833df9dec711

tag = 787347bc96d3d0fdb33ddc8ee5ef4924
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