
KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

Cryptanalysis and Design of Stream Ciphers

Promotor:

Prof. Dr. ir. Bart Preneel

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Hongjun Wu

July 2008

KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT ELEKTROTECHNIEK–ESAT

Kasteelpark Arenberg 10, 3001 Leuven-Heverlee

Cryptanalysis and Design of Stream Ciphers

Jury:

Prof. Dr. ir. Hendrik Van Brussel, voorzitter

Prof. Dr. ir. Bart Preneel, promotor

Prof. Dr. Lars R. Knudsen (TUD)

Prof. Dr. ir. Vincent Rijmen

Prof. Dr. ir. Marc Van Barel

Prof. Dr. ir. Joos Vandewalle

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Hongjun Wu

U.D.C. 681.3*D46 July 2008

c© Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron-
isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2008/7515/74

ISBN 978-90-5682-000-8

Acknowledgements

I would like to express my gratitude to Prof. Bart Preneel for providing me the
opportunity to study at the Katholieke Universiteit Leuven and for being the
promotor of this thesis.

I am very grateful to Prof. Lars R. Knudsen, Prof. Vincent Rijmen, Prof. Marc
Van Barel and Prof. Joos Vandewalle for serving on the jury and to Prof. Hendrik
Van Brussel for chairing the jury.

I am also thankful to all the COSIC members. I would like to thank Alex,
Christophe, Christopher, Dawu, Elena, Emilia, Gautham, Joe, Jongsung, Jongsu,
Junfeng, Kare, Li, Mina, Orr, Ozgul, Panagiotis, Sebastiaan, Souradyuti, Toga
and Zhiguo for interesting discussions on various topics, and thank Pela for the
help with administrative matters.

Special thanks go to Dr. Feng Bao and Prof. Robert H. Deng for being my
supervisors for about eight years when I was a student at the National University
of Singapore and when I was working at the Institute for Infocomm Research.
I would like to thank my colleagues at the Institute for Infocomm Research for
their friendship and helpful discussions. And I would like to thank Dr. Shaohua
Tan for introducing me to cryptology.

Finally, many thanks to my girl friend Liming for her understanding and
support during the last three years.

Hongjun
Leuven, July 2008

iii

iv

Abstract

This thesis presents some novel results on the cryptanalysis and design of stream
ciphers. The first part of the thesis introduces various stream ciphers design and
cryptanalysis techniques.

The second part of the thesis gives the cryptanalysis of seven stream ciphers.
The properties of addition are exploited in the cryptanalysis of two stream ci-
phers: the differential-linear cryptanalysis against Phelix and the fast correlation
attack on ABC v2. Resynchronization attacks are applied against several stream
ciphers – DECIM, WG, LEX, Py and Pypy. Various cryptanalytic approaches
(linear, differential and slide attacks) are used in these attacks.

The third part of the thesis is on the design of stream ciphers. We demonstrate
that strong and secure stream ciphers can be designed using nonlinear state
updating function and nonlinear output function. The design of stream ciphers
HC-256 and HC-128 are presented.

v

vi

Contents

1 Introduction 1
1.1 Symmetric Key Encryption . 1

1.1.1 The one-time pad and stream ciphers 2
1.1.2 Block ciphers and stream ciphers 2

1.2 Stream Cipher Design . 3
1.2.1 Rotor machines . 4
1.2.2 LFSR based stream ciphers 5
1.2.3 Stream ciphers based on clock-controlled LFSRs 5
1.2.4 Stream ciphers with nonlinear state update function 6
1.2.5 Impractical stream ciphers 8

1.3 Stream Cipher Cryptanalysis . 8
1.3.1 General attacks . 9
1.3.2 Attacks on LFSR based stream ciphers 12
1.3.3 Unknown attacks . 14

1.4 IV in Stream Cipher . 15
1.5 Achievements . 16
1.6 Outline . 16

2 Exploiting Characteristics of Addition I – Differential-Linear At-
tack on Phelix 17
2.1 Introduction . 17
2.2 The Stream Cipher Phelix . 18
2.3 The Differential Propagation of Addition 18
2.4 A Basic Key Recovery Attack on Phelix 21

2.4.1 The bias in the differential distribution of keystream 21
2.4.2 Recovering the key . 23

2.5 Improving the Attack on Phelix . 24
2.5.1 Recovering Z

(i)
4 . 24

2.5.2 Recovering Xi+1,0 . 27

vii

2.6 How to strengthen Helix and Phelix 31
2.7 Conclusion . 31

3 Exploiting Characteristics of Addition II – Fast Correlation At-
tack on the Stream Cipher ABC v2 33
3.1 Introduction . 33
3.2 The Stream Cipher ABC v2 . 34
3.3 The Weak Keys of ABC v2 . 36

3.3.1 The large bias of carry bits 36
3.3.2 Identifying the weak keys 37

3.4 Recovering the Internal State . 39
3.4.1 Recovering the initial value of the LFSR 39
3.4.2 Recovering the components B and C 40
3.4.3 The complexity of the attack 41
3.4.4 The attack on ABC v1 . 42

3.5 Conclusion . 42

4 Resynchronization Attack I – Linear Attack on DECIM 45
4.1 Introduction . 45
4.2 Stream Cipher DECIM . 46

4.2.1 Keystream Generation . 46
4.2.2 Initialization . 48

4.3 Key Recovery Attack on DECIM 48
4.3.1 The effects of the permutations π1 and π2 48
4.3.2 Recovering K21 . 49
4.3.3 Recovering K22K23 . . . K30 50
4.3.4 Recovering K9K10 . . . K19 50
4.3.5 Recovering K32K33 . . . K46 51

4.4 Improving the Key Recovery Attack 51
4.5 The Keystream of DECIM Is Heavily Biased 51

4.5.1 The keystream is biased . 52
4.5.2 Broadcast attack . 53

4.6 Attacks on DECIM with 80-bit IV 53
4.7 Conclusion . 54

5 Resynchronization Attack II – Differential Attack on WG 55
5.1 Introduction . 55
5.2 Description of WG . 56
5.3 Differential Attacks on WG . 58

5.3.1 Attack on WG with an 80-bit key and an 80-bit IV 58
5.3.2 Attacks on WG with key and IV sizes larger than 80 bits . 61
5.3.3 Attacks on WG with 64-bit IV size 61

viii

5.4 Conclusion . 62

6 Resynchronization Attack III – Slide Attack on LEX 65
6.1 Introduction . 65
6.2 Description of LEX . 65
6.3 Slide Attack on the Resynchronization of LEX 66
6.4 Conclusion . 68

7 Resynchronization Attack IV – Differential Attack on Py, Py6
and Pypy 69
7.1 Introduction . 69
7.2 The Specifications of Py and Pypy 70

7.2.1 The key setup . 71
7.2.2 The IV setup . 71
7.2.3 The keystream generation 73

7.3 Identical Keystreams . 73
7.3.1 IVs differing in two bytes 74
7.3.2 IVs differing in three bytes 76
7.3.3 Improving the attack . 77

7.4 Key Recovery Attack on Py and Pypy 78
7.4.1 Recovering part of the array Y 78
7.4.2 Recovering the key . 81

7.5 The Security of Py6 . 82
7.6 Conclusion . 83

8 The Stream Cipher HC-256 85
8.1 Introduction . 85
8.2 Stream Cipher HC-256 . 86

8.2.1 Operations, variables and functions 86
8.2.2 Initialization process (key and IV setup) 87
8.2.3 The keystream generation algorithm 88
8.2.4 Encryption and decryption 88

8.3 Security Analysis of HC-256 . 89
8.3.1 Period . 89
8.3.2 The security of the key . 89
8.3.3 Randomness of the keystream 90
8.3.4 Security of the initialization process (key/IV setup) 94

8.4 Implementation and Performance of HC-256 94
8.4.1 The optimized implementation of HC-256 95
8.4.2 Performance of HC-256 . 96

8.5 Conclusion . 97

ix

9 The Stream Cipher HC-128 99
9.1 Introduction . 99
9.2 Cipher Specifications . 100

9.2.1 Operations, variables and functions 100
9.2.2 Initialization process (key and IV setup) 101
9.2.3 The keystream generation algorithm 101
9.2.4 Encryption and decryption 102

9.3 Security Analysis of HC-128 . 102
9.3.1 Period . 102
9.3.2 Security of the secret key 103
9.3.3 Security of the initialization process (key/IV setup) 103

9.4 Randomness of the keystream . 103
9.5 Implementation and Performance of HC-128 105

9.5.1 The optimized implementation of HC-128 105
9.5.2 The performance of HC-128 106

9.6 Conclusion . 106

10 Conclusions 107

A The Number of IVs to Break DECIM 119

B Test Vectors of HC-256 and HC-128 123
B.1 Test Vectors of HC-256 . 123
B.2 Test Vectors of HC-128 . 124

x

List of Figures

2.1 One block of Phelix . 19

3.1 Keystream generation of ABC v2 35

4.1 Keystream Generation Diagram of DECIM 47

5.1 Keystream generation diagram of WG 56
5.2 Key/IV setup of WG . 57

6.1 Initialization and stream generation 66
6.2 The positions of the output extracted in the even and odd rounds . 66

xi

xii

List of Tables

2.1 The probability that B
(i+1),j
3 ⊕B

′(i+1),j
3 = 0 for Pi ⊕ P ′i = 1 . . . 21

2.2 The probability that Y
(i+1),j
4 ⊕ Y

′(i+1),j
4 = 0 for Pi ⊕ P ′i = 1 25

2.3 The number of plaintext pairs for recovering Xj+1
i+1,0 ⊕Xj

i+1,0 . . . 29

3.1 The probability of c1 ⊕ c2 ⊕ c3 = 0 (denote the probability as 1
2 + ε) 37

5.1 The differential propagation in the key/IV setup of WG 60

8.1 The speed of the C implementation of HC-256 on a Pentium 4 . . 96

A.1 Number of IVs required to recover the key bits (64-bit IV) 120
A.2 Number of IVs required to recover the key bits (80-bit IV) 121

xiii

xiv

List of Symbols

+ x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

⊕ bit-wise exclusive OR
|| concatenation
>> right shift operator. x >> n means x being right shifted over n

bit positions.
<< left shift operator. x << n means x being left shifted over n bit

positions.
>>> right rotation operator. x >>> n means x being rotated to the

right over n bit positions.

xv

xvi

List of Abbreviations

AES Advanced Encryption Standard
AI Algebraic immunity
BIMAG Bistable Magnetic core
CBC Cipher-block chaining mode
CFB Cipher feedback mode
CMOS Complementary metal-oxide-semiconductor
CTR Counter mode
DES Data Encryption Standard
ECB Electronic Codebook
EMP Electromagnetic pulse
GSM Global System for Mobile communications
IV Initialization Vector
LC Linear Complexity
LFSR Linear Feedback Shift Register
MAC Message authentication code
NIST National Institute of Standards and Technology (USA)
NLFSR Nonlinear Feedback Shift Register
NSA National Security Agency (USA)
OFB Output feedback mode
PKI Public Key Infrastructure
SSL Secure Socket Layer
XOR Exclusive OR

xvii

xviii

Chapter 1

Introduction

1.1 Symmetric Key Encryption

The importance of encryption became critical after telegraph, especially radio
telegraph, was invented. Long distance communication allows information being
intercepted much easier than ever. To protect the confidentiality of informa-
tion, encryption is widely used in military, intelligence and diplomatic services.
The consequence is that cryptanalysis techniques improved significantly. Dur-
ing World War II, both the German Enigma cipher [53, 123] and the Japanese
Purple cipher [52] were successfully broken by the Allies. The two weak ciphers
contributed significantly to the failure of Germany and Japan in World War II.

Today more and more people are connected to the internet with huge amount
of confidential information (emails, online transactions ...) being transmitted
every day. Cryptography starts to play an important role in daily life. Modern
cryptography is developed to protect information confidentiality, integrity and
provide authentication. In modern cryptography, symmetric key cipher is essen-
tial in protecting information confidentiality. With a public key infrastructure
(PKI) that can support key establishment protocol, two parties can share a secret
key and carry out symmetric key encryption in a convenient way.

Symmetric key encryption is important for secret information transmission
and storage. Two parties, the sender and receiver, share the same symmetric key
cipher and the same secret key. The sender encrypts the message (plaintext) with
the cipher and key to obtain the ciphertext. The ciphertext is transmitted (or
stored) over an insecure channel. The receiver decrypts the ciphertext to retrieve
the original message. An attacker or adversary may intercept the ciphertext. To
ensure that no information is leaked to the attacker, strong cipher and strong
key should be used for encryption.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 The one-time pad and stream ciphers

The one-time pad, also called Vernam’s cipher, was invented by Vernam in 1917.
The bit-wise one-time pad is easy to illustrate. A one-time key is randomly
generated and it is as long as the message. The key is XORed (addition modulo
2) with the plaintext for encryption, and the key is XORed with the ciphertext
for decryption.

The one-time pad is the only encryption algorithm that is unconditionally se-
cure – the cipher remains secure despite the computational power and knowledge
of any adversary (quantum cryptography is also claimed to be “unconditionally
secure”, but such claim is based on the assumption that the physics knowledge
today is perfect). The perfect secrecy of one-time pad was proved by Claude
Shannon in his historic paper in 1949 [118].

Although the one-time pad is perfectly secure, it is inconvenient to use in
many applications due to the constraints that the key is too long and each key
can be used only once. A strong synchronous stream cipher is a good replacement
for the one-time pad. A stream cipher can be used to generate many keystreams
from the same (relatively short) key and different initialization vectors (IVs),
then each keystream can be used to encrypt a message.

1.1.2 Block ciphers and stream ciphers

Symmetric key encryption algorithms include block ciphers and stream ciphers.
Both block ciphers and stream ciphers are widely used today. A block cipher has a
fixed message input length, called block size, and it can be viewed as an enormous
and fixed (for each key) secret substitution table that transforms a block of
plaintext bits into ciphertext. A stream cipher has a variable message input
length, and it can be viewed as a small but changing secret substitution table that
transforms plaintext bits at different positions with different substitution tables
(the XOR operation between plaintext and keystream can be viewed as one-bit
substitution determined by a keystream bit). There is some connection between
block ciphers and stream ciphers. A block cipher in counter (CTR) mode [98]
or output feedback (OFB) mode [98] is an inefficient synchronous stream cipher;
and a block cipher in cipher feedback (CFB) mode [98] is an asynchronous stream
cipher.

For some applications, a block cipher is more convenient to use than a stream
cipher – block cipher in electronic codebook (ECB) mode [98] does not require
IV; and the security of block cipher in cipher-block chaining (CBC) mode [98]
is not that sensitive to the management of IV. A block cipher is also useful in
building other cryptography primitives, such as hash functions and message au-
thentication codes (MACs). A stream cipher has two advantages over a block
cipher. One advantage is that to achieve the same security level, a stream cipher

1.2. STREAM CIPHER DESIGN 3

may require much less computations than a block cipher because it is more dif-
ficult to attack the changing state in stream cipher. Another advantage is that
with the precomputation of keystream, the encryption and decryption of stream
cipher can be extremely fast.

The Data Encryption Standard (DES) [99] and Advanced Encryption Stan-
dard (AES) [101] are the two block cipher standards of the National Institute of
Standards and Technology (NIST) of the United States of America. DES was
selected as the encryption standard in 1976, and it has motivated the research
on the design and cryptanalysis of block ciphers. AES was selected as standard
in 2001. In the following, we give a brief introduction to the design and analysis
of stream ciphers.

1.2 Stream Cipher Design

A stream cipher consists of a state update function and an output function.
The state of a stream cipher is updated continuously during encryption so that
bits at different positions in a message are encrypted with different states. The
output function generates keystream bits from the state and performs encryption
or decryption. If the initial state of a stream cipher is not the same as the key,
key setup is required to generate the initial state from the key. If a key is used
with different initialization vectors (IVs) to generate keystreams, key/IV setup
(resynchronization) is required to generate the initial state from the key and IV.

Stream ciphers can be classified according to the state update. If the state
is independent of the message, the cipher is called a synchronous stream cipher
since it requires synchronization between the sender and receiver. If the state
depends only on N previous ciphertext bits, the cipher is called asynchronous
or self-synchronizing stream cipher. Some stream ciphers, such as Helix [48] and
Phelix [126], are neither synchronous nor asynchronous since the state is affected
by all the previous message bits.

The basic requirement on the state update is that the states should be gen-
erated with a sufficiently large period. There are many ways to design a state
update function. The simplest way is to use counter, such as block cipher in
counter mode and the stream cipher Salsa20 [19]. There are two problems with
a counter. One problem is that the diffusion within a counter is too slow; an-
other problem is that the more significant bits never affect the less significant
bits, so the cipher with counter requires a lot of computations in order to achieve
a high security level. A more sophisticated approach is to use linear feedback
shift register (LFSR) with a primitive polynomial. To reduce the weakness as-
sociated with the linearity in LFSR, nonlinearity is introduced, such as clocking
the LFSR irregularly. The more general approach to eliminate the weak linearity
in an LFSR is to use a nonlinear state update function instead of LFSR. Many

4 CHAPTER 1. INTRODUCTION

different and efficient stream ciphers have been designed with nonlinear state
update functions in recent years. We expect that such approach will continue to
dominate the future stream cipher designs.

In the following, we will illustrate the above state update techniques in detail.
We start with the early stream ciphers, rotor machines, to see how a counter can
be constructed in an electromechanical way.

1.2.1 Rotor machines

A cipher is practical only if its encryption and decryption can be computed in
an efficient way. Any cipher used in history matches well with the computing
facilities at that time. A stream cipher with state update function is difficult to
compute conveniently and reliably with paper and pencil. With the application of
electromechanics, the early stream ciphers, rotor machines cipher, were invented
and became widely used from 1930s to 1960s. Rotor machines are convenient
to use – encryption and decryption only requires an operator typing a message
on the keyboard. Rotor machine is a brilliant cipher design approach in the
electromechanics era.

Enigma is the best known rotor machine since it was used in the German mil-
itary during World War II and was broken by the Allies. The rotors of Enigma
are described below. Enigma consists of a few rotors, typically 3 or 4, driven
by electricity. Each rotor represents a (secret) substitution table of the German
characters; the concatenation of two rotors gives the composition of two substitu-
tions. Clocking a rotor one step is equivalent to rotate the substitution table one
position. For a common Enigma (the naval version is slightly different), the first
rotor is rotated one step for every input character, and it triggers the second rotor
to rotate one step during every round of the first rotor; the second rotor triggers
the third rotor to rotate one step during every round of the second rotor, etc.
The changing state of Enigma is the rotation positions of the rotors. The initial
rotor positions are set with a few characters (initialization vector). The state of
Enigma keeps changing as the characters are typed, and a different substitution
table is generated for each character in the message. Enigma is constructed with
an additional reflector so that the encryption and decryption are identical.

The state update function of Enigma is a simple counter. For Enigma with
three rotors, the changing state (the positions of rotors) can be viewed as a three
digit number in base 26 (for English language), and this number is incremented
each time a key is typed. The value of the counter determines the substitution
tables to be used in the encryption and decryption. A counter is probably the
simplest state update function that can be implemented easily and reliably with
electrical rotors (or relays), so rotor machines emerged in the early 20th century
and became popular for about four decades.

1.2. STREAM CIPHER DESIGN 5

1.2.2 LFSR based stream ciphers

Electronic computers were invented in the 1940s. The advance in computing
technology allowed cryptographers to design ciphers using more secure operations
than counters. The LFSR based stream cipher started to emerge at that time.
The algebraic structure of LFSR is very simple and it can be easily constructed
using basic logic gates.

In the 1950s, the National Security Agency (NSA) of the United States of
America started the design of the KW-26 stream cipher, as illustrated in the NSA
brochure [102]. KW-26 was in service from 1960s to 1980s. It was constructed
using over 800 Bistable Magnetic cores (BIMAGs) and about 50 vacuum-tube
drivers. BIMAG is very reliable, and was used as memory in almost all the com-
puters in the 1950s and early 1960s. BIMAGs and vacuum tubes are much less
vulnerable to electromagnetic pulse (EMP) and radiation, so they are very attrac-
tive to military applications. It is thus not a surprise that BIMAG and vacuum
tube were used in the construction of KW-26 even when silicon technology be-
came popular in the 1970s. The specification of KW-26 has never been disclosed
to the public and it is uncertain how many versions have been developed and
used. After KW-26 ciphers were decomissioned by NSA in the mid-1980s, the
ciphers were securely destroyed. According to the NSA brochure, KW-26 uses
Fibonacci shift registers and binary logic combining elements; it is very likely
that the term “Fibonacci shift registers” refers to linear feedback shift registers.

There are two types of LFSR based stream ciphers. One type is to use a
long LFSR, and to use a filtering function to generate keystream bits; another
type is to use several short LFSRs, and to use a combining function to generate
keystream bits. The filtering or combining function has to involve complicated
operations in order to hide the linear weakness in the regularly clocked LFSR(s),
and it is related to the study of the properties of Boolean functions, such as
resilience, nonlinearity and algebraic immunity.

1.2.3 Stream ciphers based on clock-controlled LFSRs

A regularly clocked LFSR is weak. The linearity in the LFSR allows to combine
information that is leaked at faraway positions in order to recover the secret state
of the LFSR. To reduce the weakness, nonlinearity can be introduced to an LFSR
by clocking the LFSR irregularly.

In the stop-and-go generator [24], two LFSRs are cascaded – one bit from
LFSR1 is used to control the clocking of LFSR2 following the stop-and-go rule,
and one bit from LFSR2 is given as the output of the generator. The weakness
of the stop-and-go generator is that when LFSR2 is not clocked, the bit from
LFSR2 is still given as the output of the generator. This weakness is eliminated
perfectly in the alternating step generator [64]. In the alternating step generator,

6 CHAPTER 1. INTRODUCTION

one bit from LFSR1 is used to control the clocking of LFSR2 and LFSR3 so that
one of LFSR2 and LFSR3 is clocked at each step. Two bits, one from LFSR2 and
another from LFSR3, are XORed to give the output of the generator. However,
both the stop-and-go generator and alternating step generator are vulnerable to
the divide-and-conquer attack since guessing the initial state of LFSR1 is almost
equivalent to guessing the complete initial state of the generator.

The above weaknesses in the stop-and-go generator and alternating step gen-
erator are eliminated in the elegant stream cipher A5/1 [59], which is used in
GSM. A5/1 consists of three LFSRs, each LFSR provides a control bit, and an
LFSR is clocked if its control bit agrees with the majority of those three control
bits, thus at least two LFSRs are clocked at each step. Each LFSR provides one
bit to be XORed together to generate the keystream bit. The three LFSRs in
A5/1 affect one another, so A5/1 is not that vulnerable to the divide and conquer
attack, and the size of each LFSR can be small. A5/1 can be implemented very
efficiently in hardware due to its small state size and simple operation. Several
attacks have been developed against A5/1 by exploiting its small 64-bit state size
[59, 22, 9]. However, considering that the key size of A5/1 is limited to only 54
bits, A5/1 almost achieves the 54-bit security level required in GSM.

The above clock controlled generators were developed in the 1980s. The
shrinking generator [34] and self-shrinking generator [90], being proposed in the
1990s, are two special clock controlled generators. There are two regularly clocked
LFSRs in the shrinking generator. At each step, one bit from LFSR1 is used to
determine whether a bit from LFSR2 is given as keystream bit or discarded.
There is only one regularly clocked LFSR in the self-shrinking generator. At the
end of every two steps, two adjacent bits in the LFSR are used – one bit is used to
determine whether another bit will be given as keystream bit or discarded. There
are so far no efficient attacks against the shrinking generator and self-shrinking
generator. However, it is inconvenient to use the shrinking generators in practice
since they do not generate keystream at a constant rate.

From the clock controlled generators, we see that nonlinearity in the state
update function can result in a simple, secure and efficient design. It is natural
to look for other efficient nonlinear state update functions in the stream cipher
design.

1.2.4 Stream ciphers with nonlinear state update function

Computing devices are very powerful these days. We can design many different
nonlinear state update functions – irregularly clocked LFSRs, bit-wise nonlinear
feedback shift registers, lookup table based nonlinear update functions ... With
nonlinear state update functions, very secure and efficient stream ciphers can be
designed.

1.2. STREAM CIPHER DESIGN 7

Bit-wise nonlinear feedback shift registers

The bit-wise nonlinear feedback shift registers (NLFSR) are used in several recent
stream ciphers, such as Achterbahn [54, 55], Grain [66, 67] and Trivium [44].
Achterbahn consists of a number of short NLFSRs, but it does not benefit much
from the use of NLFSRs. Even though complicated combining functions are used
in Achterbahn, the ciphers were still broken [76, 68, 69, 111]. Grain consists of one
LFSR and one NLFSR. The improperly designed NLFSR and filtering function
in Grain v0 results in the state of LFSR being recovered with a fast correlation
attack [15]. The flaw was fixed in the improved Grain version [67]. Trivium uses
a long NLFSR (or three NLFSRs with interconnections between them), and is
very strong against the distinguishing attack.

We expect that extremely hardware efficient stream ciphers can be designed
by using bit-wise NLFSRs and nonlinear output functions. However, as the
number of operations being significantly reduced in the hardware efficient cipher,
it requires more security analysis of the design.

Word-wise nonlinear update functions

RC4 [114] is used extensively in applications such as Secure Socket Layer (SSL). It
is the first lookup table based stream cipher. Table lookups are used extensively
in the state update and keystream generation in RC4. The table in RC4 is secret
and changing. Benefiting from this high nonlinearity, the structure of RC4 is
extremely simple, and RC4 is very strong. However, the initial state of RC4 is not
properly generated from the key and IV, thus it suffers from the resynchronization
attack [50, 84] and broadcast attack [86] in practice. In general, it is extremely
difficult to recover the secret key of a stream cipher with large, secret and changing
lookup table by analyzing the keystream generation process. The recent designs
with secret and changing lookup table include HC-128 [135], HC-256 [128], Py [25]
and Pypy [26]. However, Py and Pypy suffer from resynchronization attacks [134].

Rabbit [30] is a stream cipher with update function heavily depending on inte-
ger multiplications and rotations. This approach also provides high nonlinearity
in the cipher design.

More on nonlinear update functions

When a nonlinear update function is used in a stream cipher, the most important
question is what the period of the keystream is. If there is no algebraic structure
in the nonlinear function, then it is almost impossible to predict the exact period
of the keystream. If algebraic structure is introduced into the nonlinear function,
such as a T-function [79, 80], then it is possible to compute the exact period of the
keystream. However, we prefer removing any algebraic structure from the stream

8 CHAPTER 1. INTRODUCTION

cipher design to reduce the threat that the algebraic structure may be exploited
in an attack. In general, if the state size of a stream cipher is not too small (at
least twice the keysize), and the state is updated in an invertible and nonlinear
way (with sufficient confusion and diffusion), then the probability is very high
that the resulting stream cipher generates keystream with a very large period
since the average period of an invertible random function with n-bit state is 2n−1

[49]. We should note that if the nonlinear update function is noninvertible, then
the average period of the keystream would be significantly reduced, such as the
short period of A5/1.

We should also note that using nonlinear state update function in a stream
cipher does not automatically guarantee the security of the cipher. Confusion
and diffusion are very important in stream cipher design, although they have
been strictly applied in block cipher design. And intensive reviews are necessary
for any stream cipher design.

1.2.5 Impractical stream ciphers

Some stream ciphers, such as QUAD [16], are designed with public key cryp-
tosystem techniques. This approach normally gives stream cipher more than 100
times less efficient than a common stream cipher and thus has almost no practical
value. Basically such approach is a bit ridiculous: in order to achieve “provable
security”, the designers have to significantly weaken the cipher by giving “public
key” information to the adversary. Obviously, keeping such “public key” infor-
mation secret in a symmetric key cipher should significantly improve the security
(or significantly enhance the performance) – just imagine how secure (or how
efficient) the properly padded RSA [115] would be if both the public and private
keys are kept secret.

1.3 Stream Cipher Cryptanalysis

Cryptanalysis plays an essential role in the design of ciphers. A good cipher
should be designed by taking into account all the known cryptanalysis techniques
and the designer’s insight into unknown attacks. For example, DES would not
have been designed in the same way if the differential attack [27] had not been
invented at that time, and AES would not give adequate security margin if the
square attack [42] had not been developed at that time. In the following, we
illustrate some general attacks on stream ciphers, followed by the dedicated at-
tacks on LFSR based stream ciphers. The countermeasure against these attacks
will be discussed.

1.3. STREAM CIPHER CRYPTANALYSIS 9

1.3.1 General attacks

There are a number of general attacks against stream ciphers. These include
the brute force attack, the time-memory-data tradeoff attack, the divide and
conquer attack (including correlation attack), the resynchronization attack and
distinguishing attack.

Brute force attack

A brute force attack (exhaustive key search) is the most basic attack against any
cipher. The key space of a cipher should be sufficiently large to thwart brute
force attack. The adequate key size is closely related to the security requirement
and the advance in computing technology.

Computing can be simply considered as the flow of information and the trig-
gering of events during the flow. Thus computing power is eventually limited
by the information flow distance and transmission speed. Within a conventional
computer, the information transmission speed is limited by the speed of light,
and the information transmission distance can be reduced through the aggressive
shrinking of transistors. The shrinking of transistors has so far been predicted
well by Moore’s law which states that the number of transistors that can be
placed on an integrated circuit doubles every 18 months. However, there will be
an end to Moore’s law. In 2007, Intel showed the first test chips using the 32
nanometer node CMOS fabrication technology (half-pitch spacing of metal lines
is 32 nanometers). The 16 nanometer technology is expected to be available in
2018. Note that the diameter of an atom is about 0.1 to 0.5 nanometer, hence
we can expect that Moore’s law would no longer be applicable after three or
four decades. It implies that stream cipher with 128-bit key size may be secure
enough against brute force attack within the first half of the 21st century.

However, there is uncertainty in predicting the progress of computing. There
will be alternative ways to perform computing rather than using the current sili-
con technology (microelectronics). The future researches on nanoelectronics will
very likely lead to much more powerful computing devices. Quantum computing
is an emerging and very different computing approach. Based on entanglement
and superposition, an n-qubit quantum register can contain up to 2n states si-
multaneously, and an operation performed on the quantum register is equivalent
to 2n parallel operations being performed on a conventional computer. It is the
reason that quantum computers can be much more powerful than conventional
computers. However, quantum computers cannot be 2n times faster than con-
ventional computers for solving a general problem. The reason is that although
a quantum register contains 2n states, it can only be measured to be one of
2n states, so it is extremely difficult to exploit the quantum computing power
directly. Thus quantum algorithms are needed so that some special problems

10 CHAPTER 1. INTRODUCTION

can be solved efficiently on quantum computers. There are so far two quantum
algorithms being developed that are important for cryptanalysis – Shor’s algo-
rithm [119] and Grover’s algorithm [63]. Shor’s algorithm was invented by Peter
Shor in 1994. It is the first quantum algorithm related to cryptology and it has
motivated the research on quantum computer. Shor’s algorithm is a polynomial-
time approach to solve the integer factorization and discrete logarithm problems.
Thus it is easy to break most of the widely used public key cryptosystems on
a quantum computer. Grover’s algorithm searches an unsorted database with
N entries in O(

√
N) time with O(logN) storage space. Grover’s algorithm can

be applied to find an n-bit key with about 2n/2 operations, thus it affects the
security of symmetric key ciphers. However, it is unlikely that quantum com-
puter can be applied to break stream cipher faster than conventional computer
in the near future (say, half a century), since currently quantum computers are
still in their infancy, and there are tremendous difficulties in building quantum
computers. The threat of Grover’s algorithm on stream ciphers can be simply
eliminated by doubling the key size.

Time-memory-data tradeoff attack

If the state space of a stream cipher is small, the collision of the states can be ex-
ploited to recover the secret state. The attack is performed as follows. From many
different states, the corresponding keystream fragments are precomputed, sorted
and stored. From a given long keystream, one can obtain many keystream frag-
ments, and compare the keystream fragments with the precomputed keystream
fragments to look for collision. Once a collision is found, the secret state of the ci-
pher is recovered. The above attack was developed independently by Babbage [7]
and Golić [59]. Note that if part of the secret state of a stream cipher is never
updated by the state update function, then collision does not exist for that fixed
state component, so brute force attack is needed to deal with the fixed secret
state component, and the overall complexity of the time-memory-data tradeoff
attack increases.

In the above attack, there is tradeoff between the amount of precomputa-
tions and the length of keystream. The length of the known keystream can be
reduced by increasing the amount of precomputations. But the memory required
to store the precomputed keystream fragments and the corresponding states in-
creases proportionally to the amount of precomputations. To reduce the memory
requirement in the attack, in year 2000, Biryukov and Shamir developed the time-
memory-data tradeoff attack [21] by using the idea of Hellman’s time-memory
tradeoff attack on block cipher [71].

To resist the time-memory-data tradeoff attack, it requires that the state size
is at least twice of the key size.

1.3. STREAM CIPHER CRYPTANALYSIS 11

Divide and conquer attack

Divide and conquer is a natural and powerful approach to solve a complicated
problem. We can find the use of divide and conquer in many attacks, such as
differential cryptanalysis [27] and linear cryptanalysis [88] against block ciphers.
In order to thwart the divide and conquer attack, the repeated use of confusion
and diffusion is necessary in the design of a symmetric key cipher, as pointed out
by Shannon [118].

Here we consider only the divide and conquer attacks against stream ciphers
with improperly updated state – some component in the state is updated without
being affected by other components. Many stream ciphers have this potential
weakness, such as stream ciphers consisting of several independently updated
linear (or nonlinear) feedback shift registers. T-function based stream cipher is
a special example [79, 80]. In T-functions, the more significant bits never affect
the less significant bits. The stream cipher Edon80 [56] does not use T-function.
However, the overall structure of Edon80 is very similar to a T-function due to
the absence of feedback. This weak structure was exploited to break Edon80 [70].

The correlation attack, developed by Siegenthaler in 1984 [120], is one type of
divide-and-conquer attacks. It was originally developed against stream ciphers
consisting of several LFSRs. There is always correlation between an LFSR and
the keystream bits. If the LFSR length is short and the correlation is large,
an attacker can search through all the possible initial states of LFSR, and find
the correct initial state by checking the correlation between each guessed LFSR
sequence and the keystream. In general, the correlation attack can be applied to
any stream cipher in which the state consists of small and independently updated
components.

To resist the above divide and conquer attack on stream cipher, a simple and
efficient approach is to implement fast diffusion between all the state bits, i.e.,
each state bit being updated by all the other state bits frequently.

Resynchronization attack

Resynchronization attack targets the key/IV setup of stream ciphers. The se-
curity of the key/IV setup of stream cipher is critical. The key/IV setup with
only linear operations is extremely risky because there is even no confusion in
the setup. This weakness was exploited in several attacks [41, 31, 61]. Further-
more, a key/IV setup with insufficient nonlinear operations is still insecure, as
illustrated below.

The reuse of key with many different IVs allows the key/IV setup being at-
tacked similar (but not identical) to attacks on block ciphers. So we should take
into account all the block cipher attacks when we design the key/IV setup. Dif-
ferential cryptanalysis and linear cryptanalysis are two powerful attacks against

12 CHAPTER 1. INTRODUCTION

block ciphers. In the two attacks, the correlation between plaintext and cipher-
text is exploited to recover the secret key – differential cryptanalysis exploits
the biased distribution of the difference of ciphertext pairs corresponding to a
particular plaintext difference pattern; and linear cryptanalysis exploits the bi-
ased distribution of the parity of some plaintext and ciphertext bits. These two
attacks are also useful in attacking the key/IV setup of stream cipher. We have
applied differential attacks to break the key/IV setup of WG [131], Py and Pypy
[132], and applied linear attacks to break the key/IV setup of DECIM [130].

To resist the resynchronization attack, there should be sufficient confusion and
diffusion in the key/IV setup, similar to (but more difficult than) block cipher
design.

Distinguishing attack

Randomness of the keystream is an important requirement for stream ciphers.
A bias in the keystream can be applied to distinguish keystream from a ran-
dom sequence. A large bias in keystream can be exploited to perform broadcast
attack to recover the message when the same message is protected by different
keystreams. The randomness requirement on keystream so far remains ambigu-
ous despite many years of research on stream cipher. For pure academic research,
a distinguishing attack with complexity less than brute force is acceptable. How-
ever, we believe that an attack that recovers less than one bit of information on
the message from every 264 ciphertext bits by exploiting the randomness of the
keystream has negligible effect on applications.

We have mentioned earlier that RC4 is vulnerable to the broadcast attack.
A recent stream cipher, DECIM [11], also succumbs to the broadcast attack due
to the heavily biased keystream [130]. An interesting observation is that Enigma
is extremely vulnerable to the broadcast attack. The encryption of Enigma is
heavily biased – each character is never encrypted to itself. It is thus extremely
risky to send a message to multiple receivers (say, 20) with different keys or
initialization vectors; otherwise the original message can be easily recovered from
those different ciphertexts without knowing the key. The strong bias had also
been exploited extensively in recovering the secret state of Enigma by the Allies.
To reduce the bias, each character should be encrypted repeatedly with a few
Enigma ciphers.

1.3.2 Attacks on LFSR based stream ciphers

The most significant advancements in stream cipher cryptanalysis so far are the
attacks on LFSR based stream ciphers. The linearity in LFSR provides a rich
resource for developing several amazing attacks.

1.3. STREAM CIPHER CRYPTANALYSIS 13

Berlekamp-Massey algorithm

The linear complexity (LC) of a sequence is the length of the shortest LFSR
which can generate that sequence. The Berlekamp-Massey algorithm [18, 87] is
an efficient algorithm for determining the linear complexity. The complexity of
the algorithm is O(n2), where n is the length of the given sequence. The com-
plexity is reduced to O(n(logn)2loglogn) by using the Blahut algorithm [29]. The
Blackburn algorithm [28] achieves the same complexity as the Blahut algorithm,
but the Blackburn algorithm is easier to implement.

For stream cipher analysis, Berlekamp-Massey algorithm is useful in measur-
ing the randomness of the keystream, and is powerful in generating the rest of
the keystream from the known keystream bits if the linear complexity of the
keystream is not large enough. Here, we can view Berlekamp-Massey algorithm
as an efficient way of solving the regularly structured linear equations; otherwise,
the complexity of the attacks is O(n2.807) by using Strassen’s algorithm [122] to
solve these linear equations.

The linear complexity of the keystream of a stream cipher with a proper non-
linear update function may be quite close to (half of) the period of the keystream.
The linear complexity of keystream of stream cipher based on regularly clocked
LFSR is related to the nonlinear order of the filtering or combining function
(Sect. 6.3 in [91]).

Fast correlation attack

For LFSR based stream ciphers, there is always a correlation between the LFSR
bits and the keystream bits. Due to the linear nature of LFSR, the fast correlation
attack can exploit the correlation at many bit positions to recover the LFSR. Let
us consider the sequence from an LFSR in a stream cipher. According to the
feedback polynomial and its multiples, each bit in this secret sequence is linearly
related to other bits in the sequence through many linear relations. We apply
these linear relations to keystream to see how many linear relations are satisfied
for each keystream bit. Note that every bit in the keystream is correlated to a bit
in the LFSR sequence. If a keystream bit satisfies most of the linear relations,
then the chance is high that the value of the keystream bit is equal to the value
of the bit in the LFSR sequence. Thus the correlation between the keystream
bits and the bits in the LFSR sequence increases, and eventually the LFSR initial
state could be recovered if the original correlation is large.

The fast correlation attack was invented by Meier and Staffelbach [89] in
1989. The attack was improved later [73, 74, 75, 93, 33, 32]. To resist the fast
correlation attacks, a filtering or combining function with very small correlation
between the input and output bits should be used in the design of LFSR based
stream ciphers.

14 CHAPTER 1. INTRODUCTION

Algebraic attack and fast algebraic attack

For stream ciphers based on regularly clocked LFSR, the LFSR’s initial state
and keystream bits are connected through the nonlinear filtering or combining
function. If the algebraic degree of the nonlinear function is low, the number
of monomials in the nonlinear equations would be small, and the initial state of
LFSR can be recovered by solving those overdefined nonlinear equations through
the basic linearization technique by replacing each monomial with a new variable.

A filtering or combining function with high algebraic degree can resist the
above attack. However, in 2003, Courtois and Meier made an important obser-
vation that if a polynomial is multiplied to both sides of a nonlinear Boolean
equation, the algebraic degree of the resulting equation may be significantly re-
duced. Based on this observation, the algebraic attack on the LFSR based stream
ciphers was developed [40]. The concept of algebraic immunity (AI) of a boolean
function was introduced to measure the resistance against the algebraic attack.
But considering only the algebraic immunity in the design is insufficient. The fast
algebraic attack [39] was developed to improve the algebraic attack by using con-
secutive keystream bits. For some Boolean function, the fast algebraic attack can
reduce the degree further by exploiting the fact that Berlekamp-Massey algorithm
is more efficient than Strassen’s algorithm in solving the regularly structured lin-
ear equations. The fast algebraic attack was improved subsequently [1, 65].

When designing a stream cipher using regularly clocked LFSR, a designer has
to evaluate the resistance of the Boolean function against the algebraic attack
and fast algebraic attack. For a Boolean function involving too many input bits,
the complexity of such an evaluation is high. The lowest complexity achieved so
far is given in [2].

1.3.3 Unknown attacks

There is always uncertainty in the advance of cryptanalysis. It seems that if a
cipher is simply over-optimized against the known attacks, then the chance is
high that the cipher is vulnerable to some future attacks. However, for academic
research, the performance of a cipher is critical, so the reality is that many ci-
phers have to be over-optimized for striking performance, especially for hardware
performance. Anyway, it is not that bad since new attacks may be developed by
analyzing the over-optimized ciphers.

Kerckhoffs’ principle and the secrecy of ciphers

Kerckhoffs’ principle states that a cipher should be secure even if the cipher
specification, except the key, is public knowledge. Kerckhoffs’ principle is a fun-
damental guideline in cipher design.

1.4. IV IN STREAM CIPHER 15

However, Kerckhoffs’ principle does not mean that a cipher should be made
public. Due to the uncertainty in cryptanalysis advancement, and the unequal
cryptanalysis knowledge between the cipher designers and the adversary, the
designers can at most assure that the cipher is secure to the designers at that
moment, but they cannot assure that the cipher is secure against the adversary
at that moment and in the future. Thus keeping a cipher secret is still necessary
for top secret applications.

Here is a bit more on the unequal cryptanalysis knowledge. Enigma was
broken in the early 1940s. However, the failure of Enigma was not disclosed until
the 1970s. Differential cryptanalysis became publicly known in 1990. But it was
known to NSA before DES was published in 1975. Clearly the statement that
“a cipher should be secure” according to Kerckhoffs’ principle is not that easy to
achieve in practice.

1.4 IV in Stream Cipher

The initialization vector (IV) is very important in synchronous stream ciphers.
It is disastrous if the same key is used with two identical IVs.

For a general purpose stream cipher, the IV size should be sufficiently large.
The IV may be generated randomly, or be generated from a counter (the counter
based IV is inconvenient to use in some applications), so we cannot simply assume
that IV can only be generated from a counter. The IV size should be sufficient
large to prevent the collision of IVs if IVs are generated randomly. Kohno pointed
out in 2004 that the 64-bit IV being used in the AES-CTR in the compression
software WinZip 9.0 [127] is not large enough to provide adequate security due
to the collision of the IVs [83]. However, in the Ecrypt stream cipher project,
eSTREAM [46], the minimum IV requirements are 32-bit IV for 80-bit key ci-
pher, and 64-bit IV for 128-bit key cipher. Fortunately, many cipher submissions
support 80-bit IV for 80-bit key or 128-bit IV for 128-bit key.

When a stream cipher is used in an application, the system designer should
take special care of the IV update. We pointed out in 2005 that there is a serious
security flaw in Microsoft Office XP [92] due to the poor IV management [129].
In Word and Excel 2002, RC4 is used for encryption, and MD5 is used to provide
strong key/IV setup for RC4. The cipher itself is very strong. However, after an
encrypted document gets edited, the IV does not change! It is disastrous since
an IV is used for different version of a document. An adversary can recover a lot
of information without knowing the key.

Since the security of stream cipher is very sensitive to the IV management,
we recommend the use of a block cipher in CBC mode for the applications in
which software or hardware performance is not critical, especially if the system
designer is not familiar with stream cipher.

16 CHAPTER 1. INTRODUCTION

1.5 Achievements

eSTREAM [45] is the ECRYPT (European Network of Excellence in Cryptology)
stream cipher project running from 2004 to 2008. From 34 stream cipher sub-
missions, four software ciphers (HC-128, Rabbit, Salsa20/12 and SOSEMANUK
[13]) and four hardware ciphers (F-FCSR-H v2 [17], Grain v1, MICKEY v2 [8]
and Trivium) were chosen for the final portfolio. HC-128 is the fastest software
stream cipher; Grain v1 and Trivium are very efficient in hardware.

This thesis includes attacks on seven eSTREAM candidates (Phelix, ABC v2,
DECIM, WG, LEX, Py and Pypy) and one eSTREAM submission (HC-128 and
HC-256). The attacks on six candidates recover the secret keys with low com-
plexity, and can be easily carried out on a personal computer. HC-128 was chosen
for the eSTREAM portfolio, and HC-256 is its 256-bit companion version.

1. Differential-linear attack on stream cipher Phelix [133]

2. Fast correlation attack on stream cipher ABC v2 [132]

3. Linear attack on the IV setup of stream cipher DECIM [130]

4. Differential attack on the IV setup of stream cipher WG [131]

5. Slide attack on the IV setup of stream cipher LEX [131]

6. Differential attack on the IV setup of stream ciphers Py and Pypy [134]

7. The stream ciphers HC-256 [128] and HC-128 [135]

1.6 Outline

The first part (Chapter 1) of the thesis covers various stream ciphers design and
cryptanalysis techniques. We focus on our own views rather than the details of
those techniques.

The second part of the thesis is on the cryptanalysis of stream ciphers. Chap-
ter 2 and Chapter 3 exploit the properties of addition in the cryptanalysis of
stream ciphers: the differential-linear cryptanalysis against Phelix and the fast
correlation attack on ABC v2. Resynchronization attacks are applied against sev-
eral stream ciphers – DECIM (Chapter 4), WG (Chapter 5), LEX (Chapter 6),
Py and Pypy (Chapter 7). Various cryptanalysis approaches (linear, differential
and slide attacks) are used in these attacks.

The third part of the thesis is on the design of stream ciphers. We demonstrate
that strong and secure stream ciphers can be designed using nonlinear state
updating function and nonlinear output function. Chapter 8 is on design of
stream cipher HC-256. Chapter 9 is on the design of stream cipher HC-128.

Chapter 2

Exploiting Characteristics of Addition I

Differential-Linear Attack on Phelix

Abstract. The previous key recovery attacks against Helix obtain the key with
about 288 operations using chosen nonces (reusing nonce) and about 1000 adap-
tively chosen plaintext words (or 235.6 chosen plaintext words). The stream cipher
Phelix is the strengthened version of Helix. In this chapter we apply differential-
linear cryptanalysis to recover the key of Phelix. With 234 chosen nonces and
237 chosen plaintext words, the key of Phelix can be recovered with about 241.5

operations.

2.1 Introduction

Phelix [126] is a fast stream cipher with embedded authentication mechanism.
It is one of the focus ciphers (both software and hardware) of the ECRYPT
eSTREAM project. Phelix is the strengthened version of the stream cipher
Helix [48].

Muller has applied differential cryptanalysis to Helix [96]. It was shown that
the key of Helix can be recovered faster than by brute force if the attacker can
force the initialization vectors to be used more than once. The attack requires
about 212 adaptively chosen plaintext words and 288 operations. Paul and Preneel
reduced the number of adaptively chosen plaintext words by a factor of at least
3 [108]. Later Paul and Preneel showed that 235.6 chosen plaintext words can
be used instead of the adaptively chosen plaintext [107]. All these key recovery
attacks against Helix require about 288 computations.

To strengthen Helix, Phelix was designed and submitted to the ECRYPT

17

18 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

eSTREAM project. The output function of Helix has been changed so that a
larger plaintext diffusion can be achieved in Phelix. The Phelix designers claimed
that Phelix is able to resist the differential key recover attack even if the nonce is
reused: “We claim, however, that even in such a case (referring to nonce reuse)
it remains infeasible to recover the key” [126].

In this chapter, we apply differential-linear cryptanalysis to Phelix assuming
nonce reuse (this corresponds to a chosen nonce attack). We show that the key
of Phelix can be recovered with a low complexity: 237 chosen plaintext words
and 241.5 operations.

This chapter is organized as follows. In Sect. 2.2, we illustrate the operations
of Phelix. Section 2.3 analyzes how the addend bits affect the differential distri-
bution. Section 2.4 describes a basic differential key recovery attack on Phelix.
The improved attack is given in Sect. 2.5. We discuss how to strengthen Phelix
in Sect. 2.6. Section 2.7 concludes this chapter.

2.2 The Stream Cipher Phelix

In this section, we only consider the encryption algorithm of Phelix. The full
description of Phelix is given in [126]. The key size and nonce size of Phelix are
256 bits and 128 bits, respectively. The designers claim that there is no attack
against Phelix with less than 2128 operations.

Phelix updates fives 32-bit words: Z0, Z1, Z2, Z3 and Z4. At the ith step,
two secret 32-bit words Xi,0, Xi,1 and one 32-bit plaintext word Pi are applied
to update the internal states. One 32-bit keystream word Si is generated and
is used to encrypt the plaintext Pi. Note that the plaintext is used to update
the internal state so that the authentication can be performed. The word Xi,0 is
related to the key, and the word Xi,1 is related to the key and nonce in a very
simple way. Recovering any Xi,0 and Xi,1 implies recovering part of the key. One
step of Phelix is given in Fig. 2.1 [126].

2.3 The Differential Propagation of Addition

In this section, we study how the addend bits affect the differential propagation.
The importance of this study is that it shows that the values of the addend bits
can be determined by observing the differential distribution of the sum.

Theorem 2.1. Denote φi as the ith least significant bit of φ. Suppose two pos-
itive m-bit integers φ and φ′ differ only at the nth least significant bit position
(φ⊕φ′ = 2n). Let β be an m-bit random integer (m is much larger than n). Let
ψ = φ+β and ψ′ = φ′+β. For βn = 0, denote the probability that ψn+i = ψ′n+i

2.3. THE DIFFERENTIAL PROPAGATION OF ADDITION 19

Figure 2.1: One block of Phelix

20 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

as pn+i,0. For βn = 1, denote the probability that ψn+i = ψ′n+i as pn+i,1. Then
the difference ∆pn+i = pn+i,0 − pn+i,1 = 2−n−i+1 (i > 0).

Theorem 2.1 can be proved easily if we consider the bias in the carry bits. We
omit the proof here. In Theorem 2.1, the bias of the differential distribution de-
creases quickly as the value of n increases. We need another differential property
that produces difference with a large bias even for large n. Before introducing
that property, we give the following lemma.

Lemma 2.1. Denote u and v as two random and independent n-bit inte-
gers. Let cn = (u + v) >> n, where cn denotes the carry bit at the nth least
significant bit position. Denote the most significant bit of u as un−1. Then
Pr(cn ⊕ un−1 = 0) = 3

4 .

Proof. cn = (un−1 · vn−1) ⊕ ((un−1 ⊕ vn−1) · cn−1). If cn−1 = 0, then cn ⊕
un−1 = un−1 · vn−1, where vn−1 denotes the inverse of vn−1. If cn−1 = 1, then
cn ⊕ un−1 = un−1 · vn−1. Thus Pr(cn ⊕ un−1 = 0) = 3

4 .

The large bias of the differential distribution for large n is given below.

Theorem 2.2. Denote φi as the ith least significant bit of φ. Suppose two
positive m-bit integers φ and φ′ differ only at the nth least significant bit posi-
tion (φ ⊕ φ′ = 2n). Let β be an m-bit random integer (m is much larger than
n). Let ψ = φ + β and ψ′ = φ′ + β. For βn ⊕ βn−1 = 0, denote the probabil-
ity that ψn+i = ψ′n+i as p̄n+i,0. For βn ⊕ βn−1 = 1, denote the probability that
ψn+i = ψ′n+i as p̄n+i,1. Then the difference ∆p̄n+i = p̄n+i,0−p̄n+i,1 = 2−i (i > 0).

Proof. Denote the carry bit at the ith least significant bit position in ψ = φ+β
as ci, and that in ψ′ = φ′ + β as c′i. Note that c′n = cn, thus c′n ⊕ βn = cn ⊕ βn.
When c′n ⊕ βn = cn ⊕ βn = 0, we know that ψ ⊕ ψ′ = 2n with probility 1, i.e.,
ψn+i = ψ′n+i with probability 1 for i > 0. When c′n⊕βn = cn⊕βn = 1, by induc-
tion we obtain that ψn+i = ψ′n+i with probability 1− 2−i+1 for i > 0. According
to Lemma 2.1, we know that cn⊕βn−1 = 0 with probability 3

4 . If βn⊕βn−1 = 0,
then cn ⊕ βn = 0 with probability 3

4 , thus p̄n+i,0 = 3
4 × 1 + 1

4 × (1 − 2−i+1) =
1 − 1

4 × 2−i+1 . If βn ⊕ βn−1 = 1, then cn ⊕ βn = 0 with probability 1
4 ,

thus p̄n+i,1 = 1
4 × 1 + 3

4 × (1 − 2−i+1) = 1 − 3
4 × 2−i+1. Then the difference

∆p̄n+i = p̄n+i,0 − p̄n+i,1 = 2−i for i > 0.

The above two theorems provide the guidelines to recover the key of Phelix.
However, these two theorems deal with the ideal cases in which there is only one
bit difference between φ and φ′, and β is assumed to be random. In the attacks,

2.4. A BASIC KEY RECOVERY ATTACK ON PHELIX 21

Table 2.1: The probability that B
(i+1),j
3 ⊕B

′(i+1),j
3 = 0 for Pi ⊕ P ′i = 1

j p j p j p j p
0 0.9997 8 1.0000 16 0.5001 24 0.9161
1 0.9998 9 0.0000 17 0.4348 25 0.9470
2 0.9999 10 0.5000 18 0.5000 26 0.9673
3 0.9999 11 0.4375 19 0.5486 27 0.9803
4 1.0000 12 0.5000 20 0.6366 28 0.9883
5 1.0000 13 0.4492 21 0.7283 29 0.9931
6 1.0000 14 0.5000 22 0.8083 30 0.9960
7 1.0000 15 0.4273 23 0.8708 31 0.9977

we deal with the complicated situation where each bit of φ ⊕ φ′ is biased, and
β is a fixed number. The value of each bit of β will affect the distribution of
those more significant bits of (φ + β) ⊕ (φ′ + β) in a complicated way. In order
to simplify the analysis, we will use simulations to obtain these relations in the
attacks.

2.4 A Basic Key Recovery Attack on Phelix

We will first investigate the differential propagation in Phelix. Then we show
how to recover the key of Phelix by observing the differential distribution of the
keystream.

2.4.1 The bias in the differential distribution of keystream

Assume an attacker can choose an arbitrary value for the nonce, then a nonce
can be used more than once. We introduce one-bit difference into the plaintext
at the ith step, i.e., Pi 6= P ′i , and Pi ⊕ P ′i = 2n (31 ≥ n ≥ 0). Then we analyze
the difference between B

(i+1)
3 and B

′(i+1)
3 (as indicated in Fig. 1). If all the

carry bits are 0 (replacing all the additions with XORs), then the differences
only appear at the 9th, 11th, 13th, 15th and 17th least significant bits between
B

(i+1)
3 and B

′(i+1)
3 . Because of the carry bits, the differential distribution becomes

complicated. We run the simulation and use the randomly generated Y
(i)
k (4 ≥

k ≥ 0), Pi, Xi,1 in the simulation. With 230 plaintext pairs, we obtain the
distribution of B

(i+1)
3 ⊕B

′(i+1)
3 in Table 1.

From Table 2.1, we see that the distribution of B
(i+1)
3 ⊕ B

′(i+1)
3 is heavily

22 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

biased. For example, B
(i+1),8
3 = B

′(i+1),8
3 with probability close to 1, while

B
(i+1),9
3 = B

′(i+1),9
3 with probability close to 0. Note that T

(i+1)
0 = A

(i+1)
0 ⊕

(B(i+1)
3 + Xi+1,0), according to Theorem 2.2, the distribution of T

(i+1)
0 ⊕ T

′(i+1)
0

will be affected by the value of X8
i+1,0⊕X9

i+1,0, thus the distribution of Bi+1⊕B′
i+1

will be affected by the value of X8
i,0 ⊕ X9

i,0. By observing the distribution of
Si+1 ⊕ S′i+1, it may be possible to determine the value of X8

i,0 ⊕ X9
i,0. Shifting

the one-bit difference between Pi and P ′i , we may determine other values of
Xj+1

i,0 ⊕Xj
i,0 for 30 ≥ j ≥ 0, and thus recover the key Xi,0. After recovering eight

consequtive Xi,0, the 256-bit key is immediately known.
The above analysis gives a brief idea of the attack. However, the actual

attacks are quite complicated due to the interference of many differences. It is
very tedious to derive exactly how the distribution of Si+1 ⊕ S′i+1 is affected by
the value of Xj+1

i+1,0 ⊕ Xj
i+1,0. On the other hand, it is easy to search for the

relation with simulations. In the following, we carried out the simulation to find
out the relation between the value of Xj+1

i+1,0 ⊕ Xj
i+1,0 and the distribution of

Si+1 ⊕ S′i+1.
Let two plaintexts differ only in the ith word, and Pi ⊕ P ′i = 1. We use the

randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

Denote pn
j,0 as the probability that Sn

i+1 ⊕ S′ni+1 = 0 when Xj+1
i,0 ⊕Xj

i,0 = 0. And
denote pn

j,1 as the probability that Sn
i+1 ⊕ S′ni+1 = 0 when Xj+1

i,0 ⊕Xj
i,0 = 1. Let

∆p̃n
j = (pn

j,0 − pn
j,1) × N

σ , where N denotes the number of plaintext pairs, and

σ =
√

N
2 . Assume that the values of pn

j,0 and pn
j,1 are close to 1

2 . If ∆p̃n
j > 4, it

means that the difference between pn
j,0 and pn

j,1 is larger than 4σ, then the value
of Xj+1

i,0 ⊕Xj
i,0 can be determined correctly with high probability. For every value

of the two bits Xj+1
i,0 and Xj

i,0, we use 228 pairs to generate Si+1 ⊕ S′i+1, then
compute pn

j,0 and pn
j,1. Thus N = 229, and σ = 213.5. We list the large values of

∆p̃n
j below:

For j = 9, ∆p̃13
9 = 55.7 .

For j = 10, ∆p̃13
10 = 133.9 .

For j = 14, ∆p̃17
14 = 51.5 .

For j = 15, ∆p̃19
15 = −9.1, ∆p̃22

15 = 14.9, ∆p̃23
15 = −15.7 .

For j = 16, ∆p̃19
16 = −50.8, ∆p̃21

16 = 62.0, ∆p̃22
16 = 97.7, ∆p̃23

16 = −106.6,
∆p̃25

16 = 11.8, ∆p̃26
16 = 16.0, ∆p̃27

16 = −17.4 .
For j = 17, ∆p̃21

17 = 77.4, ∆p̃22
17 = 145.3, ∆p̃23

17 = −171.6, ∆p̃25
17 = 12.3,

∆p̃26
17 = 28.5, ∆p̃27

17 = −30.4 .
For j = 18, ∆p̃21

18 = 80.2, ∆p̃22
18 = 179.7, ∆p̃23

18 = −241.7, ∆p̃26
18 = 32.8,

∆p̃27
18 = −43.7 .

For j = 19, ∆p̃22
19 = 139.6, ∆p̃23

19 = −220.6, ∆p̃26
19 = 19.0, ∆p̃27

19 = −46.5 .

2.4. A BASIC KEY RECOVERY ATTACK ON PHELIX 23

For j = 20, ∆p̃23
20 = −156.7, ∆p̃25

20 = −5.7, ∆p̃26
20 = 18.3, ∆p̃27

20 = −30.6 .
For j = 21, ∆p̃25

21 = −6.8, ∆p̃26
21 = 9.5, ∆p̃27

20 = −28.5 .

The data given above show that the distribution of Si+1⊕S′i+1 is strongly affected
by the value of Xj+1

i+1,0 ⊕Xj
i+1,0.

2.4.2 Recovering the key

Note that in the above analysis, when we deal with a particular Xj+1
i+1,0⊕Xj

i+1,0,
the other bits of Xi+1,0 are random. In the key recovery attack, the value of
Xi+1,0 is fixed, so we need to consider the interference between the bits Xj+1

i+1,0⊕
Xj

i+1,0.
We notice that there are many large biases related to S23

i+1 ⊕ S′23i+1. However,
the values of Xj+1

i+1,0 ⊕ Xj
i+1,0 (15 ≤ j ≤ 20) all have a significant effect on the

distribution of S23
i+1 ⊕ S′23i+1. It is thus a bit complicated to determine the values

of Xj+1
i+1,0 ⊕Xj

i+1,0 (15 ≤ j ≤ 20).
In the following, we consider the bit S17

i+1⊕S′17i+1. Its distribution is dominated
by the value of X15

i+1,0⊕X14
i+1,0. For every value of the two bits X15

i+1,0 and X14
i+1,0,

we use 230 pairs to generate Si+1 ⊕ S′i+1, then compute p17
14,0 and p17

14,1. From
the simulation, we found that p17

14,0 = 0.50227 and p17
14,1 = 0.50117. We denote

the average of p17
14,0 and p17

14,1 as p̄17
14, i.e., p̄17

14 = p17
14,0+p17

14,1
2 = 0.50172. Running

a similar simulation, we found that p17
13,0 = 0.50175 and p17

13,1 = 0.50169. For
all the j 6= 13, j 6= 14, we found that p17

j,0 ≈ p̄17
14 and p17

j,1 ≈ p̄17
14. The value of

X15
i+1,0 ⊕ X14

i+1,0 is recovered as follows: from the keystreams, we compute the
fraction for which S17

i+1 ⊕ S′17i+1 = 0. If it is larger than p̄17
14, then the value of

X15
i+1,0 ⊕X14

i+1,0 is considered to be 0; otherwise the value of X15
i+1,0 ⊕X14

i+1,0 is
considered to be 1.

We now compute the number of plaintext pairs required to determine the value
of X15

i+1,0 ⊕X14
i+1,0. Suppose that N pairs of plaintexts are used. The standard

deviation is σ =
√

N × p̄17
14 × (1− p̄17

14). To determine the value of X15
i+1,0⊕X14

i+1,0

with success rate 0.99, we require that N × ((p17
14,0 − p17

14,1) − (p17
13,0 − p17

13,1)) >
4.66 × σ (The cumulative distribution function of the normal distribution gives
value 0.99 at the point 2.33σ). Thus we require that N > 222.27.

We used the Phelix C source code submitted to eSTREAM in the experi-
ments. However, there is a bug in the C source code. The output is given as
Si = Y

(i)
4 +Z

(i−3)
4 instead of Si = Y

(i)
4 +Z

(i−4)
4 which is specified in the chapter.

The Phelix C code with the bug being fixed was used in the experiments.

Experiment 2.1. The experiment is to recover the value of X15
1,0 ⊕X14

1,0. Each

24 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

plaintext has two words P0 and P1. For each plaintext pair, the two words differ
only in the least significant bit of P0. N plaintext pairs are used for each key to
determine the value of X15

1,0 ⊕X14
1,0 as follows: if the fraction of cases for which

S17
1 ⊕ S′171 = 0 is larger than p̄17

14 = 0.50172, then the value of X15
1,0 ⊕ X14

1,0 is
considered to be 0; otherwise the value of X15

1,0 ⊕X14
1,0 is considered to be 1. A

random nonce was used for each plaintext pair. We tested 200 keys in the ex-
periment. For N = 222.3, the values of X15

1,0 ⊕ X14
1,0 of 183 keys are determined

correctly. For N = 225, the values of X15
1,0 ⊕ X14

1,0 of 192 keys are determined
correctly.

Experiment 2.1 shows that the value of X15
1,0 ⊕X14

1,0 can be determined suc-
cessfully by introducing a difference in the least significant bit of P0, but with a
higher error rate. The reason is that other bits of X1,0 affects the determination
of X15

1,0 ⊕X14
1,0 in a subtle way.

We now proceed to recover the other bits of X1,0. By rotating the one-
bit difference between P0 and P ′0, and using the same threshold value, we can
determine the value of Xj+1

1,0 ⊕Xj
1,0 for 2 ≤ j ≤ 3, 5 ≤ j ≤ 10 and 14 ≤ j ≤ 28.

Thus we are able to recover 23 bits of information on each Xi,0. For the
256-bit key of Phelix, we are able to recover 23 × 8 = 184 bits of the key with
success rate about 192

200 = 0.96 . The amount of plaintext pairs required in the
attack is about 225 × 32× 8 = 233.

We need to improve the above attack in two approaches: recovering more
key bits and improving the success rate. The direct approach is to adjust the
threshold value for each key bit position. In the following, we illustrate a more
advanced approach which recovers the values of Z

(i)
4 before recovering the key.

2.5 Improving the Attack on Phelix

In the above attack, we use a random nonce for each plaintext pair, i.e., every
nonce is used twice with the same key. When the nonce is used many times with
the same key, we can introduce the difference at Pi and recover the value of Zi−3

4

by observing the distribution of Si+1⊕S′i+1. Then we proceed to recover Xi+1,0.

2.5.1 Recovering Z
(i)
4

We introduce the difference to the least significant bit of Pi (Pi ⊕ P ′i = 1). A
simulation is carried out to determine the distribution of Y

(i+1)
4 ⊕ Y

′(i+1)
4 . We

use the randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0 in the simulation.

Denote ṗn as the probability that Y
(i+1),n
4 ⊕ Y

′(i+1),n
4 = 0. With 230 pairs, we

obtain the values of ṗn in Table 2.2.

2.5. IMPROVING THE ATTACK ON PHELIX 25

Table 2.2: The probability that Y
(i+1),j
4 ⊕ Y

′(i+1),j
4 = 0 for Pi ⊕ P ′i = 1

j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5
0 0.03326 8 0.00003 16 −0.00003 24 0.00046
1 0.12983 9 0.03517 17 0.00268 25 0.05926
2 0.20291 10 0.00002 18 −0.00001 26 0.15064
3 −0.27754 11 0.00001 19 −0.00266 27 −0.24028
4 −0.00005 12 0.00000 20 −0.00004 28 0.00001
5 0.05663 13 0.02293 21 0.02276 29 0.05770
6 −0.15327 14 −0.00001 22 0.07434 30 0.15508
7 −0.00001 15 −0.00001 23 −0.14414 31 −0.24907

From Table 2.2, we notice that Y
(i+1)
4 ⊕Y

′(i+1)
4 is heavily biased. For example,

Y
(i+1),2
4 = Y

′(i+1),2
4 with probability about 0.70291, while Y

(i+1),3
4 = Y

′(i+1),3
4

with probability about 0.22246. Note that Si+1 = Y
(i+1)
4 ⊕ Z

(i−3)
4 , according to

Theorem 2.2, the distribution of Si+1⊕S′i+1 is affected by the value of Z
(i−3),3
4 ⊕

Z
(i−3),2
4 . Next we carry out simulations to characterize this relation.

We use the randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4

in the simulation. The one-bit difference is introduced to Pi, i.e., Pi ⊕ P ′i = 2j .
Denote p̈n

j,0 as the probability that Sn
i+1⊕S′ni+1 = 0 when Z

(i−3),j+1
4 ⊕Z

(i−3),j
4 = 0.

And denote p̈n
j,1 as the probability that Sn

i+1 ⊕ S′ni+1 = 0 when Z
(i−3),j+1
4 ⊕

Z
(i−3),j
4 = 1. For each value of Z

(i−3),3
4 and Z

(i−3),2
4 , we use 228 plaintext pairs.

We find that p̈5
2,0 = 0.5461 and p̈5

2,1 = 0.5193. The large difference between

p̈5
2,0 and p̈5

2,1 shows that the value of Z
(i−3),3
4 ⊕ Z

(i−3),2
4 can be determined with

success rate 0.999 with about 213.9 plaintext pairs (The cumulative distribution
function of the normal distribution gives value 0.999 at the point 3.1σ).

The above approach is able to recover Z
(0)
4 , but the success rate is not that

high according to our experiment. In the following, we use a new approach to
determine Z

(0)
4 . To reduce the interference between the bits of Z

(i−3)
4 , we recover

the least significant bit of Z
(i−3)
4 first, then proceed to recover the more significant

bits bit-by-bit.
We start with determining the value of Z

(i−3),0
4 . Let Pi ⊕ P ′i = 1. Run-

ning the simulation with 228 plaintext pairs, we found that p̈2
−1,0 = 0.70296, and

p̈2
−1,1 = 0.65422 (let Z

(i−3),−1
4 = 0). To determine value of Z

(i−3),0
4 with success

rate 0.999, we need about 212.0 plaintext pairs.

26 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

Experiment 2.2. This experiment is to determine the value of Z
(0),0
4 . Each

plaintext has five random words Pi (0 ≤ i ≤ 4). For each plaintext pair, the
difference is only in the least significant bit of P3. N plaintext pairs are used for
each key/nonce pair to determine the value of Z(0),0 as follows: if the rate that

S2
4 ⊕ S′24 = 0 is larger than p̈2

−1,0+p̈2
−1,1

2 = 0.70296+0.65422
2 = 0.6786, then the value

of Z
(0),0
4 is considered to be 0; otherwise the value of Z

(0),0
4 is considered to be 1.

We tested 1000 key/nonce pairs in the experiment. For N = 212, the values of
Z

(0),0
4 of 998 key/nonce pairs are determined correctly. For N = 213, the values

of Z
(0),0
4 of all the key/nonce pairs are determined correctly.

After recovering the value of Z
(i−3),0
4 , we proceed to recover the values of

the other bits of Z
(i−3)
4 . Let Z

(i−3),(n−1···0)
4 denote the n least significant bits of

Z(i−3), i.e., Z
(i−3),(n−1···0)
4 = Z(i−3) mod 2n. Let the difference be introduced to

the kth least significant bit of Pi, i.e., Pi ⊕ P ′i = 2k. Denote p̀k,j,0

Z
(i−3),(n−1···0)
4

as

the probability that the value of the jth bit of (Si+1 −Z
(i−3),(n−1···0)
4)⊕ (S′i+1 −

Z
(i−3),(n−1···0)
4) is 0 when Z

(i−3),n
4 = 0. Denote p̀k,j,1

Z
(i−3),(n−1···0)
4

as the probability

that the value of the jth bit of (Si+1−Z
(i−3),(n−1···0)
4)⊕(S′i+1−Z

(i−3),(n−1···0)
4) is

0 when Z
(i−3),n
4 = 1. If the value of Z

(i−3),(n−1···0)
4 is determined correctly, then

p̀k,j,0

Z
(i−3),(n−1···0)
4

= p̀k,j,0
0 , and p̀k,j,1

Z
(i−3),(n−1···0)
4

= p̀k,j,1
0 . This property is important

for recovering Z
(i−3)
4 .

Let Pi⊕P ′i = 2. We use 228 plaintext pairs in the simulation. We found that
p̀1,3,0
0 = 0.66469 and p̀1,3,1

0 = 0.60220. It shows that when Z
(i−3),0
4 = 0, if the

rate that S3
i+1⊕S′3i+1 = 0 is larger than 0.66469+0.60220

2 = 0.63345, then the value
of Z

(i−3),1
4 is determined to be 0; otherwise the value of Z

(i−3),1
4 is determined

to be 1. We need about 211.3 plaintext pairs to determine the value of Z
(i−3),1
4

correctly with success rate 0.999. Using the Phelix code in the experiment, we
tested 1000 random key/nonce pairs satisfying Z

(0),0
4 = 0, and 212 plaintext pairs

are used for each key/nonce pair with the difference P3⊕P ′3 = 2. We found that
all the 1000 values of Z

(0),1
4 are determined correctly. If Z

(i−3),0
4 = 1, we observe

the third least significant bit of (Si+1 − 1) ⊕ (S′i+1 − 1), and we can determine
the value of Z

(0),1
4 = 0 with success rate 0.999 with about 211.3 plaintext pairs.

Let Pi ⊕P ′i = 22, we are able to determine the value of Z
(i−3),2
4 by observing

the fourth least significant bit of (Si+1−Z
(i−3),(1···0)
4)⊕ (S′i+1−Z

(i−3),(1···0)
4). In

general, let Pi ⊕ P ′i = 2j , then we are able to determine the value of Z
(i−3),j
4 by

observing the (j + 2)th least significant bit of (Si+1 − Z
(i−3),(j−1···0)
4)⊕ (S′i+1 −

2.5. IMPROVING THE ATTACK ON PHELIX 27

Z
(i−3),(j−1···0)
4) with about 212 plaintext pairs. Thus we are able to recover Z

(i−3)
4

(except the values of Z
(i−3),30
4 and Z

(i−3),31
4) with success rate very close to 1.

The number of plaintext pairs required in the above attack is about 212×30 ≈ 217.

2.5.2 Recovering Xi+1,0

After recovering Z
(i−3)
4 (except Z

(i−3),31
4 and Z

(i−3),30
4), we know the value of

(Si+1 − Z
(i−3),(29···0)
4) ⊕ (S′i+1 − Z

(i−3),(29···0)
4). Thus we know the value of

Y (i+1),j ⊕ Y ′(i+1),j (0 ≤ j ≤ 30). Then we are able to recover Xi+1,0 more
efficiently.

Let two plaintexts differ only in the ith word. And let Pi⊕P ′i = 1. We use the
randomly generated Y

(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

For every value of the two bits Xj+1
i,0 and Xj

i,0, we use 228 plaintext pairs to gen-

erate Y
(i+1)
4 ⊕ Y

′(i+1)
4 , then compute pn

j,0 and pn
j,1 (suppose that Si+1 = Y

(i+1)
4

since Z
(i−3)
4 is known). Thus N = 229, and σ = 213.5. We list the following two

large biases ∆p̃n
j :

For j = 9, ∆p̃13
9 = 144.1

For j = 10, ∆p̃13
10 = 362.12

We use ∆p̃13
9 and ∆p̃13

10 in the attack. Note that the values of X10
i+1,0 ⊕ X9

i+1,0

and X11
i+1,0⊕X10

i+1,0 both affect the distribution of Y
(i+1),13
4 ⊕Y

′(i+1),13
4 . We car-

ried out a simulation to determine how the value of X9
i+1,0 affects the value

of Y
(i+1),13
4 . With 230 chosen plaintext pairs, if X9

i+1,0 = 0, then p13
0,00 =

0.53033, p13
0,11 = 0.52334, p13

0,01 = 0.51946, p13
0,10 = 0.51864; if X9

i+1,0 = 1, then
p13
0,00 = 0.52334, p13

0,11 = 0.53030, p13
0,01 = 0.51861, p13

0,10 = 0.51948. We thus let
p13
0,0 = 0.52334, and p13

0,1 = 0.51946+0.51948
2 = 0.51947. About 219.3 plaintext pairs

are required to determine the value of X11
i+1,0 ⊕X10

i+1,0 with success rate 0.999.

Experiment 2.3. Suppose that the value of Z
(0)
4 is known. This experiment

is to determine the value of X11
4,0 ⊕X10

4,0. Each plaintext has five random words
Pi (0 ≤ i ≤ 4). For each plaintext pair, those five words differ only in the least
significant bit of P3. N plaintext pairs are used for each key/nonce pair to de-
termine the value of X11

4,0 ⊕ X10
4,0 as follows: if the rate that Y 13

4 ⊕ Y ′13
4 = 0 is

larger than 0.52334+0.51947
2 = 0.52140, then the value of X11

4,0 ⊕X10
4,0 is considered

to be 0; otherwise the value of X11
4,0⊕X10

4,0 is considered to be 1. We tested 1000
key/nonce pairs in the experiment. For N = 219.3, 948 values of 1000 X11

4,0⊕X10
4,0

are determined correctly. We change the threshold value 0.52140 to 0.52035, then
970 values of 1000 X11

4,0 ⊕X10
4,0 are determined correctly for N = 220, 976 values

28 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

are determined correctly for N = 221, 990 values are determined correctly for
N = 222.

Experiment 2.3 shows that the value of X11
4,0 ⊕X10

4,0 can be determined suc-
cessfully by introducing a difference to the least significant bit of P3. With 222

chosen pairs, we are able to determine the value of X11
4,0 ⊕X10

4,0 with success rate
about 0.99.

Then we shift the one-bit difference to recover the values of Xj+1
1,0 ⊕Xj

1,0 for
2 ≤ j ≤ 28. The threshold value needs to be modified for different values of
j. The number of plaintext pairs and the threshold value required to recover
the value of each Xj+1

i+1,0 ⊕ Xj
i+1,0 (2 ≤ j ≤ 28) are given in Table 2.3. Each

value n in the second column indicates that the difference is introduced in the
nth least significant bit of Pi. Each value n in the third column shows that the
nth least significant bit of Y

(i+1)
4 is used in the attack. Note that according to

Experiment 2.3, the threshold values should be slightly adjusted to achieve a high
success rate.

The reason that the values of Xj+1
4,0 ⊕ Xj

4,0 cannot be recovered for j ≥ 29
is that the value of Xj+1

1,0 ⊕ Xj
1,0 cannot affect the distribution of Sj+3

1 ⊕ S′j+3
1

since S1⊕S′1 is a 32-bit word. The reason that the number of plaintexts required
for j = 9 is relatively small is that the difference for j = 13 is introduced to the
most significant bit of the word P3, thus it causes less difference propagation,
and results in a larger bias in the keystream.

Note that the most significant bit of Y
(i+1)
4 ⊕Y

′(i+1)
4 is not known since Zi−1,31

4

and Zi−1,30
4 are not recovered. Thus to determine the value of X29

1,0 ⊕ X28
1,0, we

need to consider the most significant bit of (Si+1 − Z
(i−3),(29···0)
4) ⊕ (S′i+1 −

Z
(i−3),(29···0)
4). The threshold value needs to be changed to 0.51128; and the

number of plaintext pairs required is 222.1.
After recovering the values of Xj+1

1,0 ⊕ Xj
1,0 for 2 ≤ j ≤ 28, we proceed to

determine the value of X0
i+1,0, X1

i+1,0 and X2
i+1,0.

We start with recovering X0
i+1,0. Let Pi ⊕ P ′i = 221. Running the simulation

with 228 plaintext pairs, we found that p2
21,0 = 0.51596, p2

21,1 = 0.50355. Thus
215.93 plaintext pairs are needed to determine the value of X0

i+1,0 with success
rate 0.999. Using the Phelix code in the experiment, we introduce the difference
P3 ⊕ P ′3 = 221, and set the threshold value as 0.51596+0.50355

2 = 0.50975. We
tested 1000 key/nonce pairs in the experiment. With 216 plaintext pairs, all the
values of the 1000 X0

4,0 are determined correctly.
After determining the value of X0

i+1,0, we determine the value of X1
i+1,0 as

follows. The simulation shows that the value of X1
i+1,0 can be determined only

when X0
i+1,0 = 0. For X0

i+1,0 = 0, we set the difference as Pi ⊕ P ′i = 222. With

2.5. IMPROVING THE ATTACK ON PHELIX 29

Table 2.3: The number of plaintext pairs for recovering Xj+1
i+1,0 ⊕Xj

i+1,0

j Difference
position

in Pi

Bit
position
in Y

(i+1)
4

Threshold
value

Plaintext
Pairs

2 24 5 0.51101 224.4

3 25 6 0.51110 223.1

4 26 7 0.51120 222.5

5 27 8 0.51125 222.3

6 28 9 0.51091 222.4

7 29 10 0.51116 223.6

8 30 11 0.51562 220.7

9 31 12 0.54353 218.4

10 0 13 0.52141 219.3

11 1 14 0.52099 219.3

12 2 15 0.51850 219.5

13 3 16 0.50998 221.3

14 4 17 0.51107 221.9

15 5 18 0.51128 222.2

16 6 19 0.51129 222.2

17 7 20 0.51131 222.2

18 8 21 0.51128 222.1

19 9 22 0.51117 221.7

20 10 23 0.51149 222.2

21 11 24 0.51172 222.0

22 12 25 0.51187 222.0

23 13 26 0.51191 222.0

24 14 27 0.51185 222.1

25 15 28 0.51129 222.2

26 16 29 0.51129 222.1

27 17 30 0.51131 222.2

28 18 31 0.51130 222.1

30 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

228 chosen plaintext pairs, we found that if X1
i+1,0 = 0, then Y

(i+1),3
4 = 0 with

rate 0.51528; otherwise Y
(i+1),3
4 = 0 with rate 0.50459. With 216.4 plaintext

pairs, the value of X1
i+1,0 can be determined with success rate 0.999. Using the

Phelix code in the experiment, we introduce the difference P3 ⊕ P ′3 = 222, and
set the threshold value as 0.51528+0.50459

2 = 0.50994. We tested 1000 key/nonce
pairs with X0

4,0 = 0 in the experiment. With 216.4 plaintext pairs, all the values
of the 1000 X1

4,0 are determined correctly. It shows that the value of X1
i+1,0 can

be determined successfully if X0
4,0 = 0.

We continue to recover the value of X2
i+1,0. We introduce difference to the

15th least significant bit of Pi, and oberve the distribution of Y
(i−3),4
4 . We carry

out a simulation with 231 plaintext pairs with P3 ⊕ P ′3 = 215. 231 plaintext
pairs are used for each value of X1

i+1,0X
0
i+1,0. When X0

i+1,0 = 0, if X1
i+1,0 = 0,

the rates that Y
(i−3),4
4 = 0 for X2

i+1,0 = 0 and X2
i+1,0 = 1 are 0.53106 and

0.52613, respectively; if X1
i+1,0 = 1, the rates that Y

(i−3),4
4 = 0 for X2

i+1,0 = 0
and X2

i+1,0 = 1 are 0.52318 and 0.52315, respectively. It shows that the value
X2

i+1,0 can only be determined if the values of X1
i+1,0 and X1

i+1,0 are both zero,
and 218.6 plaintext pairs are required to achieve the success rate 0.999.

In the above attacks, we recovered 28.75 bits of Xi+1,0: Xj+1
i+1,0 ⊕Xj

i+1,0 for
2 ≤ j ≤ 28, X0

i+1,0, X1
i+1,0 (only if X0

i+1,0 = 0), and X1
i+1,0 (only if X0

i+1,0 = 0
and X1

i+1,0 = 0). 27 bits of Xj+1
i+1,0 ⊕ Xj

i+1,0 (2 ≤ j ≤ 28) can be determined
according to Table 3. From Experiment 2.3, we know that if we adjust slightly
the threshold value, and use about 22.7 times the number of plaintext pairs than
that given in Table 3, the success rate is about 0.99. The number of plaintext
pairs required to determine these 27 bits is thus about 27× 222.2 × 22.7 = 229.7.
The number of plaintext pairs to determine X0

i+1,0, X1
i+1,0 and X2

i+1,0 is small
compared to 229.7. The attack to recover 28.75 bits of Xi+1,0 requires thus about
232.7 chosen plaintext pairs.

After recovering eight consecutive Xi+1,0, we recovered 28.75 × 8 = 230 key
bits. To recover the 256-bit key, the number of operations required is about
2256−230+(27×8

0.01×27×8) = 241.5.

The number of chosen plaintext pairs required in the attack is about 229.7×8 =
232.7. The length of each plaintext ranges from 5 to 13 words. Thus the total
amount of chosen plaintext required is about 2× 232.7× 5+13

2 ≈ 237 words. (The
number of plaintext pairs needed to recover 8 consecutive Z

(i)
4 value is about

217 × 8 = 225. It is small compared to 232.7).

2.6. HOW TO STRENGTHEN HELIX AND PHELIX 31

2.6 How to strengthen Helix and Phelix

In Helix and Phelix, the plaintext is used to affect the internal state of the cipher.
In order to achieve a high encryption speed, each plaintext word affects the
keystream without passing through sufficient confusion and diffusion layers. This
is the intrinsic weakness in the structure of Helix and Phelix. In the following,
we provide a method to reduce the effect of such weakness.

The security of the encryption of Helix and Phelix can be improved signif-
icantly if a secure one-way function is used to generate the initial state of the
cipher from the key and nonce. Then even if the internal state of one particular
nonce is recovered, the impact on the security of the encryption is very limited
since the key of the cipher is not affected. We believe that such an approach can
be applied to improve the security of all the ciphers that use the plaintext to
affect the internal state.

However, we must point out that such an approach does not improve signif-
icantly the security of the MAC in Helix and Phelix. Once an internal state is
recovered, the attacker can forge many messages related to that particular nonce.

2.7 Conclusion

Phelix is vulnerable to a key recovery attack when chosen nonces and chosen
plaintexts are used. The computational complexity of the attack is much less
than that of the attack against Helix. Our attack shows that Phelix fails to
strengthen Helix in this respect.

We believe that one necessary requirement for a secure general-purpose stream
cipher is that the key of the cipher should not be recoverable even if the attacker
can control the generation of the nonce. We thus consider Phelix as insecure.
Note that Muller has pointed out the impact of the key recovery attack on the
security of Helix in detail [96]. The same comments apply to Phelix.

32 CHAPTER 2. DIFFERENTIAL-LINEAR ATTACKS ON PHELIX

Chapter 3

Exploiting Characteristics of Addition II

Fast Correlation Attack on the Stream

Cipher ABC v2

Abstract. ABC v2 is a software-efficient stream cipher with a 128-bit key. In
this chapter, we apply a fast correlation attack to break ABC v2 with weak keys.
There are about 296 weak keys in ABC v2. The complexity to identify a weak key
and to recover the internal state of a weak key is low: identifying one weak key
from about 232 random keys requires 6460 keystream bytes and 213.5 operations
for each random key. Recovering the internal state of a weak key requires about
219.5 keystream bytes and 232.8 operations. A similar attack can be applied to
break ABC v1 with much lower complexity than the previous attack on ABC v1.

3.1 Introduction

ABC [4] is a stream cipher submitted to the ECRYPT eStream project. It is one
of the fastest submissions with encryption speed about 3.5 cycles/byte on the
Intel Pentium 4 microprocessor.

ABC v1 was broken by Berbain and Gilbert [14] (later by Khazaei [81]). Their
divide-and-conquer attack on ABC exploits the short length (63 bits) of the LFSR
in the component A and the non-randomness in the component C: all the possible
initial values of the LFSR get tested, and the correct value results in the biased
binary stream that matches the non-random output from the component C. The
component C is a key-dependent 32-bit-to-32-bit S-box. Vaudenay [124], Murphy

33

34 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

and Robshaw [97] have stated that the key-dependent S-boxes may be weak.
Berbain and Gilbert’s attack on ABC v1 deals with the weak keys that are related
to the non-bijective S-box. This type of weak key exists with probability close
to 1. Recovering the internal state of a weak key requires about 295 operations
and 234 keystream bytes.

In order to resist these attacks, the ABC designers introduced ABC v2 with
the improved components A and B. In ABC v2 [5], the length of the LFSR is
127 bits instead of the 63 bits in ABC v1. The increased LFSR length makes it
impossible to test all the states of the LFSR, thus the attack on ABC v1 can no
longer be applied to ABC v2. However ABC v2 is still insecure due to the low
weight of the LFSR and the non-randomness in the component C (the component
C in ABC v1 is the same as in ABC v2).

In this chapter, we find a new type of weak key that exists with probabil-
ity 2−32. This new type of weak key results in a heavily biased output of the
component C. Due to the low weight of the LFSR and the strong correlation re-
sulting from the component C, a fast correlation attack can be applied to recover
the LFSR. After recovering the LFSR, the internal state of the cipher can be
recovered easily. The identification of a weak key from 232 random keys requires
6460 keystream bytes from each key, and 213.5 instructions for each keystream.
Recovering the internal state of a weak key requires about 227.5 keystream bytes
and 235.7 instructions. Both the ABC v1 and ABC v2 are vulnerable to this
attack.

This chapter is organized as follows. In Sect. 3.2, we illustrate the ABC v2.
In Sect. 3.3, we define the weak keys and show how to identify them. Section 3.4
recovers the internal state of a weak key. Section 3.5 concludes this chapter.

3.2 The Stream Cipher ABC v2

The stream cipher ABC v2 consists of three components – A, B and C, as shown
in Fig. 3.1 [5]. The component A is a regularly clocked LFSR, the component B
is a finite state machine (FSM), and the component C is a key-dependent S-box.
ABC v1 has the same structure as ABC v2 except that the LFSR in ABC v1
is 63-bit, and the FSM in ABC v1 has less elements than that in ABC v2. The
component C in ABC v1 is the same as that in ABC v2.

The component A is based on a linear feedback shift register with primi-
tive polynomial g(x) = x127 + x63 + 1. Denote the register in component A as
(z3, z2, z1, z0), where each zi is a 32-bit number. Note that this 128-bit register
itself is not a linear feedback shift register. Its initial value depends on the key

3.2. THE STREAM CIPHER ABC V2 35

Figure 3.1: Keystream generation of ABC v2

and IV. At each step of ABC v2, 32 bits of this 128-bit register get updated as

ζ = (z2 ⊕ (z1 << 31)⊕ (z0 >> 1)) mod 232

z0 = z1, z1 = z2, z2 = z3, z3 = ζ ,

where << and >> indicates left shift and right shift, respectively.
The component B is specified as B(x) = ((x⊕ d0) + d1)⊕ d2 mod 232, where

x is the 32-bit input, d0, d1 and d2 are key and IV dependent 32-bit numbers,
d0 ≡ 0 mod 4, d1 ≡ 1 mod 4, d2 ≡ 0 mod 4. The x is updated as x = B(x) + z3.

The component C is specified as C(x) = S(x) >>> 16, where >>> indicates
rotation, x is the 32-bit input, S(x) = e +

∑31
i=0(ei × x[i]), where x[i] denotes

the ith least significant bit of x, and e and ei are key dependent 32-bit random
numbers, except that e31 ≡ 216 mod 217. Note that e and ei are not related to
the initialization vector.

36 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

Each 32-bit keystream word is given as y = C(x) + z0.
The details of the initialization of ABC v2 are not described here. We are

only interested in the generation of the key-dependent S-box in the component
C. The above specifications of the component C are sufficient for the illustration
of the attacks presented in this chapter.

3.3 The Weak Keys of ABC v2

In Sect. 3.3.1, we introduce some observation related to the bias of carry bits.
Section 3.3.2 defines the ABC v2 weak keys and gives an attack to identify them.

3.3.1 The large bias of carry bits

Carry bits are always biased even if the two addends are random. The probabil-
ity that the value of the carry bit at the n-th least significant bit position is 0
is 1

2 + 1
2n+1 (n ≥ 1). However, this bias is very small for large n. In the follow-

ing, we look for the large bias of carry bits when the addends are not random.
Lemma 2.1 implies the following bias:

Theorem 3.1. Denote ai, bi (1 ≤ i ≤ 3) as n-bit integers. Denote ci (1 ≤ i ≤ 3)
as binary values satisfying ci = (ai+bi) >> n. Let a1, a2, b1, b2 and b3 be random
and independent, but a3 = a1 ⊕ a2. Then c1 ⊕ c2 ⊕ c3 is biased. For n = 16,
Pr(c1 ⊕ c2 ⊕ c3 = 0) ≈ 0.5714.

If we apply Lemma 2.1 directly, we obtain that Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1
2 + 1

16 =
0.5625. (The un−1’s in Lemma 2.1 are eliminated since they are linearly related
in Theorem 3.1.) The small difference between these two biases (0.5714 and
0.5625) is because that a3 is not an independent random number.

We illustrate the validity of Theorem 3.1 with numerical analysis. For small
n, we try all the values of a1, a2, b1, b2 and b3 and the results are given in Ta-
ble 3.1. From Table 3.1, we see that the bias ε converges to 0.0714 as the value of
n increases. For n = 16, we performed 232 tests, and the bias is about 0.071424.
For n = 32, the bias is about 0.071434 with 232 tests. The experimental results
show that Theorem 3.1 is valid. Recently, the complete proof of Theorem 3.1
is given in [137]. It was shown that Pr(c1 ⊕ c2 ⊕ c3 = 0) = 4

7 + 3
7 × 1

8n , which
confirms the correctness of Theorem 3.1.

Remarks. In Theorem 3.1, if a1, a2, a3, b1, b2 and b3 are all random and
independent, then Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1

2 + 2−3n−1, which is very small for
n = 16. This small bias cannot be exploited to break ABC v2.

3.3. THE WEAK KEYS OF ABC V2 37

Table 3.1: The probability of c1 ⊕ c2 ⊕ c3 = 0 (denote the probability as 1
2 + ε)

n ε n ε
1 0.125 5 0.071441650390625
2 0.078125 6 0.071430206298828125
3 0.072265625 7 0.071428775787353515625
4 0.071533203125 8 0.071428596973419189453125

3.3.2 Identifying the weak keys

We start the attack with analyzing the linear feedback shift register used in
ABC v2. The register (z3, z2, z1, z0) is updated according to the primitive poly-
nomial g(x) = x127 + x63 + 1. Note that each time the 127-bit LFSR advances
32 steps. To find a linear relation of the 32-bit words, we take the 25th power of
g(x), and obtain

g25
(x) = x127×32 + x63×32 + 1 . (3.1)

Denote the z0 at the i-th step as zi
0, and denote the jth significant bit of zi

0 as
zi
0,j . Since each time 32 bits get updated, the distance between zi

0,j and zi+k
0,j is

|32 · (k − i)|. According to (3.1), we obtain the following linear recurrence

zi
0 ⊕ zi+63

0 ⊕ zi+127
0 = 0 . (3.2)

The weak keys of ABC v2 are related to the S(x) in the component C. S(x)
is defined as S(x) = e +

∑31
i=0(ei × x[i]), where e and ei are key dependent 32-

bit random numbers, except that e31 ≡ 216 mod 217. If the least significant
bits of e and ei (0 ≤ i < 32) are all 0, then the least significant bit of
S(x) is always 0, and we consider the key as weak key. Note that the
least significant bit of e31 is always 0. Thus a randomly chosen key is weak with
probability 2−32.

In the following, we describe how to identify the weak keys. Denote the 32-bit
keystream word at the ith step as yi, the jth significant bit of yi as yi,j . And
denote xi as the input to function S at the i-th step. Then yi = (S(xi) >>>
16) + zi

0. Let ci,j denote the carry bit at the j-th least significant bit position of
(S(xi) >>> 16) + zi

0, i.e., ci,j = (((S(xi) >>> 16) mod 2j) + (zi
0 mod 2j)) >> j.

Assume that ((S(xi) >>> 16) mod 216 is random. According to Theorem 3.1 and
(3.2), we obtain

Pr(ci,16 ⊕ ci+63,16 ⊕ ci+127,16 = 0) =
1
2

+ 0.0714 . (3.3)

38 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

Due to the rotation of S(xi), we know that

yi,16 = S(xi)0 ⊕ zi
0,16 ⊕ ci,16 , (3.4)

where S(xi)0 denotes the least significant bit of S(xi). Note that S(xi)0 is always
0 for a weak key. From (3.2) and (3.4), we obtain

yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = ci,16 ⊕ ci+63,16 ⊕ ci+127,16 . (3.5)

From (3.3) and (3.5), yi,16 is biased as

Pr(yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0) =
1
2

+ 0.0714 . (3.6)

We use (3.6) to identify the weak keys. Approximate the binomial distribution
with the normal distribution. Denote the total number of samples as N , the
mean as µ, and the standard deviation as σ. For the binomial distribution,
p = 1

2 , µ = Np and σ =
√

Np(1− p). For (3.6), p′ = 1
2 + 0.0714, µ′ = Np′ and

σ′ =
√

Np′(1− p′). For the normal distribution, the cumulative distribution
function gives value 1 − 2−39.5 at 7σ, and value 0.023 at −2σ. If the following
relation holds

u′ − u ≥ 7σ + 2σ′ , (3.7)

then in average, each strong key is wrongly identified as weak key (false positive)
with probability 2−39.5, and each weak key is not identified as weak key (false
negative) with probability 0.023. It means that the weak keys can be successfully
identified since one weak key exists among 232 keys. Solving (3.7), the number
of samples required is N = 3954. For each sample, we only need to perform two
XORs and one addition. With 3594+127 = 4081 outputs from each key, we can
successfully identify the weak keys of ABC v2.

The number of outputs can be reduced if we consider the 2ith power of g(x)
for i = 5, 6, 7, 8. With 1615 outputs, we can obtain 3956 samples. Thus the
keystream required in the identification of the weak keys can be reduced to 1615
outputs.

The identification of a weak key implies directly a distinguishing attack on
ABC v2. If there are 232 keystreams generated from 232 random keys, and each
key produces 1615 outputs, then the keystream can be distinguished from ran-
dom with high probability. In order to find one weak key, the total number of
keystream required is 232 × 1615× 4 = 244.7 bytes, and the amount of computa-
tion required is 232 × 3956× 2 ≈ 245 XORs and 244 additions.

Experiment 3.1. We use the original ABC v2 source code provided by the
ABC v2 designers in the experiment. After testing 234 random keys, we obtain

3.4. RECOVERING THE INTERNAL STATE 39

five weak keys, and one of them is (fe 39 b5 c7 e6 69 5b 44 00 00 00 00 00 00
00 00). From this weak key we generate 230 outputs, and the bias defined in
(3.6) is 0.5714573. The experimental results confirm that the probability that a
randomly chosen key is weak is about 2−32, and the bias of a weak key keystream
is large.

3.4 Recovering the Internal State

Once a weak key is identified, we proceed to recover the internal state resulting
from the weak key. In Sect. 4.1, we apply the fast correlation attack to recover
the LFSR. The components B and C are recovered in Sect. 4.2. The complexity
of the attack is given in Sect. 3.4.3. Section 3.4.4 applies the attack to ABC v1.

3.4.1 Recovering the initial value of the LFSR

The initial value of the LFSR is recovered by exploiting the strong correlation
between the LFSR and the keystream. From Lemma 3.1, we get

Pr(zi
0,15 ⊕ ci,16 = 0) =

3
4

. (3.8)

From (3.8) and (3.4), we obtain the following correlation:

Pr(zi
0,16 ⊕ zi

0,15 ⊕ yi,16 = 0) =
3
4

. (3.9)

The strong correlation in (3.9) indicates that the cipher is very weak.
The fast correlation attack Algorithm A of Meier and Staffelbach [89] can be

applied to recover the LFSR. There are some advanced fast correlation attacks
[93, 33, 75], but the original attack given by Meier and Staffelbach is sufficient
here since we are dealing with a strong correlation and a two-tap LFSR.

We now apply the fast correlation attack Algorithm A [89] to recover the
LFSR. Let p = 3

4 , ui = zi
0,16 ⊕ zi

0,15, and wi = yi,16. By squaring the polynomial
(3.1) iteratively, we obtain a number of linear relations for every ui:

ui ⊕ ui+63·2j ⊕ ui+127·2j = 0 (j ≥ 0). (3.10)

From (3.9) and (3.10), we obtain

s = Pr(wi ⊕ wi+63·2j ⊕ wi+127·2j = 0 | ui = wi) = p2 + (1− p)2 , (3.11)

where each value of j indicates one relation for wi (also for wi+63·2j and wi+127·2j).
In average there are m relations for wi as

m = m(N, k, t) = (t + 1) · log2(
N

2k
) , (3.12)

40 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

where N is the number of outputs, k = 127 (the length of the LFSR), t = 2
(taps) for ABC v2. The probability that wi satisfies at least h of the m relations
equals

Q(h) =
m∑

i=h

(
m

i

)
· (p · si · (1− s)m−i + (1− p) · (1− s)i · sm−i) . (3.13)

If ui = wi, then the probability that wi satisfies h of these m relations is equal
to

R(h) =
m∑

i=h

(
m

i

)
· p · sh · (1− s)m−h . (3.14)

According to [89], N · Q(h) is the number of ui’s being predicted in the attack,
and N ·R(h) is the number of ui’s being correctly predicted.

For N = 4500, there are in average about 12 relations for each wi. For
h = 11, 98.50 bits can be predicted with 98.32 bits being predicted correctly. For
h = 10, 384.99 bits can be predicted with 383.21 bits being predicted correctly.
To predict 127 bits, we can predict 98.50 bits for h = 11, then predict 127-98.50
= 28.50 bits using the wi’s satisfying only 10 relations. Then in average there
are 98.32 + 28.50× 383.21−98.31

384.99−98.50 = 126.66 bits being predicted correctly. It shows
that 127 ui’s can be determined with about 0.34 wrong bits. Then the LFSR can
be recovered by solving 127 linear equations.

We carry out an experiment to verify the above analysis. In order to reduce
the programming complexity, we consider only the wi’s with 12 relations, thus
we use 8000 outputs in the experiment. Using more outputs to recover the LFSR
has no effect on the overall attack since recovering the component B requires
about 217.5 outputs, as shown in Sect. 4.2.

Experiment 3.2. From the weak key (fe 39 b5 c7 e6 69 5b 44 00 00 00 00
00 00 00 00), we generate 8000 outputs, but consider only those 8000 − 2 · 2 12

3 ·
127 = 3936 wi’s with 12 relations. We repeat the experiments 256 times with
different IVs. For h = 11, 104.66 bits can be predicted with 104.35 bits being
predicted correctly. For the wi’s satisfying only 10 relations, 278.37 bits can
be predicted with 276.08 bits being predicted correctly. To predict 127 bits,
127−104.66 = 22.34 wi’s satisfying only 10 relations should be used. Among the
127 predicted bits, 104.35 + 22.34× 276.08

278.37 = 126.51 bits are correct.

3.4.2 Recovering the components B and C

After recovering the LFSR, we proceed to recover the component B. In the pre-
vious attack on ABC v1 [14], about 277 operations are required to recover the

3.4. RECOVERING THE INTERNAL STATE 41

components B and C. That complexity is too high. We give here a very simple
method to recover the components B and C with about 233.3 operations.

In ABC v2, there are four secret terms in the component B: x, d0, d1, and
d2, where d0, d1 and d2 are static, x is updated as

xi = (((xi−1 ⊕ d0) + d1)⊕ d2) + zi
3 mod 232. (3.15)

Note that the more significant bits never affect the less significant bits. It allows
us to recover x, d0, d1, and d2 bit-by-bit.

Since the initial value of the LFSR is known, the value of each zi
0 can be

computed, thus we know the value of each S(xi). On average, the probability
that xi = xj is about 2−32. For a weak key, the least significant bit of S(xi) is
always 0, and the probability that S(xi) = S(xj) is about 2−32+(1−2−32)·2−31 ≈
2−32 + 2−31. Given 217.5 outputs, there are about

(
217.5

2

) × (2−32 + 2−31) ≈ 12
cases when S(xi) = S(xj) (i 6= j). And there are about

(
217.5

2

) × 2−32 ≈ 4
cases that xi = xj among those 12 cases. Choose four cases from those 12 cases
randomly, the probability that xiu = xju for 0 ≤ u < 4 is (4

12)4 = 1
81 (here

(iu, ju) indicates one of those 12 pairs (i, j) satisfying S(xi) = S(xj) (i 6= j)).
The value of each zi

3 in (3.15) is already known. When we solve the four
equations xiu = xju (0 ≤ u < 4) to recover x, d0, d1, and d2, we obtain the four
unknown terms bit-by-bit from the least significant bit to the most significant
bit. The four most significant bits cannot be determined exactly, but the four
least significant bits can be determined exactly since only the least significant
bit of x is unknown. (We mention here during this bit-by-bit approach, the four
bits at each bit position may not be determined exactly, and further filtering
is required in such computations.) On average, we expect that solving each set
of four equations gives about 8 possible values of x, d0, d1, and d2. Also note
that each set of four equations holds true with probability 1

81 , we have about
81× 8 = 648 possible solutions for x, d0, d1, and d2.

After recovering the component B, we know the input and output of each
S(xi), so the component C can be recovered by solving 32 linear equations. This
process is repeated 648 times since there are about 648 possible solutions of x, d0,
d1, and d2. The exact B and C can be determined by generating some outputs
and comparing them to the keystream.

3.4.3 The complexity of the attack

According to the experiment, recovering the LFSR requires about 8000 outputs.
For each wi, testing 12 relations requires about 12·2

3 = 8 XORs and 12 additions.
After predicting 127 ui’s, each ui should be expressed in terms of the initial state
of the LFSR. It is almost equivalent to running the LFSR 8000 ·32 steps, with the
LFSR being initialized with only one non-zero bit z0

1,31. Advancing the LFSR 32

42 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

steps requires 2 XORs and 2 shifts. Solving a set of 127 binary linear equations
requires about 2·1273

3 · 1
32 ≈ 42675 operations on the 32-bit microprocessor. So

about 217.8 operations are required to recover the LFSR.
Recovering the component B requires about 217.5 outputs and solving 81 sets

of equations. Each set of equations can be solved bit-by-bit, and it requires about
32 ·24 ·217.5 = 226.5 operations. Recovering the component C requires solving 648
sets of equations. Each set of equations consists of 32 linear equations with binary
coefficients, and solving it is almost equivalent to inverting a 32×32 binary matrix
which requires about 2·323

3 · 1
32 ≈ 683 operations. So 81 · 226.5 + 648 · 683 = 232.8

operations are required to recover the components B and C.
Recovering the internal state of a weak key requires 217.5 outputs and 217.8 +

232.8 ≈ 232.8 operations in total.

3.4.4 The attack on ABC v1

The previous attack on ABC v1 deals with a general type of weak keys [14], but
the complexity is too high (295 operations). The above attack can be slighty
modified and applied to break ABC v1 (with the weak keys defined in Sect. 3.3)
with much lower complexity. We outline the attack on ABC v1 below.

The LFSR in ABC v1 is 63 bits. The shorter LFSR results in more relations
for the same amount of keystream. Identifying a weak key requires 1465 outputs
from each key instead of the 1615 outputs required in the attack on ABC v2. In
theory, recovering the LFSR with the fast correlation attack requires 2500 outputs
instead of the 4500 outputs required in the attack on ABC v2. The component B
in ABC v1 has only three secret variables. Recovering the component B requires
217.3 outputs, with the complexity reduced to 230.1 operations, smaller than the
232.8 operations required to recover the component B of ABC v2. In total the
attack to recover the internal state of ABC v1 with a weak key requires 217.3

outputs and 230.1 operations.

3.5 Conclusion

Due to the large number of weak keys and the serious impact of each weak key,
ABC v1 and ABC v2 are practically insecure.

In order to resist the attack presented in this paper, a straightforward solution
is to ensure that at least one of the least significant bits of the 33 elements in
the component B should be nonzero. However, ABC v2 with such improvement
is still insecure. A new type of weak keys is that at two adjacent bit positions
(except the least significant bit position), all the bits of the 33 elements in the
component B are 0. After eliminating all the similar weak keys, the linear relation
in (3.2) can still be applied to exploit the non-randomness in the outputs of the

3.5. CONCLUSION 43

component C to launch a distinguishing attack. ABC v3 is the latest version of
ABC, and it eliminates the weak keys described in this chapter. However, a recent
attack exploiting the non-randomness in the outputs of the component C is still
able to identify a new weak key with about 260 outputs [136]. It seems difficult to
improve the ABC cipher due to the risky design that the 32-bit-to-32-bit S-box
is generated from only 33 key-dependent elements.

We recommend updating the secret S-box of ABC v2 frequently during the
keystream generation process. In ABC v2, the key-dependent S-box is fixed. For
a block cipher design, the S-box has to remain unchanged, but such restriction
is not applicable to a stream cipher. Suppose that the size of the key-dependent
S-box of a stream cipher is large (it is risky to use the small randomly generated
key-dependent S-box). We can update the S-box frequently, such as updating at
least one element of the S-Box at each step (in a cyclic way to ensure that all
the elements of the S-box get updated) with enough random information in an
unpredictable way. When a weak S-box appears, only a small number of outputs
are generated from it before the weak S-box disappears, and it becomes extremely
difficult for an attacker to collect enough outputs to analyze a weak S-box. Thus
an attacker has to deal with the average property of the S-box, instead of dealing
with the weakest S-box. For example, the eSTREAM submissions HC-256 [128],
HC-128 [135], Py [25] and Pypy [26] use the frequently updated large S-boxes to
reduce the effect resulting from the weak S-boxes. The security of ABC stream
cipher can be improved in this way, but its performance will be affected.

44 CHAPTER 3. FAST CORRELATION ATTACK ON ABC V2

Chapter 4

Resynchronization Attack I

Linear Attack on DECIM

Abstract. DECIM is a hardware oriented stream cipher with an 80-bit key and
a 64-bit IV. In this chapter, we point out two serious flaws in DECIM. One flaw is
in the initialization of DECIM. It allows to recover about half of the key bits bit-
by-bit when one key is used with about 220 random IVs; only the first two bytes
of each keystream are needed in the attack. The amount of computation required
in the attack is negligible. Another flaw is in the keystream generation algorithm
of DECIM. The keystream is heavily biased: any two adjacent keystream bits are
equal with probability about 1

2 + 2−9. A message could be recovered from the
ciphertext if that message is encrypted by DECIM for about 218 times. DECIM
with an 80-bit key and an 80-bit IV is also vulnerable to these attacks.

4.1 Introduction

DECIM [11] is a stream cipher submitted by Berbain, Billet, Canteaut, et al.
to the ECRYPT stream cipher project [45]. The main feature of DECIM is the
use of the ABSG decimation mechanism [11], an idea similar to the shrinking
generator [34, 90]. Another excellent feature is that a 32-bit buffer is used in
DECIM to ensure that at each step DECIM generates one output bit.

In this chapter, we point out two flaws in DECIM, one in the initialization
algorithm, and another one in the keystream generation algorithm. The flaw in
the initialization allows for any easy key recovery from the keystreams when one
key is used with about 220 random IVs. The flaw in the keystream generation
algorithm results in a heavy bias in the keystream, hence the cipher is vulnerable
to a broadcast attack.

45

46 CHAPTER 4. LINEAR ATTACK ON DECIM

In Sect. 4.2 we describe the DECIM cipher. Section 4.3 presents a key recovery
attack on DECIM. The key recovery attack on DECIM is improved in Sect. 4.4.
The broadcast attack on DECIM is described in Sect. 4.5. Section 4.6 shows that
DECIM with an 80-bit IV is also vulnerable to the attacks. Section 4.7 concludes
this chapter.

4.2 Stream Cipher DECIM

DECIM uses the ABSG decimation mechanism in the keystream generation in
order to achieve high security and design simplicity. The keystream generation
process and the key/IV setup are illustrated in Sect. 4.2.1 and 4.2.2, respectively.

4.2.1 Keystream Generation

The keystream generation diagram of DECIM is given in Fig. 4.1 [11]. DECIM
has a regularly clocked LFSR which is defined by the feedback polynomial

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 +
X131 + X94 + X77 + X46 + X17 + X16 + X5 + 1

over GF (2). The related recursion is given as

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn .

At each stage, two bits are generated from the LFSR as follows:

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) ,

where the Boolean function f is defined as

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij xik
.

The binary sequence y consists of all the yt,1 and yt,2 as

y = y0,1y0,2y1,1y1,2 · · · yt,1yt,2 · · ·

The keystream sequence z is generated from the binary sequence y through the
ABSG decimation algorithm. The sequence y is split into subsequences of the
form (b̄, bi, b̄), with i ≥ 0 and b ∈ {0, 1}; b̄ denotes the complement of b in {0, 1}.

4.2. STREAM CIPHER DECIM 47

For every subsequence (b̄, bi, b̄), the output bit is b for i = 0, and b̄ otherwise.
The ABSG algorithm is given below

Input: (y0, y1, ...)

Set: i ← 0; j ← 0;

Repeat the following steps:

e ← yi, zj ← yi+1, i ← i + 1;

while (yi = ē) i ← i + 1;

i ← i + 1; output zj ; j ← j + 1;

Figure 4.1: Keystream Generation Diagram of DECIM

Remarks. The above description of the ABSG and the pseudo-code of ABSG are
quoted from [11]. However the outputs of the pseudo-code are the complements
of that of the ABSG algorithm. Anyway, this difference has no effect on the
security of DECIM. In the rest of the chapter, we assume that the DECIM uses
the pseudo-code of ABSG given above.

DECIM is designed to output one bit every two stages. A 32-bit buffer is
used to ensure that the probability that there is no output bit is extremely small
(2−89).

48 CHAPTER 4. LINEAR ATTACK ON DECIM

4.2.2 Initialization

The secret key K is an 80-bit key. The 64-bit IV is expanded to an 80-bit vector
by adding zeros from position 64 up to position 79. The initial value of the LFSR
state is loaded as follows

si =





Ki ∨ IVi for 0 ≤ i ≤ 55
Ki−56 ∧ IV i−56 for 56 ≤ i ≤ 111
Ki−112 ⊕ IVi−112 for 112 ≤ i ≤ 191

The LFSR is clocked 192 times. After the t-th clocking, yt,1 and yt,2 are XORed
to xt,192 as

st+192 = st+192 ⊕ yt,1 ⊕ yt,2 .

Then one of two permutations π1 and π2 is applied to permute 7 elements st+5,
st+31, st+59, st+100, st+144, st+177, st+186. Two bits yt,1 and yt,2 are input to the
ABSG, if the output of the ABSG is 1, then π1 is applied; if the output of the
ABSG is 0 or if there is no output, then π2 is applied. The two permutations are
defined as

π1 = (1 6 3)(4 5 2 7), π2 = (1 4 7 3 5 2 6) .

4.3 Key Recovery Attack on DECIM

In this section, we develop attacks to recover the secret key of DECIM. This
non-optimized attack applies when the same secret key is used with a number of
random IVs, and the first 3 bytes of each keystream are known. The optimized
attack is given in the next section.

4.3.1 The effects of the permutations π1 and π2

The two permutations in the initialization stage of DECIM provide high non-
linearity to the initialization process. However, the permutations also cause some
bits in the LFSR to be updated in an improper way. This has a very negative
impact on the security of DECIM.

The permutation π1 is poorly designed. In order to investigate the effects
of this permutation, we analyze a weak version by assuming that only this per-
mutation is used in the initialization process, i.e., we replace π2 with π1. The
values of 140 elements in the LFSR (s5,s6,. . . ,s58, and s100,s101,. . . ,s185) would
never be updated by the initialization process. For example, s21 would always
become s192+6. The details are given below. We trace the bit s21, after 16 steps
it becomes s16+5 due to the shift of the LFSR. Then it becomes s16+177 due to
the permutation π1. After 33 steps, it becomes s49+144 due to the shift of the
LFSR. Then it becomes s49+31 due to the permutation π1. After 26 steps, it

4.3. KEY RECOVERY ATTACK ON DECIM 49

becomes s75+5 due to the shift of the LFSR. Then it becomes s75+177 due to the
permutation π1. This process repeats and at the end of the initialization process,
it becomes s192+6.

The first bit of the keystream is given as y192,2; it is computed as y192,2 =
f(s192+6, s192+8, s192+60, s192+116, s192+145, s192+181, s192+191). By tracing the bits
of the LFSR during the initialization process, we know that s192+6 ⇐ s21,
s192+8 ⇐ s23, s192+116 ⇐ s132, s192+145 ⇐ s160, s192+181 ⇐ s33. If every key and
IV pair is randomly generated, then according to the loading of the key and IV,
we know that s21, s23, and s33 take value 1 with probability 0.75. Thus according
to the definition of the function f , the value of y192,2 is 0 with probability 0.582.
So the first bit of the keystream is heavily biased. It shows that the effect of the
permutation π1 is terrible.

In DECIM, there are two permutations, π1 and π2. They are chosen according
to the output of ABSG: π1 is chosen with probability 1

3 , π2 with probability 2
3 .

Due to these two permutations, the average number of bits that are not updated
by the initialization process is reduced to 54.5 (obtained by running 216 random
key and IV pairs). It shows that the permutations π1 and π2 which are chosen
by the output of ABSG have a negative impact on the security of DECIM.

4.3.2 Recovering K21

In the initialization process, we monitor the bit s21. s21 becomes s192+6 with
probability 1

27 . If s192+6 takes the value 0, and all the other bits in the LFSR
at the 192-th step are distributed uniformly, then the value of the first bit of the
keystream is 0 with probability q0 = 56

128 . If s192+6 takes the value 1, and all
the other bits of the LFSR at the 192-th step are distributed uniformly, then the
value of the first bit of the keystream is 0 with probability q1 = 72

128 . Denote
the probability that the value of the first keystream bit is 0 when s21 = 0 as p0,
and the probability that the value of the first keystream bit is 0 when s21 = 1
as p1. Then ∆p = p1 − p0 = 1

27 × (q1 − q0) = 2−7.75. In an experiment we chose
220 random IVs for s21 = 0, and another 220 random IVs for s21 = 1, and we
found that ∆p = 2−7.99. The experimental result confirms that the theoretically
predicted result ∆p = 2−7.75 is close to the correct value.

The above property can be applied to recover K21 as follows. Suppose that the
same key is used with N random IVs to generate keystreams. For the keystreams
with IV21 = 0, we compute the probability that the value of the first bit is
0, and denote this probability as p′0. For the keystreams with IV21 = 1, we
compute the probability that the value of the first bit is 0, and denote this
probability as p′1. If p′1 > p′0, we decide that K21 = 0; otherwise, K21 = 1. For
N = (∆p

2)−2 × 2 = 218.5, the attack can determine the value of K21 with success
rate 0.977.

50 CHAPTER 4. LINEAR ATTACK ON DECIM

4.3.3 Recovering K22K23 . . . K30

By tracing the bits in the initialization process, we notice that each s22+i is
mapped to s192+7+i with probability 1

27 for 0 ≤ i ≤ 8 (each of them is only
mapped by π1 at st+5). We know that s22+i = K22+i ∨ IV22+i , and s192+7+i,
s192+9+i are used in the generation of y193+i,2 for 0 ≤ i ≤ 10. In this section, we
show that the key bits K22K23K24 . . . K30 can be recovered from the keystream.

An attack similar to that given in Sect. 4.3.2 can be applied to recover the
value of K23 from the first keystream bits generated from 218.5 IVs.

In order to determine the values of K22 and K24, we observe the second bit of
the keystream. Due to the disturbance of the ABSG, y193,2 becomes the second
keystream bit with probability 0.5. Thus ∆p′ = 0.5 ×∆p = 2−8.75. To recover
K22 and K24, we need 220.5 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K25, we observe the second and third
bits of the keystream. y194,2 becomes the second bit of the keystream with
probability 1

8 , and becomes the third bit of the keystream with probability 1
4 .

Thus ∆p′′ = 1
2 × (1

4 + 1
8)×∆p = 2−10.165. To recover K25, we need 222.3 IVs in

order to obtain a success probability of 0.977.

We omit the details of recovering K26 · · ·K29. To recover K30, we observe
the fifth, sixth and seventh bits of the keystream. y199,2 would become one of
these three bits with probability 77

256 . Thus ∆p′′′ = 1
3 × 77

256 ×∆p = 2−11.068. To
recover K29, we need 223.55 IVs in order to obtain the success rate 0.977.

4.3.4 Recovering K9K10 . . . K19

By tracing the bits in the initialization process, we notice that each s9+i is
mapped to s192+166+i with probability 1

27 for 0 ≤ i ≤ 10 (each of them is only
mapped by π1 at st+5). We know that s9+i = K9+i ∨ IV9+i, and s192+166+i is
used in the generation of y194+i,1 for 0 ≤ i ≤ 10. The attacks given in this section
are similar to those given above. We only illustrate how to recover K9 and K19.

In order to determine the value of K9, we observe the second bit of the
keystream. y194,1 becomes the second bit of the keystream with probability 1

4 .
Thus ∆p(4) = 1

4 × ∆p = 2−9.75. To recover K9, we need 222.5 IVs in order to
obtain a success probability of 0.977.

In order to determine the value of K19, we observe the 8-th, 9-th and 10-th
bits of the keystream. y204,1 becomes one of these three bits with probability
0.260. Thus ∆p(5) = 1

3 × 0.260 ×∆p = 2−11.28. To recover K19, we need 223.98

IVs in order to obtain a success probability of 0.977.

4.4. IMPROVING THE KEY RECOVERY ATTACK 51

4.3.5 Recovering K32K33 . . . K46

By tracing the bits in the initialization process, we notice that each s144+i is
mapped to s192+16+i with probability 1

27 for 0 ≤ i ≤ 14 (each of them is only
mapped by π1 at st+5). We know that s144+i = K32+i ⊕ IV32+i, and s192+16+i

is used in the generation of y200+i,1 for 0 ≤ i ≤ 14.
Since for s144+i (0 ≤ i ≤ 14), the key bits are XORed with the IV bits, the

attack is slightly modified. For example, if the probability of 0 in the keystream
for IV32 = 0 is higher than the probability of 0 in the keystream for IV32 = 1,
then we predict that K32 = 0; otherwise, K32 = 1. We only illustrate how to
recover K32 and K46.

In order to determine the value of K32, we observe the sixth, seventh and
eighth bits of the keystream. y200,2 becomes one of these three bits with prob-
ability 0.28027. Thus ∆p(6) = 1

3 × 0.28027 ×∆p = 2−11.17. To recover K32, we
need 223.755 IVs in order to obtain a success probability of 0.977.

In order to determine the value of K46, we assume that starting from the
fourth bit of the sequence y, each bit becomes the output with probability 1

3 .
Then y214,2 becomes one of the 12th, 13th, . . . , 18th bits of the keystream with
probability 0.16637. Thus ∆p(7) = 1

7 × 0.16637×∆p = 2−13.145. To recover K29,
we need 226.482 IVs in order to obtain a success probability of 0.977.

The attacks given in this section recover 36 bits of the secret key with about 226

random IVs. For each IV, only the first 3 bytes of the keystream are needed in
the attack.

4.4 Improving the Key Recovery Attack

In the above attacks, we deal with the bits affected only by π1 at st+5 during
the initialization (the bits affected by π2 are not considered in the attack). In
order to improve the attack, we have used a computer program to trace all the
possibilities for each bit si (0 ≤ i ≤ 175) during the initialization process to find
out the distribution of that bit at the end of initialization. Then we have searched
the optimal attack for that bit. We performed the experiment, and found that
44 key bits can be recovered with less than 220 IVs, and only the first 2 bytes
of the keystream are required in the attack. The experiment results are given in
Table A.1.

4.5 The Keystream of DECIM Is Heavily Biased

The nonlinear function f in DECIM is extremely simple. However this Boolean
function is balanced but not 1-resilient. Unfortunately the ABSG decimation

52 CHAPTER 4. LINEAR ATTACK ON DECIM

mechanism and the buffer in the output function fail to eliminate the bias existing
in the output of f , hence the keystream is heavily biased.

4.5.1 The keystream is biased

We start with analyzing the function f

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij
xik

.

If any bit of the input of f is equal to 1, then f outputs a ‘1’ with probability
72
128 ; otherwise it outputs a ‘1’ with probability 56

128 . Thus for f(xi1 , ..., xi7) and
f(x′i1 , ..., x

′
i7

), if one bit of one input is always equal to one bit of another input
(i.e., xia = x′ib

where 0 ≤ a, b ≤ 7), then the outputs related to these two inputs
would be equal with probability (56

128)2 + (72
128)2 = 65

128 .
Note that yt,1 and yt,2 are computed as follows

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187) ,

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191) .

Denote A = {1, 32, 40, 101, 164, 178, 187}, B = {6, 8, 60, 116, 145, 181, 191}, and
denote each element of A by ai, and each element of B by bi (1 ≤ i ≤ 7). Then
yt,1 = yt+ai−aj ,1 and yt,2 = yt+bi−bj ,2 with probability 65

128 for 1 ≤ i, j ≤ 7 and
i 6= j. And yt+bi−aj ,1 = yt,2 with probability 65

128 for 1 ≤ i, j ≤ 7. It shows that
the binary sequence y is heavily biased.

The heavily biased sequence y is used as input to the ABSG decimation
algorithm. It results in a heavily biased output. In the attack, we are interested in
those biases in y that would not be significantly reduced by the ABSG Algorithm.
Thus we will analyze the bias of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2) to
find out how they affect the randomness of the output of ABSG.

For example, we analyze the effect of the bias of (yt+3,1, yt,2). yt+3,1 = yt,2

with probability 65
128 . Denote the i-th bit of the sequence y by yi. Thus yi =

yi+5 with probability 129
256 . (yi, yi+5) would affect the bias of the output of the

ABSG in two approaches. One approach is that (yi, yi+5) becomes (zj , zj+2) with
probability 1

4 (case 1: yi = yi−1, yi+2 6= yi+1 and yi+3 = yi+2; case 2: yi 6= yi−1,
yi+1 = yi−1 and yi+3 = yi+2). Thus for this approach, the bias of (yi, yi+5)
causes zj = zj+2 with probability 513

1024 . Another approach is that if yi = yi−1

and yi+2 = yi+1, then (yi, yi+4) becomes (zj , zj+2). Note that yi+4 = yi−1 with
probability 129

256 , so zj = zj+2 with probability 129
256 . This approach happens with

probability 1
4 . Thus the bias of (yi, yi+5) causes zj = zj+2 with probability 513

1024 .
Combining these two approaches, we know that zj = zj+2 with probability 257

512 .

4.6. ATTACKS ON DECIM WITH 80-BIT IV 53

We continue analyzing the above example since the output of ABSG dec-
imation algorithm should pass through the buffer before becoming keystream.
By analyzing the ABSG decimation algorithm and the buffer, we notice that
if (yi, yi+5) becomes zj = zj+2 after the ABSG decimation algorithm, then it
becomes z′k = z′k+1 with probability 0.6135 after passing through the buffer; if
(yi, yi+4) becomes zj = zj+2 after the ABSG decimation algorithm, then it be-
comes z′k = z′k+1 with probability 0.5189 after passing through the buffer. Thus
after passing through the buffer, the two approaches lead to z′k = z′k+1 with
probability 1

2 + 0.6135× 1
1024 + 0.5189× 1

1024 = 1
2 + 2−9.82.

A similar analysis can be applied to the biases resulting from (yt+4,1, yt,2) and
(yt,2, yt+2,2). The bias of (yt,2, yt+2,2) would cause z′k = z′k+1 with probability
about 1

2 + 2−10.84, and the bias of (yt+4,1, yt,2) would cause z′k = z′k+1 with
probability about 1

2 + 2−11.73.
Combining the effects of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2), the bias

of z′k = z′k+1 is about 1
2 + 2−9.82 + 2−10.84 + 2−11.73 = 1

2 + 2−9.00.
Now we verify the above analysis with an experiment. We have generated

about 230 keystream bits from DECIM and found that z′k = z′k+1 is about 1
2 +

2−8.67. The experimental result shows that the theoretical result is close to that
obtained from the experiment.

4.5.2 Broadcast attack

Due to the bias in the keystream, part of the message could be recovered from
the ciphertexts if the same message is encrypted many times using DECIM with
random key and IV pairs. A similar attack has been applied to RC4 by Mantin
and Shamir [86].

Suppose that one message bit is encrypted N times, and each keystream bit
is 0 with probability 1

2 + ∆p with ∆p > 0. Denote the number of ‘0’ in the
ciphertext bits by n0. If n0 > N

2 , we conclude that the message bit is equal to
‘0’; otherwise, we conclude that the message bit is equal to ‘1’. For N = ∆p−2,
the message bit is recovered with a success probability of 0.977.

Thus if one message is encrypted about 218 times with different keys and IVs,
the message could be recovered from the ciphertexts.

4.6 Attacks on DECIM with 80-bit IV

The keystream generation algorithm of DECIM with an 80-bit IV is the same as
DECIM with a 64-bit IV. Thus DECIM with an 80-bit IV still generates heavily
biased keystream and it is vulnerable to the broadcast attack.

54 CHAPTER 4. LINEAR ATTACK ON DECIM

The initialization process of DECIM with an 80-bit IV is slightly different
from the 64-bit IV version. The key and IV are loaded into the LFSR as

si =





0 for 0 ≤ i ≤ 31
Ki−32 ⊕ IVi−32 for 32 ≤ i ≤ 111
Ki−112 for 112 ≤ i ≤ 191

Similar to the attack given in Sect. 4.4, we have carried out an experiment to
compute the IVs required to recover each bit. With 221 IVs, 41 bits of the secret
key could be recovered. Only the first 2 bytes of the keystream are required in
the attack. The experiment results are given in Table A.2.

4.7 Conclusion

In this chapter, we developed two attacks against the stream cipher DECIM.
The key could be recovered easily from the keystream with about 220 random
IVs. And the keystream of DECIM is heavily biased. The results indicate that
DECIM is very weak.

Recently, the designers of DECIM have proposed DECIM v2 [12]. DECIM
v2 is much simpler than DECIM. The initialization of DECIM v2 uses 768 steps
of the keystream generation algorithm with the output bit being XORed to the
LFSR. The filter is changed and f is one-resilient. DECIM v2 is not vulnerable
to the attacks presented in this chapter.

Chapter 5

Resynchronization Attack II

Differential Attack on WG

Abstract. WG is a stream cipher submitted to eStream – the ECRYPT stream
cipher project. In this chapter, we point out security flaws in the resynchroniza-
tion of WG. The resynchronization of WG is vulnerable to a differential attack.
For WG with 80-bit key and 80-bit IV, 48 bits of the secret key can be recovered
with about 231.3 chosen IVs . For each chosen IV, only the first four keystream
bits are needed in the attack.

5.1 Introduction

For the research on stream ciphers, resynchronization atacks have not been stud-
ied as thoroughly as the keystream generation algorithm itself. Ten years ago,
Daemen, Govaerts and Vandewalle analyzed the weakness of linear resynchro-
nization mechanism with known output Boolean function [41]. Later Golić and
Morgari studied linear resynchronization mechanisms with unknown output func-
tion [61]. However almost all the stream ciphers proposed recently use non-linear
resynchronization mechanisms, so the previous attacks on linear resynchroniza-
tion mechanisms could no longer be applied. Recently Armknecht, Lano and
Preneel applied algebraic attacks and linear cryptanalysis to the resynchroniza-
tion mechanism and obtained lower bounds for the nonlinearity required from a
secure resynchronization mechanism [6]. In this chapter, we apply the differen-
tial attack and slide attack to stream ciphers with non-linear resynchronization.
We show that the cryptanalysis techniques used to attack block ciphers are also
useful in the analysis of non-linear resynchronization mechanisms.

55

56 CHAPTER 5. DIFFERENTIAL ATTACK ON WG

WG [103] is a stream cipher submitted to eStream, the ECRYPT stream ci-
pher project [45]. The keystream generation algorithm of WG is quite strong.
The keystream generation of WG is based on the WG transformation which has
excellent cryptographic properties [62]. However, the resynchronization mecha-
nism of WG is insecure. The resynchronization mechanism of WG is vulnerable
to a differential attack [27]. Breaking WG requires 231.3 chosen IVs.

This chapter is organized as follows. WG is introduced in Sect. 5.2. The
differential attack on WG is presented in Sect. 5.3 Section 5.4 concludes this
chapter.

5.2 Description of WG

WG is a hardware oriented stream cipher with key length up to 128 bits; it
supports IV sizes from 32 bits to 128 bits. The main feature of the WG stream
cipher is the use of the WG transformation to generate keystream from an LFSR.

Keystream Generation

Figure 5.1: Keystream generation diagram of WG

The keystream generation diagram of WG is given in Fig. 5.1 [103]. WG has a
regularly clocked LFSR which is defined by the feedback polynomial

p(x) = x11 + x10 + x9 + x6 + x3 + x + γ (5.1)

5.2. DESCRIPTION OF WG 57

over GF (229), where γ = β464730077 and β is the primitive root of

g(x) =x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17+

x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1 .
(5.2)

Then the non-linear WG transformation, GF (229) → GF (2), is applied to gen-
erate the keystream from the LFSR.

Resynchronization (Key/IV setup)

The key/IV setup of WG is given in Fig. 5.2. After the key and IV have been
loaded into the LFSR, it is clocked 22 steps. During each of these 22 steps, 29
bits from the middle of the WG transformation are XORed to the feedback of
LFSR, as shown in Fig. 5.2 [103].

Figure 5.2: Key/IV setup of WG

One step of the key/IV setup can be expressed as follows:

58 CHAPTER 5. DIFFERENTIAL ATTACK ON WG

T = S(1)⊕ S(2)⊕ S(5)⊕ S(8)⊕ S(10)⊕ (γ × S(11))⊕WG′(S(11)) ,

S(i) = S(i− 1) for i = 11 · · · 2; S(1) = T ,

where WG′(S(11)) denotes the 29 bits extracted from the WG transformation,
as shown in Fig. 5.2.

The WG cipher supports several key and IV sizes: the key size can be 80 bits,
96 bits, 112 bits and 128 bits and the IV sizes can be 32 bits, 64 bits, 80 bits, 96
bits, 112 bits, and 128 bits. Slightly different resynchronization mechanisms are
used for the different IV sizes. The details are given in Sect. 5.3.

5.3 Differential Attacks on WG

The resynchronization of WG can be broken with a chosen IV attack based
on differential cryptanalysis. (We remind the readers that the details of the
differential attack given in this chapter are slightly different from the standard
differential attack on a block cipher, such as the generation of the differential
pairs and the filtering of the wrong pairs.) WG with a 32-bit IV size is not
vulnerable to the attack given in this section (since no special differential can be
introduced into this short IV). In Sect. 3.1 the attack is applied to break WG
with an 80-bit key and an 80-bit IV. The attacks on WG with IV sizes larger
than 80 bits are given in Sect. 5.3.2. The attack on WG with a 64-bit IV size is
given in Sect. 5.3.3.

5.3.1 Attack on WG with an 80-bit key and an 80-bit IV

We investigate the security of the key/IV setup of WG with an 80-bit key and
an 80-bit IV. For this version of WG, denote the key as K = k1, k2, k3, · · · , k80

and the IV as IV = IV1, IV2, IV3, · · · , IV80. They are loaded into the LFSR as
follows:

S1,...,16(1) = k1,...,16 S17,...,24(1) = IV1,...,8

S1,...,8(2) = k17,...,24 S9,...,24(2) = IV9,...,24

S1,...,16(3) = k25,...,40 S17,...,24(3) = IV25,...,32

S1,...,8(4) = k41,...,48 S9,...,24(4) = IV33,...,48

S1,...,16(5) = k49,...,64 S17,...,24(5) = IV49,...,56

S1,...,8(6) = k65,...,72 S9,...,24(6) = IV57,...,72

S1,...,8(7) = k73,...,80 S17,...,24(7) = IV73,...,80

All the remaining bits of the LFSR are set to zero. Then the LFSR is clocked
22 steps with the middle value from the WG transformation being used in the
feedback.

5.3. DIFFERENTIAL ATTACKS ON WG 59

The chosen IV attack on WG goes as follows. For each secret key K, we choose
two IVs, IV ′ and IV ′′, so that IV ′ and IV ′′ are identical in 8 bytes, but differ
in two bytes: IV ′

17,...,24 6= IV ′′
17,...,24 and IV ′

49,...,56 6= IV ′′
49,...,56. The differences

satisfy IV ′
17,...,24 ⊕ IV ′′

17,...,24 = IV ′
49,...,56 ⊕ IV ′′

49,...,56.
Denote the value of S(i) (1 ≤ i ≤ 11) at the end of the j-th step by Sj(i),

and denote loading the key/IV as the 0th step. After loading the key and the
chosen IV into LFSR, we know that the differences in S(2) and S(5) are the
same, i.e., S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5). We denote this difference as 41,
i.e., 41 = S′0(2)⊕ S′′0(2) = S′0(5)⊕ S′′0(5).

We now examine the differential propagation during the 22 steps in the key/IV
setup. The complete differential propagation is shown in Table 5.1, where the
differences at the i-th step indicate the differences at the end of the i-th step. The
difference 42 = (γ × S′6(11)⊕WG′(S′6(11))⊕ (γ × S′′6(11)⊕WG′(S′′6(11)) =
(γ × S′0(5) ⊕ WG′(S′0(5)) ⊕ (γ × S′′0(5) ⊕ WG′(S′′0(5)). Similarly, we obtain
that 43 = (γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2)).

From Table 5.1, we notice that at the end of the 22th step, the difference at
S22(10) is 42 ⊕43. From the above description of 42 and 43, we know that

42 ⊕43 =((γ × S′0(5)⊕WG′(S′0(5))⊕ (γ × S′′0(5)⊕WG′(S′′0(5)))⊕
((γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2))) .

(5.3)

This shows that the value of42⊕43 is determined by k17,...,24, k49,...,64, IV ′
9,...,24,

IV ′
49,...,56, IV ′′

9,...,24, IV ′′
49,...,56.

From the keystream generation of WG, we know that the first keystream bit
is generated from S22(10) (after the key/IV setup, the LFSR is clocked, and
S23(11) is used to generate the first keystream bit). If 42 ⊕ 43 = 0, then the
first keystream bits for IV ′ and IV ′′ should be the same. This property is applied
in the attack to determine whether the value of 42 ⊕43 is 0.

Assume that the value of 42⊕43 is randomly distributed, then 42⊕43 = 0
with probability 2−29. We thus need to generate about 229 pairs (42,43) in order
to obtain a pair satisfying 42 ⊕ 43 = 0. Note that the key is fixed and that
S′0(2)⊕S′′0(2) = S′0(5)⊕S′′0(5) must be satisfied. Three bytes of IV (IV ′

9,...,24,
IV ′

49,...,56) and one-byte difference (41) can be freely chosen to generate different
(42,43), so there are about 224×255/2 ≈ 231 available pairs of (42,43). Hence
there is no problem to generate 229 pairs of (42,43).

Then we proceed to determine which pair (42,43) satisfies 42⊕43 = 0. For
each pair (42,43), we modify the values of IV ′

1,...,8 and IV ′′
1,...,8, but we ensure

that IV ′
1,...,8 = IV ′′

1,...,8. This modification does not affect the value of 42 ⊕43,
but it affects the value of S22(10). We generate keystream and examine the first
keystream bits. If the values of the first keystream bits are the same, then the
chance that 42 ⊕43 = 0 is improved. In that case, we modify IV ′

1,...,8 and

60 CHAPTER 5. DIFFERENTIAL ATTACK ON WG

T
ab

le
5.

1:
T

he
di

ffe
re

nt
ia

l
pr

op
ag

at
io

n
in

th
e

ke
y/

IV
se

tu
p

of
W

G

S
(1

)
S
(2

)
S
(3

)
S
(4

)
S
(5

)
S
(6

)
S
(7

)
S
(8

)
S
(9

)
S
(1

0
)

S
(1

1
)

st
ep

0
0

4
1

0
0

4
1

0
0

0
0

0
0

st
ep

1
0

0
4

1
0

0
4

1
0

0
0

0
0

st
ep

2
0

0
0

4
1

0
0

4
1

0
0

0
0

st
ep

3
0

0
0

0
4

1
0

0
4

1
0

0
0

st
ep

4
0

0
0

0
0

4
1

0
0

4
1

0
0

st
ep

5
0

0
0

0
0

0
4

1
0

0
4

1
0

st
ep

6
4

1
0

0
0

0
0

0
4

1
0

0
4

1
st

ep
7

4
2

4
1

0
0

0
0

0
0

4
1

0
0

st
ep

8
4

1
⊕
4

2
4

2
4

1
0

0
0

0
0

0
4

1
0

st
ep

9
0

4
1
⊕
4

2
4

2
4

1
0

0
0

0
0

0
4

1
st

ep
1
0

4
1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

0
0

0
0

0

st
ep

1
1

4
2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

0
0

0
0

st
ep

1
2

4
1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

0
0

0

st
ep

1
3

4
2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

0
0

st
ep

1
4

4
3

4
2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

0

st
ep

1
5

4
1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1
0

st
ep

1
6

4
1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2
4

1

st
ep

1
7

4
1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2
4

2

st
ep

1
8

4
3
⊕
4

4
⊕
4

5
4

1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

4
1
⊕
4

2

st
ep

1
9

4
1
⊕
4

2
⊕
4

3
⊕

4
5
⊕
4

6

4
3
⊕
4

4
⊕
4

5
4

1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
0

st
ep

2
0

4
4
⊕
4

6
4

1
⊕
4

2
⊕
4

3
⊕

4
5
⊕
4

6

4
3
⊕
4

4
⊕
4

5
4

1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3

st
ep

2
1

4
4
⊕
4

5
⊕
4

7
4

4
⊕
4

6
4

1
⊕
4

2
⊕
4

3
⊕

4
5
⊕
4

6

4
3
⊕
4

4
⊕
4

5
4

1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2
4

2
⊕
4

3

st
ep

2
2

4
2
⊕
4

3
⊕
4

4
⊕

4
5
⊕
4

6
⊕
4

7
⊕
4

8

4
4
⊕
4

5
⊕
4

7
4

4
⊕
4

6
4

1
⊕
4

2
⊕
4

3
⊕

4
5
⊕
4

6

4
3
⊕
4

4
⊕
4

5
4

1
⊕
4

4
4

1
⊕
4

2
⊕
4

3
4

1
⊕
4

2
⊕
4

3
4

3
4

2
⊕
4

3
4

1
⊕
4

2

5.3. DIFFERENTIAL ATTACKS ON WG 61

IV ′′
1,...,8 again and observe the first keystream bits. This process ends when the

first keystream bits are not the same or this process is repeated for 40 times.
If one (42,43) passes the test for 40 times, then we know that 42 ⊕ 43 = 0
with probability extremely close to 1. (Each wrong pair could pass this filtering
process with probability 2−40. One pair of 229 wrong pairs could pass this process
with probability 2−11.) Thus with about 2× 229×∑40

i=1
i
2i = 231 chosen IVs, we

can find a pair (42,43) satisfying 42⊕43 = 0. Subsequently according to Eqn.
(3) and 42 ⊕43 = 0, we recover 24 bits of the secret key, k17,...,24 and k49,...,64.

The above attack can be improved if we consider the differences at S22(7) and
S22(8). The differences there are both41⊕42⊕43. If the value of41⊕42⊕43

is 0, then the third and fourth bits of the two keystreams would be the same. If
we only observe the third and fourth keystream bits, then k17,...,24 and k49,...,64

can be recovered with 2× 229 ×∑20
i=1(

1
2i−1 − 1

2i)× i = 230.4 chosen IVs.
In the attack, we observe the first, third and fourth keystream bits, then

recovering k17,...,24 and k49,...,64 requires about 2× 228× 21.13 = 230.1 chosen IVs
(the value 21.13 is obtained through numerical computation).

By setting the difference at S0(3) and S0(6) and observing the second and
third bits of the keystream, we can recover another 24 bits of the secret key,
k25,...,40 and k65,...,72. We need 230.4 chosen IVs.

So with about 230.1 + 230.4 = 231.3 chosen IVs, we can recover 48 bits of the
80-bit secret key. It shows that the key/IV setup of the WG stream cipher is
insecure.

5.3.2 Attacks on WG with key and IV sizes larger than 80
bits

The WG ciphers with the key and IV sizes larger than 80 bits are all vulnerable
to the chosen IV attacks. The attacks are very similar to the above attack. We
omit the details of the attacks here. The results are given below:

1. For WG with 96-bit key and 96-bit IV, 48 bits of the key can be recovered
with complexity about the same as the above attack.

2. For WG with IV sizes larger than 96 bits, 72 bits of the key can be recovered
with complexity about 1.5 times that of the above attack.

5.3.3 Attacks on WG with 64-bit IV size

We use WG with an 80-bit key and a 64-bit IV as an example to illustrate the
attack. For WG cipher with an 80-bit key and a 64-bit IV, the key and IV are
loaded into the LFSR as follows:

62 CHAPTER 5. DIFFERENTIAL ATTACK ON WG

S1,...,16(1) = k1,...,16 S1,...,16(2) = k17,...,32

S1,...,16(3) = k33,...,48 S1,...,16(4) = k49,...,64

S1,...,16(5) = k65,...,80 S1,...,16(9) = k1,...,16

S1,...,16(10) = k17,...,32 ⊕ 1 S1,...,16(11) = k33,...,48

S17,...,24(1) = IV1,...,8 S17,...,24(2) = IV9,...,16

S17,...,24(3) = IV17,...,24 S17,...,24(4) = IV25,...,32

S17,...,24(5) = IV33,...,40 S17,...,24(6) = IV41,...,48

S17,...,24(7) = IV49,...,56 S17,...,24(8) = IV57,...,64

In the attack, we introduce differences at S(2) and S(5), but we can only generate
about 223 pairs of (42,43) since we can only modify IV9,...,16 and IV33,...,40. Thus
we can obtain a pair (42,43) satisfying 42 ⊕ 43 = 0 or 41 ⊕ 42 ⊕ 43 = 0
with probability 2−5. Once we know 42⊕43 = 0 or 41⊕42⊕43 = 0, we can
recover 29 bits of information on k17,...,32 and k65,...,80. It shows that 29 bits of
information of the secret key can be recovered with probability 2−5. This attack
requires about 225.1 chosen IVs.

The attack on WG with 96-bit key and 64-bit IV is similar to the above attack.
We introduce differences at S(2) and S(5) or at S(3) and S(6). In the attack
29 bits of information on k17,...,32 and k65,...,80 can be recovered with probability
2−5, and another 29 bits of information on k33,...,48 and k81,...,96 can be recovered
with probability 2−5.

The attack on WG with 112-bit key and 64-bit IV is also similar. The result
is that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with
probability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recovered
with probability 2−5, and 29 bits of information on k49,...,64 and k97,...,112 can be
recovered with probability 2−5.

The attack on WG with 128-bit key and 64-bit IV is also similar. The result
is that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with prob-
ability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recovered with
probability 2−5, 29 bits of information on k49,...,64 and k97,...,112 can be recovered
with probability 2−5, and 29 bits of information on k64,...,80 and k113,...,128 can
be recovered with probability 2−5.

5.4 Conclusion

In this chapter, we show that the resynchronization mechanisms of WG is vul-
nerable to a differential attack. It shows that a differential attack is powerful in
analyzing the non-linear resynchronization mechanism of a stream cipher.

The designers of WG recommended to use 44 steps in the initialization to
resist a differential attack [104]. It is a small modification to the design to achieve

5.4. CONCLUSION 63

a secure key/IV setup. However, it is inefficient. We recommend to change the
primitive polynomial tap positions so that the tap distances are coprime, and to
generate the first keystream bit from S(1) instead of S(10). Then we expect that
WG with 22-step key/IV setup will be able to resist a differential attack.

64 CHAPTER 5. DIFFERENTIAL ATTACK ON WG

Chapter 6

Resynchronization Attack III

Slide Attack on LEX

Abstract. LEX is a stream cipher submitted to eStream – the ECRYPT stream
cipher project. In this chapter, we point out a security flaw in its resynchroniza-
tion. The resynchronization of LEX is vulnerable to a slide attack. If a key is
used with about 260.8 random IVs, and 20,000 keystream bytes are generated from
each IV, then the key of the strong version of LEX could be recovered easily with
a slide attack. The resynchronization attack on LEX shows that block cipher re-
lated attacks are powerful in analyzing non-linear resynchronization mechanisms.

6.1 Introduction

LEX [20] is a stream cipher submitted by Biryukov to eStream, the ECRYPT
stream cipher project [45]. The keystream generation of LEX is based on the Ad-
vanced Encryption Standard [101]. However, the resynchronization mechanism
of LEX is insecure and is vulnerable to slide attack [23]. Breaking the strong
version of LEX requires about 260.8 random IVs.

This chapter is organized as follows. LEX is introduced in Sect. 6.2. The
slide attack on LEX is described in Sect. 6.3. Section 6.4 concludes this chapter.

6.2 Description of LEX

LEX is based on the block cipher AES. The keystream bits are generated by
extracting 32 bits from each round of AES in the 128-bit Output Feedback (OFB)
mode [98]. LEX is about 2.5 times faster than AES. Fig. 6.1 [20] shows how the

65

66 CHAPTER 6. SLIDE ATTACK ON LEX

AES is initialized and chained. First a standard AES key-schedule for a secret
128-bit key K is performed. Then a given 128-bit IV is encrypted by a single
AES invocation: S = AESK(IV). The S and the subkeys are the output of the
initialization process.

S is encrypted by K in the 128-bit OFB mode (for the more secure variant,
K is changed every 500 AES encryptions). At each round, 32 bits of the middle
value of AES are extracted to form the keystream. The bytes b0,0, b0,2, b2,0, b2,2

at every odd round and the bytes b0,1, b0,3, b2,1, b2,3 at every even round are
selected, as shown in Fig. 6.2 [20].

Figure 6.1: Initialization and stream generation

Figure 6.2: The positions of the output extracted in the even and odd rounds

6.3 Slide Attack on the Resynchronization of LEX

The security of LEX depends heavily on the fact that only a small amount of
information is released for each round (including the input and output) of AES.

6.3. SLIDE ATTACK ON THE RESYNCHRONIZATION OF LEX 67

The slide attack intends to retrieve all the information of one AES round input
(or output) in LEX.

Denote Si = Ei
K(IV), where Ei(m) means that m is encrypted i times,

S0 = IV ; denote the 320-bit keystream extracted from the i-th encryption as ki

for i ≥ 2. For two IVs, IV ′ and IV ′′, if k′2 = k′′j (j > 2), then we know that
S′1 = S′′j−1. Immediately, we know that S′′j−2 = S′0 = IV ′. Note that k′′j−1 is
extracted from EK(S′′j−2), so k′′j−1 is extracted from EK(IV ′); this means that
we know the input to AES, and we know 32 bits from the output of the first
round. In the following, we show that it is easy to recover the secret key from
this 32 bits of information of the first round output.

Denote the 16-byte output of the r-th round of AES with mr
i,j (0 ≤ i, j ≤ 3),

and denote the 16-byte round key at the end of the r-th round with wr
i,j (0 ≤

i, j ≤ 3). Now if m1
0,0, m1

0,2, m1
2,0, m1

2,2 are known, i.e, four bytes of the first
round output are known, then we obtain the following four equations:

m1
0,0 ⊕ w1

0,0 = MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1))& 0xFF (6.1)

m1
2,0 ⊕ w1

2,0 = (MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1)) >> 16)& 0xFF (6.2)

m1
0,2 ⊕ w1

0,2 = MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3))& 0xFF (6.3)

m1
2,2 ⊕ w1

2,2 = (MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3)) >> 16)& 0xFF . (6.4)

Each equation leaks one byte of information on the secret key. In the above
four equations, 12 bytes of the subkey are involved. To recover all these 12 bytes,
we need three inputs to AES and the related 32-bit first round outputs so that
we can obtain 12 equations. These 12 equations can be solved with about α×232

operations, where α is a small constant. With 96 bits of the key have been
recovered, the rest of the 32 bits of AES can be recovered by exhaustive search.

We now compute the number of IVs required to generate three collisions.
Suppose that a secret key is used with about 265.3 random IVs, and each IV i is
used to generate a 640-bit keystream ki

2, k
i
3. Since the block size of AES is 128

bits, we know that with high probability there are three collisions ki
2 = kj

3 for
different i and j since 265.3×(265.3−1)

2 × 2−128 ≈ 3.
The number of IVs could be reduced if more keystream bits are generated from

each IV. In [20], it is suggested to change the key every 500 AES encryptions for
a strong variant of LEX. Suppose that each IV is applied to generate 500 320-bit
outputs, then with 260.8 IVs, we could find three collisions ki

2 = kj
x (2 < x < 500)

68 CHAPTER 6. SLIDE ATTACK ON LEX

and recover the key of LEX. For the original version of LEX, the AES key is
not changed during the keystream generation. Suppose that each IV is used to
generate 250 keystream bytes, then the key could be recovered with about 243

random IVs (here we need to consider that the state update function of LEX is
reversible; otherwise, the amount of IV required in the attack could be greatly
reduced).

For a secure stream cipher with a 128-bit key and a 128-bit IV, each key
would never be recovered faster than exhaustive key search no matter how many
IVs are used together with that key. But for LEX each key could be recovered
faster than exhaustive search if that key is used together with about 261 random
IVs. We thus conclude that LEX is theoretically insecure.

For a stream cipher with 128-bit key and 128-bit IV, if the attacker can choose
the IV, then one of 264 keys could be recovered with about 264 pre-computations
(based on the birthday paradox). The complexity of such an attack is close to
our attack on LEX. However, there are two major differences between these two
attacks. One difference is that the attack based on birthday paradox is a chosen
IV attack while our attack is a random IV attack. Another difference is that
the attack based on the birthday paradox results in the recovery of one of n
keys, while our attack recovers one particular key. Recovering one of n keys and
recovering one particular key are two different types of attacks being used in
different scenarios, so it is not meaningful to simply compare their complexities.

6.4 Conclusion

In this chapter, we show that the resynchronization mechanisms of LEX is vulner-
able to a slide attack that is develped against block cipher. It is not so surprising
since LEX is based on a block cipher.

Chapter 7

Resynchronization Attack IV

Differential Attack on Py, Py6 and Pypy

Abstract. Py and Pypy are efficient array-based stream ciphers designed by
Biham and Seberry. Both were submitted to the eSTREAM competition. This
chapter shows that Py and Pypy are practically insecure. If one key is used
with about 216 IVs with special differences, with high probability two identical
keystreams will appear. This can be exploited in a key recovery attack. For
example, for a 16-byte key and a 16-byte IV, 223 chosen IVs can reduce the
effective key size to 3 bytes. For a 32-byte key and a 32-byte IV, the effective
key size is reduced to 3 bytes with 224 chosen IVs. Py6, a variant of Py, is more
vulnerable to these attacks.

7.1 Introduction

RC4 has inspired the design of a number of fast stream ciphers, such as ISAAC
[72], Py [25], Pypy [26] and MV3 [78]. RC4 was designed by Rivest in 1987.
Being the most widely used software stream cipher, RC4 is extremely simple
and efficient. At the time of the invention of RC4, its array based design was
completely different from the previous stream ciphers mainly based on linear
feedback shift registers.

There are two main motives to improve RC4. One motive is that RC4 is
byte oriented, so we need to design stream ciphers that can run more efficiently
on today’s 32-bit microprocessors. Another motive is to strengthen RC4 against
various attacks [59, 82, 95, 51, 50, 86, 94, 106, 84, 85]. Two of these attacks
affect the security of RC4 in practice: the broadcast attack which exploits the
weakness that the first few keystream bytes are heavily biased [86], and the key

69

70 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

recovery attack using related IVs [50] which results in the practical attack on
RC4 in WEP [84]. These two serious weaknesses are caused by the imperfection
in the initialization of RC4.

Recently Biham and Seberry proposed the stream cipher Py [25] which is
related to the design of RC4. Py is one of the fastest stream ciphers on 32-bit
processors (about 2.5 times faster than RC4). A distinguishing attack against
Py was found by Paul, Preneel and Sekar [109]. In that attack, the keystream
can be distinguished from random with about 288 bytes. Later, the attack was
improved by Crowley [37], and the data required in the attack is reduced to 272.
In order to resist the distinguishing attack on Py, the designers of Py decided to
discard half of the outputs, i.e., the first output of the two outputs at each step
is discarded. The new version is called Pypy [26]. Py and Pypy are selected as
focus ciphers in the Phase 2 of the ECRYPT eSTREAM project.

The initializations of Py and Pypy are identical. In this chapter, we show
that there are serious flaws in the initialization of Py and Pypy, thus these two
ciphers are vulnerable to differential cryptanalysis [27]. Two keystreams can be
identical if a key is used with about 216 IVs with special differences. It is a
practical threat since the set of IVs required in the attack may appear with high
probability in applications. Then we show that part of the key of Py and Pypy
can be recovered with chosen IVs. For a 16-byte key and a 16-byte IV, 223 chosen
IVs can reduce the effective key size to 3 bytes.

Py6 [25] is a variant of Py with reduced internal state size. We show that
Py6 is more vulnerable to the attacks against Py and Pypy.

This chapter is organized as follows. In Sect. 7.2, we illustrate the key and IV
setups of Py and Pypy. Section 7.3 describes the attack of generating identical
keystreams. The key recovery attack is given in Sect. 7.4. In Sect. 7.5, we outline
the attacks against Py6. Section 7.6 concludes this chapter.

7.2 The Specifications of Py and Pypy

Py and Pypy are two synchronous stream ciphers supporting key and IV sizes
up to 256 bytes and 64 bytes, respectively. The initializations of Py and Pypy
are identical. The initialization consists of two stages: key setup and IV setup.

In the following descriptions, P is an array with 256 8-bit elements. Y is
an array with 260 32-bit elements, s is a 32-bit integer. YMININD = −3,
YMAXIND = 256. The table ‘internal permutation’ is a constant permutation
table with 256 elements. ‘∧’ and ‘&’ in the pseudo codes denote binary XOR and
AND operations, respectively. ‘u8’ and ‘u32’ mean ‘unsigned 8-bit integer’ and
‘unsigned 32-bit integer’, respectively. ‘ROTL32(a,n)’ means that the 32-bit a is
left rotated over n bits.

7.2. THE SPECIFICATIONS OF PY AND PYPY 71

7.2.1 The key setup

The key setups of Py and Pypy are identical. In the key setup, the key is used
to initialize the array Y . The description is given below.

keysizeb=size of key in bytes;
ivsizeb=size of IV in bytes;
YMININD = -3; YMAXIND = 256;
s = internal_permutation[keysizeb-1];
s = (s<<8) | internal_permutation[(s ^ (ivsizeb-1))&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again */
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}
/* Algorithm C is the following ‘for’ loop */
for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

7.2.2 The IV setup

The IV setups of Py and Pypy are identical. In the IV setup, the IV is used to
affect every bit of the internal state. EIV is a temporary byte array with the
same size as the IV. The IV setup is given below.

/* Create an initial permutation */
u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);

72 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;
for(i=0; i<256; i++)
{

P(i)=internal_permutation[v];
v+=d;

}
/* Now P is a permutation */
/* Initial s */
s = ((u32)v<<24)^((u32)d<<16)^((u32)P(254)<<8)^((u32)P(255));
s ^= Y(YMININD)+Y(YMAXIND);

/* Algorithm A is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again, but with the last words of Y, and update EIV */
/* Algorithm B is the following ‘for’ loop */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

/*updating the rolling array and s*/
for(i=0; i<260; i++)
{

u32 x0 = EIV(0) = EIV(0)^(s&0xFF);
rotate(EIV);
swap(P(0),P(x0));
rotate(P);
Y(YMININD)=s=(s^Y(YMININD))+Y(x0);
rotate(Y);

}
s=s+Y(26)+Y(153)+Y(208);
if(s==0)

7.3. IDENTICAL KEYSTREAMS 73

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

7.2.3 The keystream generation

After the key and IV setup, the keystream is generated. One step of the keystream
generation of Py is given below. Note that the first output at each step is dis-
carded in Pypy.

/* swap and rotate P */
swap(P(0), P(Y(185)&0xFF));
rotate(P);

/* Update s */
s+=Y(P(72)) - Y(P(239));
s=ROTL32(s, ((P(116) + 18)&31));

/* Output 8 bytes (least significant byte first) */
output ((ROTL32(s, 25) ^ Y(256)) + Y(P(26)));
output ((s ^ Y(-1)) + Y(P(208)));

/* Update and rotate Y */
Y(-3)=(ROTL32(s, 14) ^ Y(-3)) + Y(P(153));
rotate(Y);

7.3 Identical Keystreams

We notice that the IV appears only in the IV setup algorithm described in
Sect. 7.2.2. At the beginning of the IV setup, only 15 bits of the IV (iv[0]
and iv[1]) are applied to initialize the array P and s (the least significant bit of
iv[1] is not used). For an IV pair, if those 15 bits are identical, then the resulting
P are the same. Then we notice that the IV is applied to update s and EIV as
follows.

for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
for(i=0; i<ivsizeb; i++)

74 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

{
s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

We call the first ‘for’ loop Algorithm A, and the second ‘for’ loop Algorithm B.
In the following, we give two types of IV pairs that result in identical keystreams.

7.3.1 IVs differing in two bytes

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differing in only two consecutive bytes with iv1[i]⊕iv2[i] = 1, the least significant
bit of iv1[i] is 1, iv1[i + 1] 6= iv2[i + 1] (1 ≤ i ≤ ivsizeb − 1), and iv1[j] = iv2[j]
for 0 ≤ j < i and i + 1 < j ≤ ivsizeb − 1. We trace how the difference in IV
affects s and EIV in Algorithm A. At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the ith step, EIV1[i] 6= EIV2[i]. Let β1 = EIV1[i], and β2 =
EIV2[i]. We obtain that s1 − s2 = 256 + δ1, where δ1 = (β1 ⊕ x)− (β2 ⊕ x), and
x = ROTL32(s, 8). Then we look at the next step.

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i+1] 6= iv2[i+1], if iv2[i+1]− iv1[i+1] = δ1, then s1 and s2 become
identical with high probability. Let s1 = s2 with probability p1. Based on the
simulation, we obtain that p1 = 2−10.6. If s1 = s2, then EIV1[i+1] = EIV2[i+1],
and in the following steps i + 2, i + 3, · · · , i + ivsizeb− 1 in Algorithm A, s1 and
s2 remain the same, and EIV1[j] = EIV2[j] for j 6= i.

After Algorithm A, the iv[i] and iv[i+1] are used again to update s and EIV
in Algorithm B. At the ith step in Algorithm B,

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

7.3. IDENTICAL KEYSTREAMS 75

At the end of this step, EIV1[i] = EIV2[i] with probability 1
255 . Let γ1 = s01,

and γ2 = s02. If EIV1[i] = EIV2[i], we know that γ2 − γ1 = β1 − β2. At the
end of this step, s1 − s2 = 256 + δ2, where δ2 = (γ1 ⊕ y) − (γ2 ⊕ y), and y is
ROTL32(s,8). Note that δ1 and δ2 are correlated since γ2 − γ1 = β1 − β2. Then
we look at the next step.

s = s + iv[i+1] + Y(YMAXIND-i-1);
u8 s0 = P(s&0xFF);
EIV(i+1) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, if iv2[i + 1] − iv1[i + 1] = δ2, then s1 and s2 become
identical with high probability. Note that iv2[i + 1] − iv1[i + 1] = δ1, and δ1

and δ2 are correlated, so iv2[i + 1]− iv1[i + 1] = δ2 with probability larger than
2−8. Let s1 = s2 with probability p′1. Based on a simulation, we obtain that
p′1 = 2−5.6. Once the two s values are identical, EIV1[i + 1] = EIV2[i + 1], and
in the following steps i + 2, i + 3, · · · , i + ivsize− 1 in Algorithm B, s1 and s2

remain the same, and EIV1[i + 2] = EIV2[i + 2], EIV1[i + 3] = EIV2[i + 3], · · · ,
EIV1[i + ivsize− 1] = EIV2[i + ivsize− 1].

Thus after introducing the IV to update s and EIV , s1 = s2 and EIV1 =
EIV2 with probability p1 × 1

255 × p′1 ≈ 2−24.2.
Note that once an IV has been introduced in Algorithm A and B, the IV is

not used in the rest of the IV setup. Thus once s1 = s2 and EIV1 = EIV2 at the
end of Algorithm B, we know that those two keystreams will be the same.

Experiment 7.1. We use 214 random 128-bit keys in the attack. For each
key, we randomly generate 216 pairs of 128-bit IV that differ in only two bytes:
iv1[6]⊕iv2[6] = 1, iv1[7] 6= iv2[7]. We found that 111 pairs of those 230 keystream
pairs are identical. For example, for the key (08 da f2 35 a3 d5 94 e2 85 cc 68
ba 7e 10 8a b4), and the IV pair (6e e7 09 b1 35 85 2f 07 1a fe 3f 50 a8 84 30
11) and (6e e7 09 b1 35 85 2e 80 1a fe 3f 50 a8 84 30 11), the two keystreams are
identical, and the first 16 keystream bytes of Pypy are (6f eb ca 18 54 3f 59 96
b6 17 8a 54 6e bd 45 1f).

From the experiment, we deduce that for an IV pair with the required difference,
the two keystreams are identical with probability about 111

230 = 2−23.2, about twice
the theoretical value.

The IV difference at two bytes. In the above analysis, the difference is chosen
as iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] 6= iv2[i + 1] (i ≥ 1). We can generalize this type
of IV difference so that iv1[i] and iv2[i] can take other differences. As long as

76 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

(iv1[i]− iv2[i]) mod 256 = 1 or 255, iv1[i + 1] 6= iv2[i + 1] (i ≥ 2), there is a
non-zero probability that the two keystreams can be identical.

For example, if iv1[i]⊕ iv2[i] = 3, the two least significant bits of iv1[i] are 01
or 10, and iv1[i + 1] 6= iv2[i + 1] (i ≥ 2), then two identical keystreams appear
with probability 2−23.2. On average, if iv1[i]−iv2[i] = 1, and iv1[i+1] 6= iv2[i+1]
(i ≥ 2), then two identical keystreams appear with probability 2−26.4.

7.3.2 IVs differing in three bytes

In the above attack, we deal with the ith and (i + 1)th bytes of the IV, and use
the difference at iv[i + 1] to eliminate the difference introduced by iv[i] in s. In
the following, we introduce another type of difference to deal with the situation
when the difference at iv[i+1] cannot eliminate the difference introduced by iv[i]
in s. The solution is to introduce a difference in iv[i + 4].

We illustrate the attack with an example. Suppose that two IVs, iv1 and iv2,
differ in only three bytes iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of iv1[i]
is 1, iv1[i + 1] 6= iv2[i + 1], iv1[i + 4]⊕ iv2[i + 4] = 0x80, and the most significant
bit of iv1[i+4] is 0, where i ≥ 2. We trace how the difference affects s and EIV .
At the ith step in Algorithm A,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, EIV1[i] 6= EIV2[i], and s1 − s2 = 0x8000 + δ1, where δ1

is the difference of two different 8-bit numbers. Then we look at the next step.

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

Because iv1[i + 1] 6= iv2[i + 1], s1 − s2 = 0x8000 with probability p2 = 2−8. If
s1 − s2 = 0x8000, then EIV1[i + 1]⊕ EIV2[i + 1] = 0.

Since v1[i + 2] = v2[i + 2], at the end of the (i + 2)th step of Algorithm A,
EIV1[i + 2] = EIV2[i + 2], and s1 − s2 = 0x800000 with probability close to 1.

Since v1[i + 3] = v2[i + 3], at the end of the (i + 3)th step of Algorithm A,
EIV1[i + 3] = EIV2[i + 3], and s1− s2 = 0x80000000 with probability close to 1.
Now consider the (i + 4)th step.

s = s + iv[i+4] + Y(YMININD+i+4);
u8 s0 = P(s&0xFF);

7.3. IDENTICAL KEYSTREAMS 77

EIV(i+4) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of this step, the probability that EIV1[i + 4] = EIV2[i + 4], and
s1 = s2 is 1. So for the above 5 steps, s1 = s2 with probability p2. Once s1 = s2,
in the following steps i + 5, i + 6, · · · , i + ivsize− 1 in Algorithm A, the s1 and
s2 remain the same, and EIV1[i + 5] = EIV2[i + 5], EIV1[i + 6] = EIV2[i + 6],
· · · , EIV1[i + ivsize− 1] = EIV2[i + ivsize− 1].

Then iv[i] and iv[i + 1] are used again to update s and EIV . With a similar
analysis, we can show that at the end of the updating, EIV1 = EIV2, s1 = s2

with probability about (p2)2 × 1
255 ≈ 2−24. (As shown in the experiment in the

next subsection, this probability is about 2−22.9.)

The IV difference at three bytes. In the above analysis, the difference is
chosen at only three bytes, iv1[i] ⊕ iv2[i] = 0x80, the most significant bit of
iv1[i] is 1, iv1[i + 1] 6= iv2[i + 1], iv1[i + 4] ⊕ iv2[i + 4] = 0x80, and the most
significant bit of iv1[i + 4] is 0 (i ≥ 2). For this type of IV difference, we can
generalize it so that iv1[i] and iv2[i] can choose other differences instead of 0x80.
In fact, once we set the difference as iv1[i] − iv2[i] = iv2[i + 4] − iv1[i + 4],
iv1[i + 1] 6= iv2[i + 1] (i ≥ 2), then the two keystreams are identical
with probability close to 2−23. For two IVs different only at three bytes, if
iv1[1] ⊕ iv2[1] = 1, iv1[2] 6= iv2[2], and iv1[1] − iv2[1] = iv2[5] − iv1[5], then this
IV pair is also weak.

7.3.3 Improving the attack

The number of IVs required to generate identical keystreams can be reduced in
practice. The idea is to generate more IV pairs from a group of IVs. For the IV
pair with a two-byte difference iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] 6= iv2[i + 1], if iv[2]
takes all the 256 values, then we can obtain 255 × 255 = 215.99 IV pairs with
the required differences from 512 IVs. Thus with 512 chosen IVs, the probability
that there is one pair of identical keystreams becomes 215.99 × 2−23.2 ≈ 2−7.2.
With about 27.2 × 512 = 216.2 IVs, identical keystreams can be obtained.

Experiment 7.2. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the least significant bit
of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, while all
the other 119 IV bits remain unchanged for each key (but those 119 IV bits are
random from key to key). Then we obtain 255 × 255 = 215.99 IV pairs with the
required difference. Among these 216 × 215.99 ≈ 232 IV pairs, 447 IV pairs result
in identical keystreams.

78 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

The above experiment shows that with 216 × 512 = 225 selected IVs, 447 IVs
result in identical keystreams. It shows that two identical keystreams appear for
every 225

447 = 216.2 IVs.

For the IV pair with three-byte difference, a similar improvement can also be
applied.

Experiment 7.3. We use 216 random 128-bit keys in the improved attack. For
each key, we generate 512 128-bit IVs with the values of the most significant bit
of iv[4] and the eight bits of iv[5] choosing all the 512 possible values, and the
most significant bit of iv[8] is different from the most significant bit of iv[4], while
all the other 118 IV bits remain unchanged for each key (but those 118 IV bits
are randomly generated for each key). Then we obtain 255 × 255 = 215.99 IV
pairs with the required difference. Among these 216 × 215.99 ≈ 232 IV pairs, 570
IV pairs result in identical keystreams.

The above experiment shows that with 216 × 512 = 225 selected IVs, 570 IVs
result in identical keystreams. It means that two identical keystreams appear for
every 225

570 = 215.9 IVs.

Remarks. The attacks show that the Py and Pypy are practically insecure. In
the application, if the IVs are generated from a counter, or if the IV is short
(such as 3 or 4 bytes), then the special IVs (with the differences as illustrated
above) appear with high probability, and identical keystreams can be obtained
with high probability.

7.4 Key Recovery Attack on Py and Pypy

In this section, we develop a key recovery attack against Py and Pypy by ex-
ploiting the collision in the internal state. The key recovery attack consists of
two stages: recovering part of the array Y in the IV setup and recovering the key
information from Y in the key setup.

7.4.1 Recovering part of the array Y

We use the following IV differences to illustrate the attack (the other IV dif-
ferences can also be used). Let two IVs iv1 and iv2 differ only in two bytes,
iv1[i] ⊕ iv2[i] = 1, iv1[i + 1] 6= iv2[i + 1] (i ≥ 1), and the least significant bit of
iv1[i] be 1. This type of IV pair results in identical keystreams with probability
2−23.2.

7.4. KEY RECOVERY ATTACK ON PY AND PYPY 79

We first recover part of Y from Algorithm A in the IV setup (more information
of Y will be recovered from Algorithm B).

Note that the permutation P in Algorithm A is unknown. According to the
IV setup algorithm, there is 15 bits of secret information in P , i.e., there are
at most 215 possible permutations. During the recovery of Y , we assume that
P is known (the effect of the 15-bit secret information in P will be analyzed in
Sect. 7.4.2). For ivm, denote the s at the end of the jth step of Algorithm A
as sm

j , and denote the least and most significant bytes of sm
j as sm

j,0 and sm
j,3,

respectively. Denote the least and most significant bytes of Y (j) with Yj,0 and
Yj,3, respectively. Note that in Algorithm A, Y remains the same for all the IVs.
Denote ξ as a binary random variable with value 0 with probability 0.5. Denote
with B(x) a function that gives the least significant byte of x. If the keystreams
for iv1 and iv2 identical, then from the analysis given in Sect. 7.3.1, we know
that s1

i+1 = s2
i+1, i.e.,

s1
i + iv1[i + 1] = s2

i + iv2[i + 1] . (7.1)

From Algorithm A, we know

si =ROTL32(si−1 + iv[i] + Y (−3 + i), 8)
⊕ P (B(si−1 + iv[i] + Y (−3 + i)))

(7.2)

Thus we obtain

si,0 = P (B(si−1,0 + iv[i] + Y (−3 + i)))⊕B(si−1,3 + Y (−3 + i) + ξi) , (7.3)
(s1

i − s1
i,0)− (s2

i − s2
i,0) = (iv1[i]− iv2[i]) << 8 = 256 , (7.4)

where ξi is caused by the carry bits at the 24th least significant bit position when
iv[i] and Y (−3 + i) are introduced, and (7.4) holds with probability 1 − 2−15.
From (7.1), (7.3) and (7.4), we obtain

(P (B(s1
i−1,0 + iv1[i] + Y−3+i,0))⊕B(s1

i−1,3 + Y−3+i,3 + ξi,1)) + 256 + iv1[i + 1]

= (P (B(s2
i−1,0 + iv2[i] + Y−3+i,0))⊕B(s2

i−1,3 + Y−3+i,3 + ξi,2)) + iv2[i + 1] ,
(7.5)

where ξi,1 = ξi,2 with probability 1 − 2−15 since the iv[i] has a negligible effect
on the value of ξ1 and ξ2. In the following, we use ξi to represent ξi,1 and ξi,2.

Denote ivθ as a fixed IV with the first i bytes being identical to all the IVs
with differences only at iv[i] and iv[i + 1]. Thus sθ

i−1,0 = s1
i−1,0 = s2

i−1,0, and
sθ

i−1,3 = s1
i−1,3 = s2

i−1,3. (7.5) becomes

(P (B(sθ
i−1,0 + iv1[i] + Y−3+i,0))⊕B(sθ

i−1,3 + Y−3+i,3 + ξi)) + 256 + iv1[i + 1]

= (P (B(sθ
i−1,0 + iv2[i] + Y−3+i,0))⊕B(sθ

i−1,3 + Y−3+i,3 + ξi)) + iv2[i + 1] .
(7.6)

80 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

Using another IV pair different at iv[i] and iv[i + 1], and the first i bytes being
the same as ivθ, another equation (7.6) can be obtained if there is a collision
in their internal states. Suppose that several equations (7.6) are available. We
consider that the value of ξi is independent of iv[i] in the following attack since
ξi is affected by iv[i] with small probability 2−15. We can recover the values
of B(sθ

i−1,0 + Y−3+i,0) and B(sθ
i−1,3 + Y−3+i,3 + ξi). From the experiment, we

find that if there are two equations (7.6), on average the correct values can be
recovered together with 5.22 wrong values. If there are three, four, five, six,
seven equations (7.6), in average the correct values can be recovered together
with 1.29, 0.54, 0.25, 0.12, 0.06 wrong values, respectively. It shows that the
values of B(sθ

i−1,0 +Y−3+i,0) and B(sθ
i−1,3 +Y−3+i,3 +ξi) can be determined with

only a few equations (7.6).
After recovering several consecutive B(sθ

i−1,0+Y−3+i,0) and B(sθ
i−1,3+Y−3+i,3+

ξi) (i ≥ 1), we proceed to recover part of the information of the array Y . From
the values of B(sθ

i−1,0 +Y−3+i,0), B(sθ
i−1,3 +Y−3+i,3 +ξi) and (7.3), we determine

the value of sθ
i,0. From the values of B(sθ

i,0 + Y−3+i+1,0) and sθ
i,0, we know the

value of Y−3+i+1,0.

Generating the equations (7.6). The above attack can only be successful if
we can find several equations (7.6) with the same sθ

i−1,0 and sθ
i−1,3. In the follow-

ing, we illustrate how to obtain these equations for 2 ≤ i ≤ ivsizeb − 3. At the
beginning of the attack, we set a fixed ivθ. For all the IVs different at only iv[i]
and iv[i + 1], we require that their first i bytes are identical to that of ivθ. Let
the least significant bit of iv[i] and the 8 bits of iv[i+1] choose all the 512 values,
and the other 119 bits remain unchanged, then we obtain a 255 × 255 ≈ 216

desired IV pairs. We call these 512 IVs a desired IV group. According to Exper-
iment 7.2, this type of IV pair results in identical keystreams with probability
2−23.2, we thus obtain 2−23.2

216 = 2−7.2 identical keystream pairs from one desired
IV group. It means that we can obtain 2−7.2 equations (7.1) from one desired
IV group. We modify the values of the 7 most significant bits of iv1[i] and iv2[i],
and 3 bits of iv1[i + 2] and iv2[i + 2], then we obtain 27 × 23 = 210 desired IV
groups. From these desired IV groups, we obtain 210×2−7.2 = 7 equations (7.1).
There are 27× 23× 29 = 219 IVs being used in the attack. To find all the si,0 for
2 ≤ i ≤ ivsizeb− 3, we need (ivsizeb− 4)× 219 IVs in the attack.

We are able to recover sθ
i,0 for 2 ≤ i ≤ ivsizeb − 3, which implies that we can

recover the values of Y−3+i,0 for 3 ≤ i ≤ ivsizeb− 3. Then we proceed to recover
more information of Y by considering Algorithm B. Applying an attack similar
to the above attack and reusing the IVs, we can recover the values of Y256−i,0 for
3 ≤ i ≤ ivsizeb− 3.

Thus with (ivsizeb − 4) × 219 IVs, we are able to recover 2 × (ivsizeb − 6)

7.4. KEY RECOVERY ATTACK ON PY AND PYPY 81

bytes of Y : Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤ ivsizeb− 3.

7.4.2 Recovering the key

In the above analysis, we recovered the values of Y−3+i,0 and Y256−i,0 for 3 ≤ i ≤
ivsizeb−3 by exploiting the difference elimination in s. Next, we will recover the
15-bit secret information in P by exploiting the difference elimination in EIV .
Denote sθ

i in Algorithm A and B as sA,θ
i and sB,θ

i , respectively. Denote EIV1[i] at
the end of Algorithm A and B as EIV A

1 [i] and EIV B
1 [i], respectively. For two IVs

differing in only iv[i] and iv[i + 1] and generating identical keystreams, EIV A
1 [i],

EIV A
2 [i], EIV B

1 [i] and EIV B
2 [i] are computed as:

EIV A
1 [i] = P (B(sA,θ

i−1,0 + iv1[i] + Y−3+i,0)) (7.7)

EIV A
2 [i] = P (B(sA,θ

i−1,0 + iv2[i] + Y−3+i,0)) (7.8)

EIV B
1 [i] = EIV A

1 [i] + P (B(sB,θ
i−1,0 + iv1[i] + Y256−i,0)) (7.9)

EIV B
2 [i] = EIV A

2 [i] + P (B(sB,θ
i−1,0 + iv2[i] + Y256−i,0)) (7.10)

Since the two keystreams are identical, it is required that

EIV B
1 [i] = EIV B

2 [i] . (7.11)

Note that the values of B(sA,θ
i−1,0+Y−3+i,0) and B(sB,θ

i−1,0+Y256−i,0) are determined
when we recover part of Y from Algorithm A and Algorithm B, respectively.
Eight bits of information on P is revealed from (7.7),(7.8),(7.9),(7.10) and (7.11).
In Sect. 7.4.1, there are about 7 pairs of IVs resulting in identical keystreams for
each value of i. Thus P can be recovered completely.

We proceed to recover the key information. We consider the last part of the
key schedule:

for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

We call the above algorithm Algorithm C. From Algorithm C, we obtain the
following relation:

B(Y−3+i,0 + key[i + 1 mod keysizeb] + ξ′i)
⊕ P ′(B(Y−3+i+3,0 + key[i + 4 mod keysizeb])) = Y−3+i+4,0 ,

(7.12)

82 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

where P ′ indicates the ‘internal permutation’, ξ′i indicates the carry bit noise
introduced by key[i + 2] and key[i + 3]; it is computed as ξ′i ≈ (key[i + 2] +
Y−3+i+1,0) >> 8. The value of the bit ξ′i is 0 with probability about 0.5.

Once the values of Y−3+i,0 (3 ≤ i ≤ ivsizeb−3) are known, we find a relation
(7.12) linking key[i + 1 mod keysizeb] and key[i + 4 mod keysizeb] for 3 ≤ i ≤
ivsizeb − 7. Each relation leaks at least 7 bits of key[i + 1 mod keysizeb] and
key[i + 4 mod keysizeb]. The values of Y256−i,0 (3 ≤ i ≤ ivsizeb − 3) are also
known, thus we can find a relation (7.12) linking key[i + 1 mod keysizeb] and
key[i+4 mod keysizeb] for 262−ivsizeb ≤ i ≤ 252. Thus there are 2×(ivsizeb−
9) relations (7.12) linking the key bytes.

For the 16-byte key and 16-byte IV, 14 relations (7.12) can be obtained: 7
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 10, and another 7 relations
(7.12) linking key[i] and key[i + 3 mod 16] for 7 ≤ i ≤ 13. There are 13 key
bytes in these 14 relations (7.12). Note that the randomness of ξ′i does not
affect the overall attack (once we guess the values of key[4], key[5] and key[6],
then we obtain the other key bytes key[j] (7 ≤ j ≤ 15), key[0], and all the ξ′j
(3 ≤ j ≤ 9 and 247 ≤ j ≤ 249). Thus these 14 relations are sufficient to recover
the 13 key bytes. The effective key size is reduced to 3 bytes and these three
bytes can be found easily with brute force search.

For the 32-byte key and 32-byte IV, 46 relations (7.12) can be obtained: 23
relations linking key[i] and key[i + 3] for 4 ≤ i ≤ 26, and another 23 relations
(7.12) linking key[i] and key[i+3 mod 32] for 7 ≤ i ≤ 29. There are 29 key bytes
in these 46 relations. The effective key size is again reduced to 3 bytes.

7.5 The Security of Py6

Py6 is a variant of Py with reduced internal state size. The array P is a permu-
tation with only 64 elements, and the array Y has 68 entries. Py6 was proposed
to achieve fast initialization, but it is weaker than Py. Paul and Preneel has
developed distinguishing attack against Py6 with data complexity 268.6 [110].
In the following, we show that identical keystreams are genereated from Py6
with high probability. There is no detailed description of the key and IV setups
of Py6. Thus we use the source code of Py6 submitted to eSTREAM as refer-
ence. In our experiment, the following IV differences are used: iv1[i]−iv2[i] = 32,
iv1[i+1] 6= iv2[i+1], iv1[i+1] >> 6 = iv2[i+1] >> 6, and iv2[i+5]−iv1[i+5] = 8
(i ≥ 2). After testing 230 pairs with the original Py6 source code, we found that
identical keystreams appear with probability 2−11.45. This probability is much
larger than the probability 2−23 for Py and Pypy. It shows that Py6 is much
weaker than Py and Pypy.

7.6. CONCLUSION 83

7.6 Conclusion

In this chapter, we developed practical differential attacks against Py, Py6 and
Pypy: the identical keystreams appear with high probability, and the key infor-
mation can be recovered when the IV size is more than 9 bytes. To resist the
attacks given in this chapter, we suggest that the IV setup be performed in an
invertible way.

Several ciphers in the eSTREAM competition have been broken due to the
flaws in their IV setups: DECIM [130], WG [131], LEX [131], Py, Pypy and
VEST [77]. We should pay great attention to the design of the stream cipher IV
setup.

84 CHAPTER 7. DIFFERENTIAL ATTACKS ON PY, PY6 AND PYPY

Chapter 8

The Stream Cipher HC-256

Abstract. The stream cipher HC-256 is proposed in this chapter. It generates
keystream from a 256-bit secret key and a 256-bit initialization vector. HC-
256 consists of two secret tables, each one with 1024 32-bit elements. The two
tables are used as S-Box alternatively. At each step one element of a table is
updated and one 32-bit output is generated. The encryption speed of the C
implementation of HC-256 is about 1.9 bits per clock cycle (4.2 clock cycles per
byte) on the Intel Pentium 4 processor.

8.1 Introduction

Stream ciphers are used for shared-key encryption. The modern software efficient
stream ciphers can run 4-to-5 times faster than block ciphers. However, very few
efficient and secure stream ciphers have been published. Even the most widely
used stream cipher RC4 [114] has several weaknesses [60, 82, 95, 51, 50, 86, 94].
In the recent NESSIE project all the six stream cipher submissions cannot meet
the stringent security requirements [105]. In this chapter we aim to design a very
simple, secure, software-efficient and freely-available stream cipher.

HC-256 is the stream cipher we propose in this chapter. It consists of two
secret tables, each one with 1024 32-bit elements. At each step we update one
element of a table with non-linear feedback function. Every 2048 steps all the
elements of the two tables are updated. At each step, HC-256 generates one
32-bit output using the 32-bit-to-32-bit mapping similar to that being used in
Blowfish [116]. Then the linear masking is applied before the output is generated.

In the design of HC-256, we take into consideration the superscalar feature
of modern (and future) microprocessors. Without compromising the security,
we try to reduce the dependency between operations. The dependency between

85

86 CHAPTER 8. THE STREAM CIPHER HC-256

the steps is reduced so that three consecutive steps can be computed in parallel.
At each step, three parallel additions are used in the feedback function and
three additions are used to combine the four table lookup outputs instead of the
addition-xor-addition being used in Blowfish (a similar idea has been suggested
by Schneier and Whiting to use three xors to combine those four terms [117]).

With the high degree of parallelism, HC-256 runs very efficiently on the mod-
ern processor. We implemented HC-256 in C and tested its performance on the
Pentium 4 processor. The encryption speed of HC-256 reaches 1.93 bit/cycle.

This chapter is organized as follows. We introduce HC-256 in Sect. 8.2. The
security of HC-256 is analyzed in Sect. 8.3. Section 8.4 discusses the implemen-
tation and performance of HC-256. Section 8.5 concludes this chapter.

8.2 Stream Cipher HC-256

In this section, we describe the stream cipher HC-256. From a 256-bit key and a
256-bit initialization vector, it generates keystream with a length up to 2128 bits.

8.2.1 Operations, variables and functions

The following operations are used in HC-256:

+ : x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

¯ : x ¯ y means x− y mod 1024
⊕ : bit-wise exclusive OR
|| : concatenation
>> : right shift operator. x >> n means x being right shifted over n

bit positions.
<< : left shift operator. x << n means x being left shifted over n bit

positions.
>>> : right rotation operator. x >>> n means x being rotated to the

right over n bit positions.

Two tables P and Q are used in HC-256. The key and the initialization vector of
HC-256 are denoted as K and IV . We denote the keystream being generated as s.

8.2. STREAM CIPHER HC-256 87

P : a table with 1024 32-bit elements. Each element is denoted as P [i]
with 0 ≤ i ≤ 1023.

Q : a table with 1024 32-bit elements. Each element is denoted as
Q[i] with 0 ≤ i ≤ 1023.

K : the 256-bit key of HC-256.
IV : the 256-bit initialization vector of HC-256.
s : the keystream being generated from HC-256. The 32-bit output

of the ith step is denoted as si. Then s = s0||s1||s2|| · · ·
There are six functions being used in HC-256. f1(x) and f2(x) are the same as
the σ

{256}
0 (x) and σ

{256}
1 (x) being used in the message schedule of SHA-256 [100].

For g1(x) and h1(x), the table Q is used as S-box. For g2(x) and h2(x), the table
P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3)
f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10)

g1(x, y) = ((x >>> 10)⊕ (y >>> 23)) + Q[(x⊕ y) mod 1024]
g2(x, y) = ((x >>> 10)⊕ (y >>> 23)) + P [(x⊕ y) mod 1024]

h1(x) = Q[x0] + Q[256 + x1] + Q[512 + x2] + Q[768 + x3]
h2(x) = P [x0] + P [256 + x1] + P [512 + x2] + P [768 + x3] ,

where x = x3||x2||x1||x0, x is a 32-bit word, x0, x1, x2 and x3 are four bytes.
x3 and x0 denote the most significant byte and the least significant byte of x,
respectively.

8.2.2 Initialization process (key and IV setup)

The initialization process of HC-256 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 4096 steps without generating output.

1. Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7, where each Ki and
IVi denotes a 32-bit number. The key and IV are expanded into an array
Wi (0 ≤ i ≤ 2559) as:

Wi =





Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 2559

88 CHAPTER 8. THE STREAM CIPHER HC-256

2. Update the tables P and Q with the array W .

P [i] = Wi+512 for 0 ≤ i ≤ 1023
Q[i] = Wi+1536 for 0 ≤ i ≤ 1023

3. Run the cipher (the keystream generation algorithm in Sect. 8.2.3) 4096
steps without generating output.

The initialization process completes and the cipher is ready to generate keystream.

8.2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gen-
erated. An S-box is used to generate only 1024 outputs, then it is updated in
the next 1024 steps. The keystream generation process of HC-256 is given below
(“¯” denotes “−” modulo 1024, si denotes the output of the i-th step).

i = 0;
repeat until enough keystream bits are generated.
{

j = i mod 1024;
if (i mod 2048) < 1024
{

P [j] = P [j] + P [j ¯ 10] + g1(P [j ¯ 3], P [j ¯ 1023]);
si = h1(P [j ¯ 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + Q[j ¯ 10] + g2(Q[j ¯ 3], Q[j ¯ 1023]);
si = h2(Q[j ¯ 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

8.2.4 Encryption and decryption

The keystream is XORed with the message for encryption. The decryption is to
XOR the keystream with the ciphertext. The test vectors of HC-256 are given
in Appendix B.1.

8.3. SECURITY ANALYSIS OF HC-256 89

8.3 Security Analysis of HC-256

We start with a brief review of the attacks on stream ciphers. Many stream
ciphers are based on the linear feedback shift registers (LFSRs) and a number
of correlation attacks, such as [120, 121, 89, 57, 93, 33, 75], were developed to
analyze them. Later Golić [58] devised the linear cryptanalysis of stream ciphers.
That technique could be applied to a wide range of stream ciphers. Recently
Coppersmith, Halevi and Jutla [36] developed distinguishing attacks (the linear
attack and low diffusion attack) on stream ciphers with linear masking.

Fast correlation attacks cannot be applied to HC-256 because HC-256 uses
non-linear feedback functions to update the two tables P and Q. The output
function of HC-256 uses the 32-bit-to-32-bit mapping similar to that being used
in Blowfish. The analysis on Blowfish shows that it is extremely difficult to
apply linear cryptanalysis [88] to the large secret S-box. The large secret S-box
of HC-256 is updated during the keystream generation process and it is almost
impossible to develop linear relations linking the input and output bits of the
S-box. Vaudenay has found some differential weakness of a randomly generated
large S-box [124]. But it is very difficult to launch differential cryptanalysis [27]
against HC-256 since it is a synchronous stream cipher for which the keystream
generation is independent of the message.

In this section, we will analyze the security of the secret key, the randomness
of the keystream, and the security of the initialization process.

8.3.1 Period

The 65547-bit state of HC-256 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-256 is difficult to predict. The average
period of the keystream is estimated to be about 265546 (if we assume that the
invertible next-state function of HC-256 is random). The large number of states
also completely eliminates the threat of time-memory tradeoff attack on stream
ciphers [7, 59].

8.3.2 The security of the key

We begin with the study of a modified version of HC-256 (without linear mask-
ing). Our analysis shows that even for this weak version of HC-256, it is im-
possible to recover the secret key faster than exhaustive key search. The reason
is that the keystream is generated from a highly non-linear function (h1(x) or
h2(x)), so the keystream leaks a very small amount of information at each step.
Recovering P and Q requires partial information leaked from a lot of steps. Be-
cause the tables are updated in a highly non-linear way, it is difficult to retrieve
the informtion of P and Q from the leaked information.

90 CHAPTER 8. THE STREAM CIPHER HC-256

HC-256 with no linear masking.

For HC-256 with no linear masking, the output at the ith step is generated as si =
h1(P [i¯12]) or si = h2(Q[i¯12]). If two outputs generated from the same S-box
are equal, then very likely those two inputs to the S-box are equal. According
to the analysis on the randomness of the outputs of h1(x) and h2(x) given in
Sect. 8.3.3, s2048×α+i = s2048×α+j (0 ≤ i < j < 1024) with probability about
2−31. If s2048×α+i = s2048×α+j , then at the (2048 × α + j)-th step, P [i ¯ 12] =
P [j ¯12] with probability about 0.5 (31-bit information of the table P is leaked).
We note that for every 1024 steps in the range (2048× α, 2048× α + 1024), the
same S-box is used in h1(x). The probability that there are two equal outputs is(
1024

2

)× 2−31 ≈ 2−12. On average each output leaks 2−12×31
1024 ≈ 2−17 information

bits of the table P . To recover P , we need to analyze at least 1024×32
2−17 ≈ 232

outputs. Recovering P from those 232 outputs involves very complicated non-
linear equations and solving them is computationally infeasible. Recovering Q is
as difficult as recovering P . We note that the table Q is used as S-box to update
P , and vice versa. P and Q interact in such a complicated way and recovering
them from the keystream cannot be faster than exhaustive key search.

HC-256

The analysis above shows that the secret key of HC-256 with no linear masking is
secure. With the linear masking, the information leakage is greatly reduced and
it would be even more difficult to recover the secret key from the keystream. We
thus conclude that the key of HC-256 cannot be recovered faster than exhaustive
key search.

8.3.3 Randomness of the keystream

In this subsection, we investigate the randomness of the keystream of HC-256.
As large, secret and frequently updated S-boxes are used in the cipher, the most
efficient attack is to analyze the randomness of the overall 32-bit words. Under
this guideline, we developed some attacks against HC-256 with no linear masking.
Then we show that the linear masking eliminates those threats.

Keystream of HC-256 with no linear masking

The goal of the attacks on HC-256 with no linear masking is to investigate the
security weaknesses in the output and feedback functions. We developed two
attacks against HC-256 with no linear masking.

8.3. SECURITY ANALYSIS OF HC-256 91

Weakness of h1(x) and h2(x). For HC-256 with no linear masking, the output
is generated as si = h1(P [i ¯ 12]) or si = h2(Q[i ¯ 12]). Because there is
no difference between the analysis of h1(x) and h2(x), we use h(x) to refer to
h1(x) and h2(x) here. Assume that h(x) is a 32-bit-to-32-bit S-box H(x) with
randomly generated secret elements and the inputs to H are randomly generated.
Because the elements of the H(x) are randomly generated, the output of H(x)
is not uniformly distributed. If many outputs are generated from H(x), some
values in the range [0, 232) never appear and some appear with probability larger
than 2−32. Then it is straightforward to distinguish the outputs from random.
However each H(x) in HC-256 is used to generate only 1024 outputs, then it
gets updated. The direct computation of the distribution of the outputs of H(x)
from those 1024 outputs cannot be successful. Instead, we consider the collision
between the outputs of H(x). The following theorem gives the collision rate of
the outputs of H(x).

Theorem 8.3.1 Let H be an m-bit-to-n-bit S-box and all those n-bit elements
are randomly generated, where m ≥ n and n is a large integer. Let x1 and x2

be two m-bit random inputs to H. Then H(x1) = H(x2) with probability about
2−n + 2−m.

Proof. If x1 = x2, then H(x1) = H(x2). If x1 6= x2, then H(x1) = H(x2) with
probability 2−n. x1 = x2 with probability 2−m and x1 6= x2 with probability
1 − 2−m. The probability that H(x1) = H(x2) is 2−m + (1 − 2−m) × 2−n ≈
2−n + 2−m.

Attack 1. According to Theorem 8.3.1, for the 32-bit-to-32-bit S-box H, the colli-
sion rate of the outputs is 2−32 +2−32 = 2−31. With 235 pairs of (H(x1),H(x2)),
we can distinguish the output from random with success rate 0.761. (The success
rate can be improved to 0.996 with 236 pairs.) Note that only 1024 outputs are
generated from the same S-box H, so 226 outputs are needed to distinguish the
keystream of HC-256 with no linear masking.

Experiment 8.1. To compute the collision rate of the outputs of HC-256 (with
no linear masking), we generated 239 outputs (248 pairs). The collision rate is
2−31− 2−40.09. The experiment confirms that the collision rate of the outputs of
h(x) is very close to 2−31, and approximating h(x) with a randomly generated
S-box has negligible effect on the attack.

Remarks. The distinguishing attack above can be slightly improved if we con-
sider the differential attack on Blowfish. Vaudenay [124] has pointed out that the
collision in a randomly generated S-box in Blowfish can be applied to distinguish
the outputs of Blowfish with a reduced number of rounds (8 rounds). The basic

92 CHAPTER 8. THE STREAM CIPHER HC-256

idea of Vaudenay’s differential attack is that if Q[i] = Q[j] for 0 ≤ i, j < 256,
i 6= j, then for a0 ⊕ a′0 = i⊕ j, h1(a3||a2||a1||a0) = h1(a3||a2||a1||a′0) with prob-
ability 2−7, where each ai denotes an 8-bit number. We can detect the collision
in the S-box with success rate 0.5 since that S-box Q is used as inputs to h2(x)
to produce 1024 outputs. If Q[i] = Q[j] for 256α ≤ i, j < 256α + 256, 0 ≤ α < 4,
i 6= j, and x1 and x2 are two random inputs (note that we cannot introduce
or identify inputs with particular difference to h(x)), then the probability that
h1(x1) = h1(x2) becomes 2−31+2−32. However the chance that there is one useful

collision in the S-box is only (256
2)×4

232 = 2−15. The average collision rate becomes
2−15× (2−31 +2−32)+ (1− 2−15)× 2−31 = 2−31 +2−47. The increase in collision
rate is so small that the collision in the S-box has a negligible effect on this attack.

Weakness of the feedback function. The table P is updated with the non-
linear feedback function P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯
3], P [i ¯ 1023]). The following attack tries to distinguish the keystream by ex-
ploiting this relation.

Attack 2. Assume that the h(x) is a one-to-one mapping. Consider two groups of
outputs (si, si−3, si−10, si−2047, si−2048) and (sj , sj−3, sj−10, sj−2047, sj−2048).
If i 6= j and 1024×α+10 ≤ i, j < 1024×α+1023, they are equal with probability
about 2−128. The collision rate is 2−160 if the outputs are truly random. 2−128

is much larger than 2−160, so the keystream can be distinguished from random
with about 2128 pairs of such five-tuple groups of outputs. Note that the S-box
is updated every 1024 steps, hence 2119 outputs are needed in the attack.

The two attacks given above show that the HC-256 with no linear masking
does not generate secure keystream.

Keystream of HC-256

With the linear masking being applied, it is no longer possible to exploit those
two weaknesses separately and the attacks given above cannot be applied directly.
We need to remove the linear masking first. We recall that at the ith step, if
(i mod 2048) < 1024, the table P is updated as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 1023]) .

We know that si = h1(P [i¯12])⊕P [i mod 1024]. For 10 ≤ (i mod 2048) < 1023,
this feedback function can be written alternatively as

si ⊕ h1(zi) =(si−2048 ⊕ h′1(zi−2048)) + (si−10 ⊕ h1(zi−10))+
g1(si−3 ⊕ h1(zi−3), si−2047 ⊕ h′1(zi−2047)) ,

(8.1)

8.3. SECURITY ANALYSIS OF HC-256 93

where h1(x) and h′1(x) indicate two different functions since they are related to
different S-boxes; zj denotes the P [j ¯12] at the j-th step. The linear masking is
removed successfully in (8.1). However, it is very difficult to apply (8.1) directly
to distinguish the keystream. To simplify the analysis, we attack a weak version
of (8.1). We replace all the ‘+’ in the feedback function with ‘⊕’ and write (8.1)
as

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23)
=h1(zi)⊕ h′1(zi−2048))⊕ h1(zi−10))⊕ (h1(zi−3) >>> 10)⊕
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri] ,

(8.2)

where ri = (si−3 ⊕ h1(zi−3) ⊕ si−2047 ⊕ h′1(zi−2047)) mod 1024. Because of the
random nature of h1(x) and Q, the right hand side of (8.2) is not uniformly
distributed. But each S-box is used in only 1024 steps, these 1024 outputs are
not sufficient to compute the distribution of si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>>
10)⊕ (si−2047 >>> 23). Instead we need to study the collision rate. The effective
way is to eliminate the term h1(zi) before analyzing the collision rate.

Replace the i with i + 10. For 10 ≤ i mod 2048 < 1013, (8.2) can be written
as

si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23)
=h1(zi+10)⊕ h′1(zi−2038))⊕ h1(zi)⊕ (h1(zi+7) >>> 10)⊕
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] .

(8.3)

For the left-hand sides of (8.2) and (8.3) to be equal, i.e., for the following equa-
tion

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23) =
si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23)

(8.4)

to hold, we require that (after eliminating the term h1(zi))

h1(zi−10)⊕ h′1(zi−2048)⊕ (h1(zi−3) >>> 10)
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri]

=h1(zi+10)⊕ h′1(zi−2038)⊕ (h1(zi+7) >>> 10)
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] .

(8.5)

For 22 ≤ i mod 2048 < 1013, we note that zi−10 = zi ⊕ zi−2048 ⊕ (zi−3 >>>
10)⊕(zi−2047 >>> 23), and zi+10 = zi⊕zi−2038⊕(zi+7 >>> 10)⊕(zi−2037 >>> 23).
Approximate (8.5) as

H(x1) = H(x2) , (8.6)

94 CHAPTER 8. THE STREAM CIPHER HC-256

where H denotes a random secret 106-bit-to-32-bit S-box, x1 and x2 are two 106-
bit random inputs, x1 = zi−3||zi−2047||zi−2048||ri and x2 = zi+7||zi−2037||zi−2038

||ri+10. (The effect of zi is included in H.) According to Theorem 8.3.1, (8.6)
holds with probability 2−32 +2−106. So (8.4) holds with probability 2−32 +2−106.
We approximate the binomial distribution with the normal distribution. The
mean µ = Np and the standard deviation σ =

√
Np(1− p), where N is the

total number of equations (8.4), and p = 2−32 + 2−106. For random signal,
p′ = 2−32, the mean µ′ = Np′ and the standard deviation σ′ =

√
Np′(1− p′). If

|u− u′| > 2(σ + σ′), i.e. N > 2184, the output of the cipher can be distinguished
from random with success rate 0.9772.

After verifying the validity of 2184 equations (8.4), we can successfully dis-
tinguish the keystream from random. We note that the S-box is updated every
1024 steps, so only about 210 equations (8.4) can be obtained from 1024 steps in
the range 1024 × α ≤ i < 1024 × α + 1024. To distinguish the keystream from
random, 2184 outputs are needed in the attack.

The attack above can be improved by exploiting the relation ri = (si−3 ⊕
h1(zi−3) ⊕ si−2047 ⊕ h′1(zi−2047)) mod 1024. If (si−3 ⊕ si−2047) mod 1024 =
(si+7⊕si−2037) mod 1024, then (8.6) holds with probability 2−32 +2−96 and 2164

equations (8.4) are needed in the attack. Note that only about one equation (8.4)
can now be obtained from 1024 steps in the range 1024×α ≤ i < 1024×α+1024.
To distinguish the keystream from random, 2174 outputs are needed in the attack.

We note that the attack above can only be applied to HC-256 with all the ‘+’ in
the feedback function being replaced with ‘⊕’. To distinguish the keystream of
HC-256, more than 2174 outputs are needed. So we conclude that it is impossible
to distinguish a 2128-bit keystream of HC-256 from random.

8.3.4 Security of the initialization process (key/IV setup)

The initialization process of the HC-256 consists of two stages, as given in
Sect. 8.2.2. We expand the key and IV into P and Q. At this stage, every
bit of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Then we run
the cipher 4096 steps without generating output so that the P and Q become
more random. After the initialization process, we expect that any difference in
the keys/IVs would not result in a biased keystream.

8.4 Implementation and Performance of HC-256

The direct C implementation of the encryption algorithm given in Sect 8.2.3 runs
at about 0.6 bit/cycle on the Pentium 4 processor. The program size is very small

8.4. IMPLEMENTATION AND PERFORMANCE OF HC-256 95

but the speed is only about 1.5 times that of AES [43]. At each step in the direct
implementation, we need to compute (i mod 2048), i ¯ 3, i ¯ 10 and i ¯ 1023.
And at each step there is a branch decision based on the value of (i mod 2048).
These operations affect greatly the encryption speed. The optimization process
reduces the amount of these operations.

8.4.1 The optimized implementation of HC-256

This subsection describes the optimized C implementation of HC-256. In the
optimized code, loop unrolling is used and only one branch decision is made for
every 16 steps. The experiment shows that the branch decision in the optimized
code affects the encryption speed by less than one percent.

There are several fast implementations of the feedback functions of P and Q.
We use the implementation given in Appendix B in [128] because it achieves the
best consistency on different platforms. The details of that implementation are
given below. The feedback function of P is given as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 1023]) .

A register X containing 16 elements is introduced for P . If (i mod 2048) < 1024
and i mod 16 = 0, then at the begining of the ith step, X[j] = P [(i − 16 +
j) mod 1024] for j = 0, 1, · · · 15, i.e., X contains the values of P [i ¯ 16], P [i ¯
15], · · · , P [i¯1]. In the 16 steps starting from the ith step, P and X are updated
as

P [i] = P [i] + X[6] + g1(X[13], P [i + 1]);
X[0] = P [i];

P [i + 1] = P [i + 1] + X[7] + g1(X[14], P [i + 2]);
X[1] = P [i + 1];

P [i + 2] = P [i + 2] + X[8] + g1(X[15], P [i + 3]);
X[2] = P [i + 2];

P [i + 3] = P [i + 3] + X[9] + g1(X[0], P [i + 4]);
X[3] = P [i + 3];

· · ·
P [i + 14] = P [i + 14] + X[4] + g1(X[11], P [i + 15]);

X[14] = P [i + 14];
P [i + 15] = P [i + 15] + X[5] + g1(X[12], P [(i + 1) mod 1024]);

X[15] = P [i + 15];

Note that at the ith step, two elements of P [i ¯ 10] and P [i ¯ 3] can be obtained
directly from X. Also for the output function si = h1(P [i¯12])⊕P [i mod 1024],

96 CHAPTER 8. THE STREAM CIPHER HC-256

the P [i ¯ 12] can be obtained from X. In this implementation, there is no need
to compute i ¯ 3, i ¯ 10 and i ¯ 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

To reduce the memory requirement and the program size, the initialization
process implemented in Appendix B in [128] is not as straightforward as that
given in Sect. 8.2.2. To reduce the memory requirement, we do not implement
the array W in the program. Instead we implement the key and IV expansion
on P and Q directly. To reduce the program size, we implement the feedback
functions of those 4096 steps without involving X and Y .

8.4.2 Performance of HC-256

Encryption Speed. We use the C codes given in Appendix B and Appendix C
in [128] to measure the encryption speed. The processor used in the test is
Pentium 4 (2.4 GHz, 8 KB Level 1 data cache, 512 KB Level 2 cache, no hyper-
threading). The speed is measured by repeatedly encrypting the same 512-bit
buffer for 226 times (The buffer is defined as ‘static unsigned long DATA[16]’ in
Appendix C in [128]). The encryption speed is given in Table 8.1.

The C implementation of HC-256 is faster than the C implementations of
almost all the other stream ciphers. (However different designers may have made
different efforts to optimize their codes, so the speed comparison is not absolutely
accurate.) SEAL [112] is a software-efficient cipher and its C implementation runs
at the speed of about 1.6 bit/cycle on Pentium III processor. Scream [35] runs at
about the same speed as SEAL. The C implementation of SNOW2.0 [47] runs at
about 1.67 bit/cycle on Pentium 4 processor. TURING [113] runs at about 1.3
bit/cycle on the Pentium III mobile processor. The C implementation of MUGI
[125] runs at about 0.45 bit/cycle on the Pentium III processor. The encryption

Table 8.1: The speed of the C implementation of HC-256 on a Pentium 4

Operating
System

Compiler Optimization
option

Speed
(bit/cycle)

Windows XP
(SP1)

Intel C++ Compiler 7.1 -O3 1.93

Microsoft Visual C++ 6.0
Professional (SP5)

-Release 1.81

Red Hat Linux 9 Intel C++ Compiler 7.1 -O3 1.92
(Linux 2.4.20-8) gcc 3.2.2 -O3 1.83

8.5. CONCLUSION 97

speed of Rabbit [30] is about 2.16 bit/cycle on Pentium III processor, but it is
programmed in Assembly language inline in C.

Remarks. In HC-256, there is a dependency between the feedback and output
functions since the P [i mod 1024] (or Q[i mod 1024]) being updated at the ith
step is immediately used as linear masking. This dependency reduces the speed
of HC-256 by about 3%. We do not remove this dependency from the design
of HC-256 for security reason. Our analysis shows that each term being used
as linear masking should not have been used in an S-box in the previous steps,
otherwise the linear masking could be removed much easier. In our optimized
implementation, we do not deal with this dependency because its effect on the
encryption speed is very limited on the Pentium 4 processor.

Initialization Process. The key setup of HC-256 requires about 74,000 clock
cycles (measured by repeating the setup process 216 times on the Pentium 4 pro-
cessor with Intel C++ compiler 7.1). This amount of computation is more than
that required by most of the other stream ciphers (for example, the initialization
process of Scream takes 27,500 clock cycles). The reason is that two large S-boxes
are used in HC-256. To eliminate the threat of related key/IV attack, the tables
should be updated with the key and IV thoroughly and this process requires a
lot of computations. So it is undesirable to use HC-256 in the applications where
key (or IV) is updated frequently.

8.5 Conclusion

In this chapter, we proposed a software-efficient stream cipher HC-256. Our anal-
ysis shows that HC-256 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We thus invite
and encourage the readers to analyze the security of HC-256.

Finally we explicitly state that HC-256 is available royalty-free and HC-256
is not covered by any patent in the world.

98 CHAPTER 8. THE STREAM CIPHER HC-256

Chapter 9

The Stream Cipher HC-128

Abstract. HC-128 is a software-efficient stream cipher with 128-bit key and
128-bit initialization vector. HC-128 is the reduced version of HC-256. The
encryption speed of the C implementation of HC-128 is about 3.05 cycles/byte
on the Intel Pentium M processor.

9.1 Introduction

The stream cipher HC-128 is the simplified version of HC-256 [128] for 128-bit
security. HC-128 is a simple, secure, software-efficient cipher and it is freely-
available.

HC-128 consists of two secret tables, each one with 512 32-bit elements. At
each step we update one element of a table with a nonlinear feedback function.
All the elements of the two tables get updated every 1024 steps. At each step,
one 32-bit output is generated from the non-linear output filtering function.

HC-128 is suitable for the modern (and future) superscalar microprocessors.
The dependency between operations in HC-128 is very small: three consecutive
steps can be computed in parallel; at each step, the feedback and output functions
can be computed in parallel. The high degree of parallelism allows HC-128 to
run efficiently on modern processors. We implemented HC-128 in C, and the
encryption speed of HC-128 reaches 3.05 cycles/byte on the Intel Pentium M
processor.

HC-128 is very secure. Our analysis shows that recovering the key of HC-
128 is as difficult as exhaustive key search. To distinguish the keystream from
random, we expect that more than 264 keystream bits are required (our current
analysis shows that about 2151 outputs are needed in the distinguishing attack).

This chapter is organized as follows. We introduce HC-128 in Sect. 9.2. The

99

100 CHAPTER 9. THE STREAM CIPHER HC-128

security analysis of HC-128 is given in Sect. 9.3 and Sect. 9.4. Section 9.5 dis-
cusses the implementation and performance of HC-128. Section 9.6 concludes
this chapter.

9.2 Cipher Specifications

In this section, we describe the stream cipher HC-128. From a 128-bit key and a
128-bit initialization vector, it generates a keystream with length up to 264 bits.

9.2.1 Operations, variables and functions

Most of the operations used in HC-128 are identical to that used in HC-256
(Chapter 8), except that ¯ is redefined as

¯ : x ¯ y means x− y mod 512

Two tables P and Q are used in HC-128. The key and the initialization vector
of HC-128 are denoted as K and IV . We denote the keystream being generated
as s, the same as that given in Chapter 8.

P : a table with 512 32-bit elements. Each element is denoted as P [i]
with 0 ≤ i ≤ 511.

Q : a table with 512 32-bit elements. Each element is denoted as Q[i]
with 0 ≤ i ≤ 511.

K : the 128-bit key of HC-128.
IV : the 128-bit initialization vector of HC-128.

There are six functions being used in HC-128. f1(x) and f2(x) are the same as
the σ

{256}
0 (x) and σ

{256}
1 (x) being used in the message schedule of SHA-256 [100].

For h1(x), the table Q is used as S-box. For h2(x), the table P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3)
f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10)

g1(x, y, z) = ((x >>> 10)⊕ (z >>> 23)) + (y >>> 8)
g2(x, y, z) = ((x <<< 10)⊕ (z <<< 23)) + (y <<< 8)

h1(x) = Q[x0] + Q[256 + x2]
h2(x) = P [x0] + P [256 + x2]

where x = x3 ‖ x2 ‖ x1 ‖ x0, x is a 32-bit word, x0, x1, x2 and x3 are four bytes.
x3 and x0 denote the most significant byte and the least significant byte of x,
respectively.

9.2. CIPHER SPECIFICATIONS 101

9.2.2 Initialization process (key and IV setup)

The initialization process of HC-128 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 1024 steps (with the outputs being used to update P and Q).

1. Let K = K0 ‖ K1 ‖ K2 ‖ K3 and IV = IV0 ‖ IV1 ‖ IV2 ‖ IV3, where each
Ki and IVi denotes a 32-bit number. Let Ki+4 = Ki, and IVi+4 = IVi for
0 ≤ i < 4. The key and IV are expanded into an array Wi (0 ≤ i ≤ 1279)
as:

Wi =





Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 1279

2. Update the tables P and Q with the array W .

P [i] = Wi+256 for 0 ≤ i ≤ 511
Q[i] = Wi+768 for 0 ≤ i ≤ 511

3. Run the cipher 1024 steps and use the outputs to replace the table elements
as follows (“¯” denotes “−” modulo 512).

for i = 0 to 511, do
P [i] = (P [i] + g1(P [i ¯ 3], P [i ¯ 10], P [i ¯ 511]))⊕ h1(P [i ¯ 12]);

for i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i ¯ 3], Q[i ¯ 10], Q[i ¯ 511]))⊕ h2(Q[i ¯ 12]);

The initialization process completes and the cipher is ready to generate keystream.

9.2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gener-
ated. Each S-box is used to generate only 512 outputs, then it is updated in the
next 512 steps. The keystream generation algorithm of HC-128 is given below
(“¯” denotes “−” modulo 512, si denotes the output of the i-th step).

102 CHAPTER 9. THE STREAM CIPHER HC-128

i = 0;
repeat until enough keystream bits are generated.
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j ¯ 3], P [j ¯ 10], P [j ¯ 511]);
si = h1(P [j ¯ 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j ¯ 3], Q[j ¯ 10], Q[j ¯ 511]);
si = h2(Q[j ¯ 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

9.2.4 Encryption and decryption

The keystream is XORed with the message for encryption. The decryption is to
XOR the keystream with the ciphertext. The test vectors of HC-128 are given
in Appendix B.2.

9.3 Security Analysis of HC-128

The security analysis of HC-128 is similar to that of HC-256. The output and
feedback functions of HC-128 are non-linear, so it is impossible to apply the fast
correlation attacks [89, 57, 93, 33, 75] and algebraic attacks [3, 38, 40, 39] to
recover the secret key of HC-128. The large secret S-box of HC-128 is updated
during the keystream generation process, so it is very difficult to develop linear
relations linking the input and output bits of the S-box.

In this section, we will analyze the period of HC-128, the security of the
secret key and the security of the initialization process. The randomness of the
keystream will be analyzed separately in Sect. 9.4.

9.3.1 Period

The 32778-bit state of HC-128 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-128 is difficult to predict. The average

9.4. RANDOMNESS OF THE KEYSTREAM 103

period of the keystream is estimated to be much more than 2256. The large num-
ber of states also eliminates the threat of the time-memory-data tradeoff attack
on stream ciphers [21] (also [7, 59]).

9.3.2 Security of the secret key

We note that the output function and the feedback function of HC-128 are non-
linear. The non-linear output function leaks a small amount of partial informa-
tion at each step. The non-linear feedback function ensures that the secret key
can not be recovered from those leaked partial information.

9.3.3 Security of the initialization process (key/IV setup)

The initialization process of the HC-128 consists of two stages, as given in
Sect. 9.2.2. We expand the key and IV into P and Q. At this stage, every
bit of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Note that
the constants in the expansion function at this stage play a significant role in
reducing the effect of related keys/IVs. After the expansion, we run the cipher
1024 steps and use the outputs to update the P and Q. After the initialization
process, we expect that any difference in the keys/IVs would not result in biased
keystream.

9.4 Randomness of the keystream

Our initial analysis shows that the distinguishing attack on HC-128 requires more
than 2128 outputs. The analysis is given below.

We recall that at the ith step, if (i mod 1024) < 512, the table P is updated
as

P [i mod 512] = P [i mod 512] + g1(P [i ¯ 3], P [i ¯ 10], P [i ¯ 511]) .

We know that si = h1(P [i ¯ 12])⊕ P [i mod 512]. For 10 ≤ (i mod 1024) < 511,
this feedback function can be written alternatively as

si ⊕ h1(zi) =(si−1024 ⊕ h′1(zi−1024))+
g1(si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)) ,

(9.1)

where h1(x) and h′1(x) indicate two different functions since they are related to
different S-boxes; zj denotes the P [j ¯ 12] at the j-th step.

We note that there are two ‘+’ operations in the feedback function. We will
first investigate the least significant bits (after rotations) in the feedback function

104 CHAPTER 9. THE STREAM CIPHER HC-128

since they are not affected by the ‘+’ operations. Denote the i-th least significant
bit of a as ai. From (9.1), we obtain that for 10 ≤ (i mod 1024) < 511,

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023

=(h1(zi))0 ⊕ (h′1(zi−1024))0 ⊕ (h1(zi−3))10⊕
⊕ (h1(zi−10))8 ⊕ (h′1(zi−1023))23 .

(9.2)

Similarly, for 1024× α + 10 ≤ i, j < 1024× α + 511 and j 6= i, we obtain

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023

=(h1(zj))0 ⊕ (h′1(zj−1024))0 ⊕ (h1(zj−3))10⊕
⊕ (h1(zj−10))8 ⊕ (h′1(zj−1023))23 .

(9.3)

For the left sides of (9.2) and (9.3) to be equal, i.e., for the following equation

s0
i ⊕ s0

i−1024 ⊕ s10
i−3 ⊕ s8

i−10 ⊕ s23
i−1023 =

s0
j ⊕ s0

j−1024 ⊕ s10
j−3 ⊕ s8

j−10 ⊕ s23
j−1023

(9.4)

to hold, we require that

(h1(zi))0 ⊕ (h′1(zi−1024))0 ⊕ (h1(zi−3))10

⊕ (h1(zi−10))8 ⊕ (h′1(zi−1023))23

= (h1(zj))0 ⊕ (h′1(zj−1024))0 ⊕ (h1(zj−3))10

⊕ (h1(zj−10))8 ⊕ (h′1(zj−1023))23 .

(9.5)

Approximate (9.5) as

H(x1) = H(x2) , (9.6)

where H denotes a random secret 80-bit-to-1-bit S-box, x1 and x2 are two 80-bit
random inputs, x1 = zi ‖ zi−3 ‖ zi−10 ‖ zi−1023 ‖ zi−1024 and x2 = zj ‖ zj−3 ‖
zj−10 ‖ zj−1023 ‖ zj−1024, where z indicates the concatenation of the least signifi-
cant byte and the second most significant byte of z. According to Theorem 8.3.1,
(9.6) holds with probability 1

2 + 2−81. So (9.4) holds with probability 1
2 + 2−81.

After testing the validity of 2164 equations (9.4), the output of the cipher can
be distinguished from random with success rate 0.9772 (with false negative rate
and false positive rate 0.0228). Note that only about 217 equations (9.4) can
be obtained from every 512 outputs, so this distinguishing attack requires about
2156 outputs.

We note that the attack above only deals with the least significant bit in (9.1).
It may be possible to consider the rest of the 31 bits bit-by-bit. But due to the

9.5. IMPLEMENTATION AND PERFORMANCE OF HC-128 105

effect of the two ‘+’ operations in the feedback function, the attack exploiting
those 31 bits is not as effective as that exploiting the least significant bit. Thus
more than 2151 outputs are needed in this distinguishing attack.

It may be possible that the distinguishing attack against HC-128 can be
improved in the future. However, it is very unlikely that our security goal can be
breached since the security margin is extremely large. We thus conjecture that
it is computationally infeasible to distinguish 264 bits keystream of HC-128 from
random.

9.5 Implementation and Performance of HC-128

The optimized implementation of HC-128 is similar to that of HC-256. On the
Pentium M processor, the speed of HC-128 reaches 3.05 cycles/bye, while the
speed of HC-256 is about 4.4 cycles/byte.

9.5.1 The optimized implementation of HC-128

In the optimized code, loop unrolling is used and only one branch decision is
made for every 16 steps. The details of the implementation are given below. The
feedback function of P is given as

P [i mod 512] = P [i mod 512] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 511]) .

A register X containing 16 elements is introduced for P . If (i mod 1024) < 512
and i mod 16 = 0, then at the begining of the ith step, X[j] = P [(i − 16 +
j) mod 512] for j = 0, 1, · · · 15, i.e. the X contains the values of P [i ¯ 16], P [i ¯
15], · · · , P [i ¯ 1]. In the 16 steps starting from the ith step, the P and X are
updated as

P [i] = P [i] + g1(X[13], X[6], P [i + 1]);
X[0] = P [i];

P [i + 1] = P [i + 1] + g1(X[14], X[7], P [i + 2]);
X[1] = P [i + 1];

P [i + 2] = P [i + 2] + g1(X[15], X[8], P [i + 3]);
X[2] = P [i + 2];

P [i + 3] = P [i + 3] + g1(X[0], X[9], P [i + 4]);
X[3] = P [i + 3];

· · ·
P [i + 14] = P [i + 14] + g1(X[11], X[4], P [i + 15]);

X[14] = P [i + 14];

106 CHAPTER 9. THE STREAM CIPHER HC-128

P [i + 15] = P [i + 15] + g1(X[12], X[5], P [(i + 1) mod 512]);
X[15] = P [i + 15];

Note that at the ith step, two elements of P [i ¯ 10] and P [i ¯ 3] can be obtained
directly from X. Also for the output function si = h1(P [i¯12])⊕P [i mod 1024],
the P [i ¯ 12] can be obtained from X. In this implementation, there is no need
to compute i ¯ 3, i ¯ 10 and i ¯ 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

9.5.2 The performance of HC-128

Encryption Speed. We use the C codes submitted to the eStream to mea-
sure the encryption speed. The processor used in the measurement is the Intel
Pentium M (1.6 GHz, 32 KB Level 1 cache, 2 MB Level 2 cache).

Using the eStream performance testing framework, the highest encryption
speed of HC-128 is 3.05 cycles/byte with the compiler gcc (there are three opti-
mization options leading to this encryption speed: k8 O3-ual-ofp, prescott O2-ofp
and athon O3-ofp). Using the Intel C++ Compiler 9.1 in Windows XP (SP2),
the speed is 3.3 cycles/byte. Using the Microsoft Visual C++ 6.0 in Windows
XP (SP2), the speed is 3.6 cycles/byte.

Initialization Process. The key setup of HC-128 requires about 27,300 clock
cycles. There are two large S-boxes in HC-128. In order to eliminate the threat
of a related key/IV attack, the tables should be updated with the key and IV
thoroughly and this process requires a lot of computations. It is thus undesirable
to use HC-128 in the applications where key (or IV) is updated very frequently.

9.6 Conclusion

In this chapter, a software-efficient stream cipher HC-128 is described. Our anal-
ysis shows that HC-128 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We encourage
the readers to analyze the security of HC-128. HC-128 is not covered by any
patent and it is freely available.

Chapter 10

Conclusions

In this thesis, we have reviewed the design and analysis of stream ciphers, given
our own view on various techniques, then presented attacks on seven eSTREAM
candidates and the design of HC-256 and HC-128.

Our attacks recover the key of seven eSTREAM stream ciphers much faster
than brute force attacks. We studied the properties of additions and successfully
break Phelix and ABC v2. We applied differential cryptanalysis, linear crypt-
analysis and side channel attack to break the resynchronization part of DECIM,
LEX, Py, Pypy and WG. Most of the attacks exploit the insufficient/improper
diffusion and confusion in those ciphers. The attacks show that good diffusion
and confusion are very important for stream ciphers. The use of confusion and
diffusion in block ciphers is almost perfectly understood after differential and
linear cryptanalysis were developed. However, very little systematic research has
been published on the use of confusion and diffusion in stream ciphers in the
literature. In general, it would be much harder to study the use of confusion and
diffusion in stream ciphers than that in block ciphers due to the output function
in stream ciphers. We believe that this topic is interesting and important. The
use of confusion and diffusion in resynchronization in stream ciphers is similar
to the use of confusion and diffusion in block ciphers, but there is a subtle dif-
ference. The research on this problem is important for the design of secure and
efficient resynchronization schemes, and important for the design of secure and
efficient self-synchronizing stream ciphers. The use of confusion and diffusion in
keystream generation is expected to be even harder to analyze. The research on
this problem is closely related to the design of efficient and secure stream ciphers.

We proposed HC-256 and HC-128 that are based on large, secret and changing
lookup tables. Both ciphers are very fast and strong. We expect that using
large, secret and changing lookup tables in stream cipher design is an efficient

107

108 CHAPTER 10. CONCLUSIONS

approach to resist all the known and unknown attacks. Similarly using large and
secret lookup tables in block cipher design is an efficient approach to resist all the
attacks on block ciphers, such as the Blowfish design. Such design approaches
can significantly reduce the cipher design and evaluation cost. We are in the era
that an extremely strong symmetric key cipher can be designed easily.

For ciphers with large lookup tables, the cache-timing attack is a potential
side-channel threat to their software implementations. However, a stream cipher
with nonlinear changing secret state is quite strong against side-channel attacks
because it is extremely difficult to combine the side-channel information to attack
the changing state. To apply cache-timing attack to the keystream generation of
a stream cipher with changing secret state, the adversary must be able to enforce
the same IV to be used for many times for the same key, and must be able to
change the content of the cache in order to detect the cache miss (or cache hit)
of the stream cipher process running in the CPU. Thus it is highly impractical
to perform a cache-timing attack against the keystream generation of a stream
cipher with changing secret state, such as HC-256 and HC-128. Furthermore, the
resynchronization of HC-256 and HC-128 is immune to the cache-timing attack
since lookup tables are not used during the first stage of their key/IV setups.

Using large, secret and changing lookup tables is not suitable for a constrained
hardware environment. The challenge is to design extremely secure and hardware
efficient stream ciphers. Since the number of operations is small in the hardware
efficient ciphers, it requires a lot of analysis to ensure that the cipher is secure.
We expect that a substantial amount of research on this challenge is still needed.

No stream cipher with authentication was selected in the eSTREAM project.
A stream cipher with authentication is useful for hardware constrained environ-
ment. The reuse of IV in such a stream cipher leaks small amount of information
of the message, and it would give the false impression that the IV could be reused.
But the reuse of IV is dangerous to the key, as demonstrated in our attack against
Phelix. We would recommend using a stream cipher together with a MAC, and
using different keys in the stream cipher and the MAC so that their security would
not affect each another. It is important to design extremely efficient MACs.

Bibliography

[1] F. Armknecht. “Improving Fast Algebraic Attacks.” In Fast Software Encryption
– FSE 2004, LNCS 3017, pp. 65-82, Springer-Verlag, 2004.

[2] F. Armknecht, C. Carlet, P. Gaborit, S. Kunzli, W. Meier and O. Ruatta. “Effi-
cient Computation of Algebraic Immunity for Algebraic and Fast Algebraic At-
tacks.” In Advances in Cryptology – Eurocrypt 2006, LNCS 4004, pp. 147-164,
Springer-Verlag, 2006.

[3] F. Armknecht and M. Krause. “Algebraic Attacks on Combiners with Memory.” In
Advances in Cryptology – Crypto 2003, LNCS 2729, pp. 162-75, Springer-Verlag,
2003.

[4] V. Anashin, A. Bogdanov and I. Kizhvatov. “ABC: A New Fast Flexible
Stream Cipher.” Available at http://www.ecrypt.eu.org/stream/ciphers/abc/
abc.pdf.

[5] V. Anashin, A. Bogdanov and I. Kizhvatov. “Security and Implementation Prop-
erties of ABC v2.” In SASC 2006 - Stream Ciphers Revisited, pp. 278-292, 2006.
Available at http://www.ecrypt.eu.org/stream/papersdir/2006/026.pdf.

[6] F. Armknecht, J. Lano and B. Preneel. “Extending the Resynchronization At-
tack.” In Selected Areas in Cryptography – SAC 2004, LNCS 3357, Springer-
Verlag, pp. 19-38, 2004.

[7] S. Babbage. “A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers.” European Convention on Security and Detection, IEE Conference pub-
lication, No. 408, May 1995.

[8] S. Babbage and M. Dodd. “The MICKEY Stream Ciphers.” In New Stream Cipher
Designs – The eSTREAM Finalists, LNCS 4986, pp. 191-209, Springer-Verlag,
2008. Also available at http://www.ecrypt.eu.org/stream/mickeyp3.html

[9] E. Barkan, E. Biham and N. Keller. “Instant Ciphertext-Only Cryptanalysis of
GSM Encrypted Communication.” In Advances in Cryptology – CRYPTO 2003,
LNCS 2729, pp. 600-616, Springer-Verlag, 2003.

[10] M. Bellare, R. Canetti and H. Krawczyk. “Keying Hash Functions for Message
Authentication.” In Advances in Cryptology – Crypto 96, LNCS 1109, pp. 1-15,
Springer-Verlag, 1996. See also RFC 2104, “HMAC: Keyed-Hashing for Message
Authentication”, February 1997.

109

110 BIBLIOGRAPHY

[11] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L.
Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin and H.
Sibert. “Decim - A New Stream Cipher for Hardware Applications.” ECRYPT
Stream Cipher Project Report 2005/004. Available at http://www.ecrypt.eu.

org/stream/

[12] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L.
Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin and H.
Sibert. “DECIM v2.” ECRYPT Stream Cipher Project Report 2006/004. Avail-
able at http://www.ecrypt.eu.org/stream/

[13] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L.
Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin and H.
Sibert. “Sosemanuk, a Fast Software-Oriented Stream Cipher.” In New Stream Ci-
pher Designs – The eSTREAM Finalists, LNCS 4986, pp. 98-118, Springer-Verlag,
2008. Also available at http://www.ecrypt.eu.org/stream/sosemanukp3.html

[14] C. Berbain and H. Gilbert. “Cryptanalysis of ABC.” Available at http://www.

ecrypt.eu.org/stream/papersdir/048.pdf

[15] C. Berbain, H. Gilbert and A. Maximov. “Cryptanalysis of Grain.” In Fast Soft-
ware Encryption – FSE 2006, LNCS 4047, pp. 15-29, Springer-Verlag, 2006.

[16] C. Berbain, H. Gilbert and J. Patarin. “QUAD: a Practical Stream Cipher with
Provable Security.” In Advances in Cryptology – Eurocrypt 2006, LNCS 4004,
pp. 109-128, 2006.

[17] T. Berger, F. Arnault and C. Lauradoux. “F-FCSR Stream Ciphers.” In New
Stream Cipher Designs – The eSTREAM Finalists, LNCS 4986, pp. 170-178,
Springer-Verlag, 2008. Also available at http://www.ecrypt.eu.org/stream/

ffcsrp3.html

[18] E. R. Berlekamp. Chapter 7 in Algorithmic Coding Theory. New York: McGraw-
Hill, 1968.

[19] D. J. Bernstein. “The Salsa 20 Family of Stream Ciphers.” In New Stream Cipher
Designs – The eSTREAM Finalists, LNCS 4986, pp. 84-97, Springer-Verlag, 2008.
Also available at http://www. ecrypt.eu.org/stream/salsa20p3.html

[20] A. Biryukov. “A New 128-bit Key Stream Cipher LEX.” In ECRYPT Stream Ci-
pher Project Report 2005/013. Available at http://www.ecrypt.eu.org/stream/

[21] A. Biryukov and A. Shamir. “Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers.” In Advances in Cryptology – Asiacrypt 2000, LNCS 1976, pp. 1-
13, Springer-Verlag, 2000.

[22] A. Biryukov, A. Shamir and D. Wagner. “Real Time Cryptanalysis of A5/1 on a
PC.” In Fast Software Encryption – FSE 2000, LNCS 1978, pp. 1-18, Springer-
Verlag, 2000.

[23] A. Biryukov and D. Wagner. “Slide Attacks.” In Fast Software Encryption –
FSE’99, LNCS 1636, pp. 245-259, Springer-Verlag, 1999.

BIBLIOGRAPHY 111

[24] T. Beth and F.C. Piper. “The Stop-And-Go-Generator.” In Advances in Cryptol-
ogy – Eurocrypt’84, LNCS 209, pp. 88-92, Springer-Verlag, 1984.

[25] E. Biham and J. Seberry. “Py (Roo): A Fast and Secure Stream Cipher Using
Rolling Arrays.” The ECRYPT eSTREAM project Phase 2 focus ciphers. Avail-
able at http://www.ecrypt.eu.org/stream/ciphers/py/py.ps .

[26] E. Biham and J. Seberry. “Pypy (Roopy): Another Version of Py.” The ECRYPT
eSTREAM project Phase 2 focus ciphers. Available at http://www.ecrypt.eu.org/
stream/p2ciphers/py/pypy p2.ps

[27] E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like Cryptosystems.”
In Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag,
1991.

[28] S. R. Blackburn. “Fast Rational Interpolation, Reed-Solomon Decoding and the
Linear Complexity Profiles of Sequences.” IEEE Transactions on Information
Theory, vol. 43, no. 2, pp.537-548, March 1997.

[29] R. E. Blahut. Theory and Practice of Error Control Codes, Addison-Wesley, 1983.

[30] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen and O. Scavenius.
“Rabbit: A New High-Performance Stream Cipher.” In Fast Software Encryption
– FSE 2003, LNCS 2887, pp. 307-329, Springer-Verlag, 2003.

[31] Y. Borissov, S. Nikova, B. Preneel and J. Vandewalle. “On a Resynchronization
Weakness in a Class of Combiners with Memory.” In Security in Communication
Networks – SCN 2002, LNCS 2576, pp. 164-173, Springer-Verlag, 2002.

[32] A. Canteaut and M. Trabbia. “Improved Fast Correlation Attacks Using Parity-
Check Equations of Weight 4 and 5.” In Advances in Cryptology – EUROCRYPT
2000, LNCS 1807, pp. 573-588, Springer-Verlag, 2000.

[33] V.V. Chepyzhov, T. Johansson and B. Smeets. “A Simple Algorithm for Fast
Correlation Attacks on Stream Ciphers.” In Fast Software Encryption – FSE
2000, LNCS 1978, pp. 181-195, Springer-Verlag, 2000.

[34] D. Coppersmith, H. Krawczyk and Y. Mansour. “The Shrinking Generator.” In
Advances in Cryptology – CRYPTO’93, LNCS 773, pp. 22-39. Springer-Verlag,
1993.

[35] D. Coppersmith, S. Halevi and C. Jutla. “Scream: A Software-Efficient Stream
Cipher.” In Fast Software Encryption – FSE 2002, LNCS 2365, pp. 195-209,
Springer-Verlag, 2002.

[36] D. Coppersmith, S. Halevi and C. Jutla. “Cryptanalysis of Stream Ciphers with
Linear Masking.” In Advances in Cryptology – Crypto 2002, LNCS 2442, pp.
515-532, Springer-Verlag, 2002.

[37] P. Crowley. “Improved Cryptanalysis of Py.” Available at http://www.ecrypt.
eu.org/stream/papersdir/2006/010.pdf

[38] N. Courtois. “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt.” In Information Security and Cryptology – ICISC 2002, LNCS 2587,
pp. 182-199, Springer-Verlag, 2002.

112 BIBLIOGRAPHY

[39] N. T. Courtois. “Fast Algebraic Attacks on Stream Ciphers with Linear Feed-
back.” In Advances in Cryptology – CRYPTO 2003, LNCS 2729, pp. 176-194,
Springe-Verlag, 2003.

[40] N. T. Courtois and W. Meier. “Algebraic Attacks on Stream Ciphers with Lin-
ear Feedback.” In Advances in Cryptology – EUROCRYPT 2003, LNCS 2656,
pp. 345-359, Springer-Verlag, 2003.

[41] J. Daemen, R. Govaerts and J. Vandewalle. “Resynchronization Weakness in Syn-
chronous Stream Ciphers.” In Advances in Cryptology – EUROCRYPT’93, LNCS
765, pp. 159-167, Springer-Verlag, 1994.

[42] J. Daemen, L. Knudsen and V. Rijmen. “The Block Cipher Square.” In Fast
Software Encryption – FSE’97, LNCS 1267, pp. 149165, 1997.

[43] J. Daeman and V. Rijmen. “AES Proposal: Rijndael.” Available on-line from
NIST at http://csrc.nist.gov/encryption/aes/rijndael/

[44] C. De Cannière and B. Preneel. “Trivium.” In New Stream Cipher Designs –
The eSTREAM Finalists, LNCS 4986, pp. 244-266, Springer-Verlag, 2008. Also
available at http://www.ecrypt.eu.org/stream/triviump3.html

[45] ECRYPT Stream Cipher Project, at http://www.ecrypt.eu.org/stream/

[46] ECRYPT Stream Cipher Project, Call for Stream Cipher Primitives,
http://www.ecrypt.eu.org/stream/call/

[47] P. Ekdahl and T. Johansson. “A New Version of the Stream Cipher SNOW.” In
Selected Areas in Cryptology – SAC 2002, LNCS 2595, pp. 47-61, Springer-Verlag,
2002.

[48] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks and T. Kohno. “Helix,
Fast Encryption and Authentication in a Single Cryptographic Primitive.” In Fast
Software Encryption – FSE 2003, LNCS 2887, pp. 330-346, Springer-Verlag, 2003.

[49] P. Flajolet and A.M. Odlyzko. “Random Mapping Statistics.” In Advances in
Cryptology – Eurocrypt’89, LNCS 434, pp. 329-354, Springer-Verlag, 1990.

[50] S. Fluhrer, I. Mantin and A. Shamir. “Weaknesses in the Key Scheduling Al-
gorithm of RC4.” In Selected Areas in Cryptography – SAC 2001, LNCS 2259,
pp. 1-24, Springer-Verlag, 2001.

[51] S. Fluhrer and D. McGrew. “Statistical Analysis of the Alleged RC4 Keystream
Generator.” In Fast Software Encryption – FSE 2000, LNCS 1978, pp. 19-30,
2001.

[52] W. Freeman, G. Sullivan and F. Weierud. “Purple Revealed: Simulation and
Computer-Aided Cryptanalysis of Angooki Taipu B.” Cryptologia 27(1), January
2003. pp. 143.

[53] K. Gaj and A. Orlowski. “Facts and Myths of Enigma: Breaking Stereotypes.”
Advances in Cryptology – Eurocrypt 2003, LNCS 2656, pp. 106-122, Springer-
Verlag, 2003.

BIBLIOGRAPHY 113

[54] B.M. Gammel, R. Göttfert and O. Kniffler. “The Achterbahn stream cipher.”
eSTREAM, ECRYPT Stream Cipher Project. Available at http://www.ecrypt.eu.
org/stream/achterbahn.html

[55] B.M. Gammel, R. Göttfert and O. Kniffler. “Achterbahn-128/80.” eSTREAM,
ECRYPT Stream Cipher Project. Available at http://www.ecrypt.eu.org/
stream/achterbahnp2.html

[56] D. Gligoroski, S. Markovski, L. Kocarev and M. Gusev. “Stream Cipher Edon80.”
Available at http://www.ecrypt.eu.org/stream/edon80p3.html

[57] J. D. Golić. “Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters.” In Advances in Cryptography – Eurocrypt’95, pp. 248-262, Springer-Verlag,
1995.

[58] J. D. Golić. “Linear Models for Keystream Generator.” IEEE Trans. on Comput-
ers, 45(1):41-49, Jan 1996.

[59] J. D. Golić. “Cryptanalysis of Alleged A5 Stream Cipher.” In Advances in Cryp-
tology – Eurocrypt’97, LNCS 1233, pp. 239-255, Springer-Verlag, 1997.

[60] J. D. Golić. “Linear Statistical Weakness of Alleged RC4 Keystream Generator.”
In Advancesin Cryptology – Eurocrypt’97, pp. 226-238, Springer-Verlag, 1997.

[61] J. D. Golić, G. Morgari. “On the Resynchronization Attack.” In Fast Software
Encryption – FSE 2003, LNCS 2887, pp. 100-110, Springer-Verlag, 2003.

[62] G. Gong and A. Youssef. “Cryptographic Properties of the Welch-Gong Transfor-
mation Sequence Generators.” IEEE Transactions on Information Theory, vol. 48,
No. 11, pp. 2837-2846, Nov. 2002.

[63] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search.”
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing,
pp. 212-219, 1996.

[64] C. G. Günther. “Alternating Step Generators Controlled by de Bruijn Sequences.”
In Advances in Cryptology – EuroCrypt’87, LNCS 304, pp. 5-14, Springer-Verlag,
1987.

[65] P. Hawkes and G. G. Rose. “Rewriting Variables: The Complexity of Fast Alge-
braic Attacks on Stream Ciphers.” In Advances in Cryptology – CRYPTO 2004,
LNCS 3152, pp. 390-406, Springer-Verlag, 2004.

[66] M. Hell, T. Johansson and W. Meier. “Grain – A Stream Cipher for Constrained
Environments.” eSTREAM, ECRYPT Stream Cipher Project. Available at http:
//www.ecrypt.eu.org/stream/grain.html

[67] M. Hell, T. Johansson, A. Maximov and W. Meier. “The Grain Family of Stream
Ciphers.” In New Stream Cipher Designs – The eSTREAM Finalists, LNCS 4986,
pp. 179-190, Springer-Verlag, 2008. Also available at http://www.ecrypt.eu.

org/stream/grainp3.html

[68] M. Hell and T. Johansson. “Cryptanalysis of Achterbahn-Version 2.” Selected
Areas in Cryptography – SAC 2006, LNCS 4356, pp. 45-55, Springer-Verlag, 2007.

114 BIBLIOGRAPHY

[69] M. Hell and T. Johansson. “Cryptanalysis of Achterbahn-128/80.” Available at
http://www.ecrypt.eu.org/stream/papersdir/2006/054.pdf

[70] M. Hell and T. Johansson. “A Key Recovery Attack on Edon80.” In Advances in
Cryptology – ASIACRYPT 2007, LNCS 4833, pp. 568-581, Springer-Verlag, 2007.

[71] M. E. Hellman. “A Cryptanalytic Time-Memory Trade-Off.” IEEE Transactions
on Information Theory, vol. IT-26, No. 4, pp. 401-406, July 1980.

[72] R. J. Jenkins Jr.. “ISAAC.” In Fast Software Encryption – FSE’96, LNCS 1039,
pp. 41-49, Springer-Verlag, 1996.

[73] T. Johansson and F. Jönsson. “Improved Fast Correlation Attacks on Stream
Ciphers via Convolutional Codes.” In Advances in Cryptology – EUROCRYPT’99,
LNCS 1592, pp. 347-362, Springer-Verlag, 1999.

[74] T. Johansson and F. Jönsson. “Fast Correlation Attacks Based on Turbo Code
Techniques.” In Advances in Cryptology – CRYPTO’99, LNCS 1666, pp. 181-197,
Springer-Verlag, 1999.

[75] T. Johansson and F. Jönsson. “Fast Correlation Attacks through Reconstruction
of Linear Polynomials.” In Advances in Cryptology – CRYPTO 2000, LNCS 1880,
pp. 300-315, Springer-Verlag, 2000.

[76] T. Johansson, W. Meier and F. Muller. “Cryptanalysis of Achterbahn.” In Fast
Software Encryption – FSE 2006, LNCS 4047, pp. 1-14, Springer-Verlag, 2006.

[77] A. Joux and J. Reinhard. “Overtaking VEST.” In Fast Software Encryption –
FSE 2007, LNCS 4593, pp. 58-72, Springer-Verlag, 2007.

[78] N. Keller, S. D. Miller, I. Mironov and R. Venkatesan. “MV3: A New Word
Based Stream Cipher Using Rapid Mixing and Revolving Buffers.” In Topics in
Cryptology – CT-RSA 2007, The Cryptographers’ Track at the RSA Conference
2007, LNCS 4377, pp. 1-19, Springer-Verlag, 2006.

[79] A. Klimov and A. Shamir. “Cryptographic Applications of T-functions.” In Se-
lected Areas in Cryptography – SAC 2003, LNCS 3006, pp. 248-261, Springer-
Verlag, 2003.

[80] A. Klimov and A. Shamir. “New Cryptographic Primitives Based on Multiword
T-functions.” In Fast Software Encryption – FSE 2004, LNCS 3017, pp. 1-15,
Springer-Verlag, 2004.

[81] S. Khazaei. “Divide and Conquer Attack on ABC Stream Cipher.” Available at
http://www.ecrypt.eu.org/stream/papersdir/052.pdf

[82] L. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege. “Analysis
Methods for (Alleged) RC4”. In Advances in Cryptology – Asiacrypt’98, LNCS
1514, pp. 327-341, Springer-Verlag, 1998.

[83] T. Kohno. “Analysis of the WinZip Encryption Method.” Available at http://
eprint.iacr.org/2004/078

[84] I. Mantin. “A Practical Attack on the Fixed RC4 in the WEP Mode.” Advances
in Cryptology – ASIACRYPT 2005, LNCS 3788, pp. 395-411, Springer-Verlag,
2005.

BIBLIOGRAPHY 115

[85] I. Mantin. “Predicting and Distinguishing Attacks on RC4 Keystream Genera-
tor.” Advances in Cryptography – EUROCRYPT 2005, LNCS 3494, pp. 491-506,
Springer-Verlag, 2005.

[86] I. Mantin and A. Shamir. “A Practical Attack on Broadcast RC4.” In Fast Soft-
ware Encryption – FSE 2001, LNCS 2355, pp. 152-164, Springer-Verlag, 2002.

[87] J. L. Massey. “Shift-Register Synthesis and BCH Decoding.” IEEE Transaction
Information Theory, 15, 122-127, 1969.

[88] M. Matsui. “Linear Cryptanalysis Method for DES Cipher.” In Advances in Cryp-
tology – Eurocrypt’93, LNCS 765, pp. 386-397, Springer-Verlag, 1994.

[89] W. Meier and O. Staffelbach. “Fast Correlation Attacks on Certain Stream Ci-
phers.” Journal of Cryptography, 1(3):159-176, 1989.

[90] W. Meier and O. Staffelbach. “The Self-Shrinking Generator.” In Advances in
Cryptology – EUROCRYPT’94, LNCS 950, pp. 205-214, Springer-Verlag, 1994.

[91] A. Menezes, P. van Oorschot and S. Vanstone. Handbook of Applied Cryptography.
Available at http://www.cacr.math.uwaterloo.ca/hac/

[92] Microsoft Office. At http://office.microsoft.com/home/default.aspx

[93] M. Mihaljević, M.P.C. Fossorier and H. Imai. “A Low-Complexity and High-
Performance Algorithm for Fast Correlation Attack.” In Fast Software Encryption
– FSE 2000, pp. 196-212, Springer-Verlag, 2000.

[94] I. Mironov. “(Not So) Random Shuffles of RC4.” In Advances in Cryptology –
Crypto 2002, LNCS 2442, pp. 304-319, Springer-Verlag, 2002.

[95] S. Mister and S.E. Tavares. “Cryptanalysis of RC4-like Ciphers.” In Selected Areas
in Cryptography – SAC’98), LNCS 1556, pp. 131-143, Springer-Verlag, 1999.

[96] F. Muller. “Differential Attacks against the Helix Stream Cipher.” In Fast Soft-
ware Encryption – FSE 2004, LNCS 3017, pp. 94-108, Springer-Verlag, 2004.

[97] S. Murphy and M.J.B. Robshaw. “Key-Dependent S-boxes and Differential Crypt-
analysis.” Designs, Codes, and Cryptography 27(3), pp. 229-255, 2002.

[98] National Institute of Standards and Technology. “DES Modes of Operation.”
Federal Information Processing Standards Publication (FIPS) 81. Available at
http://csrc.nist.gov/publications/fips/

[99] National Institute of Standards and Technology. “Data Encryption Standard.”
Federal Information Processing Standards Publication (FIPS) 46-3. Available at
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[100] National Institute of Standards and Technology. “Secure Hash Standard (SHS).”
Available at http://csrc.nist.gov/cryptval/shs.html

[101] National Institute of Standards and Technology. “Advanced Encryption Stan-
dard (AES).” Federal Information Processing Standards Publication (FIPS) 197.
Available at http://csrc.nist.gov/publications/fips/

[102] National Security Agency. “Securing Record Communications – The TSEC/KW-
26.” Available at http://www.nsa.gov/publications/publi00017.pdf

116 BIBLIOGRAPHY

[103] Y. Nawaz and G. Gong. “The WG Stream Cipher.” ECRYPT Stream Cipher
Project Report 2005/033. Available at http://www.ecrypt.eu.org/stream/

[104] Y. Nawaz and G. Gong. “Preventing Chosen IV Attack on WG Cipher by In-
creasing the Length of Key/IV Setup.” ECRYPT Stream Cipher Project Report
2005/047. Available at http://www.ecrypt.eu.org/stream/

[105] NESSIE. “NESSIE Project Announces Final Selection of Crypto Algorithms.”
Available at https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/

press_release_feb27.pdf

[106] S. Paul and B. Preneel. “A New Weakness in the RC4 Keystream Generator and
an Approach to Improve the Security of the Cipher.” In Fast Software Encryption
– FSE 2004, LNCS 3017, pp. 245–259, Springer-Verlag, 2004.

[107] S. Paul and B. Preneel. “Solving Systems of Differential Equations of Addition.”
In Australasian Conference on Information Security and Privacy – ACISP 2005,
LNCS 3574, pp. 75-88, Springer-Verlag, 2005.

[108] S. Paul and B. Preneel. “Near Optimal Algorithms for Solving Differential Equa-
tions of Addition with Batch Queries.” In Progress in Cryptology – Indocrypt
2005, LNCS 3797, pp. 90-103, Springer-Verlag, 2003.

[109] S. Paul, B. Preneel and S. Sekar. “Distinguishing Attack on the Stream Cipher
Py.” In Fast Software Encryption – FSE 2006, LNCS 4047, pp. 405–421, Springer-
Verlag, 2006.

[110] S. Paul and B. Preneel. “On the (In)security of Stream Ciphers Based on Arrays
and Modular Addition.” In Advances in Cryptology – ASIACRYPT 2006, LNCS
4284, pp. 69–83, Springer-Verlag, 2006.

[111] M.N. Plasencia. “Cryptanalysis of Achterbahn-128/80.” Available at http://www.
ecrypt.eu.org/stream/papersdir/2006/055.pdf

[112] P. Rogaway and D. Coppersmith. “A Software Optimized Algorithm.” Journal of
Cryptography, 11(4), pp. 273-287, 1998.

[113] G.G. Rose and P. Hawkes. “Turing: a Fast Stream Cipher.” In Fast Software
Encryption – FSE’03, LNCS 2887, pp. 290-306, Springer-Verlag, 2003.

[114] R.L. Rivest. “The RC4 Encryption Algorithm.” RSA Data Security, Inc., March
12, 1992.

[115] R. Rivest, A. Shamir and L. Adleman. “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems.” Communications of the ACM, Vol. 21 (2),
pp. 120-126. 1978.

[116] B. Schneier. “Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish).” In Fast Software Encryption – FSE’93, LNCS 809, pp. 191-204,
Springer-Verlag, 1994.

[117] B. Schneier and D. Whiting. “Fast Software Encryption: Designing Encryption
Algorithms for Optimal Software Speed on the Intel Pentium Processor.” In Fast
Software Encryption – FSE’97, LNCS 1267, pp. 242-259, Springer-Verlag, 1997.

BIBLIOGRAPHY 117

[118] C. Shannon. “Communication Theory of Secrecy Systems.” Bell System Technical
Journal 28 (4): 656-715.

[119] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science, 1994.

[120] T. Siegenthaler. “Correlation-Immunity of Nonlinear Combining Functions for
Cryptographic Applications.” IEEE Transactions on Information Theory, IT-
30:776-780,1984.

[121] T. Siegenthaler. “Decrypting a Class of Stream Ciphers Using Ciphertext Only.”
IEEE Transactions on Computers, C-34(1):81-85, Jan. 1985.

[122] V. Strassen. “Gaussian Elimination is not Optimal.” Numer. Math. 13, pp. 354-
356, 1969.

[123] G. Sullivan and F. Weierud. “Breaking German Army Ciphers.” In Cryptologia
24(3), July 2005, pp. 193-232.

[124] S. Vaudenay. “On the Weak Keys of Blowfish.” Fast Software Encryption –
FSE’96, LNCS 1039, pp. 27-32, Springer-Verlag, 1996.

[125] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi and B. Preneel. “A New
Keystream Generator MUGI.” In Fast Software Encryption – FSE 2002, LNCS
2365, pp. 179-194, Springer-Verlag, 2002.

[126] D. Whiting, B. Schneier, S. Lucks and F. Muller. “Phelix: Fast Encryption
and Authentication in a Single Cryptographic Primitive.” eSTREAM, ECRYPT
Stream Cipher Project Report 2005/027.

[127] WinZip Computing, Inc. Homepage, Mar. 2004. Available at http://www.
winzip.com/

[128] H. Wu. “A New Stream Cipher HC-256.” In Fast Software Encryption – FSE 2004,
LNCS 3017, pp. 226-244, Springer-Verlag, 2004. The full version is available at
http://eprint.iacr.org/2004/092.pdf

[129] H. Wu. “The Misuse of RC4 in Microsoft Word and Excel.” IACR ePrint, 2005.
Available at http://eprint.iacr.org/2005/007

[130] H. Wu and B. Preneel. “Cryptanalysis of the Stream Cipher DECIM.” In Fast
Software Encryption – FSE 2006, LNCS 4047, pp. 30-40, Springer-Verlag, 2006.

[131] H. Wu and B. Preneel. “Resynchronization Attacks on WG and LEX.” In Fast
Software Encryption – FSE 2006, LNCS 4047, pp. 422-432, Springer-Verlag, 2006.

[132] H. Wu and B. Preneel. “Cryptanalysis of the Stream Cipher ABC v2.” In Selected
Areas in Cryptography – SAC 2006, LNCS 4356, pp. 56-66, Springer-Verlag, 2007.

[133] H. Wu and B. Preneel. “Differential attacks on Stream Ciphers Phelix.” In Fast
Software Encryption – FSE 2007, LNCS 4593, pp. 87-100, Springer-Verlag, 2007.

[134] H. Wu and B. Preneel. “Differential attacks on Stream Ciphers Py, Py6 and
Pypy.” In Advances in Cryptology – Eurocrypt 2007, LNCS 4515, pp. 276-290,
Springer-Verlag, 2007.

118 BIBLIOGRAPHY

[135] H. Wu. “The Stream Cipher HC-128.” In New Stream Cipher Designs – The
eSTREAM Finalists, LNCS 4986, pp. 39-47, Springer-Verlag, 2008. Also available
at http://www.ecrypt.eu.org/stream/hcp3.html

[136] H. Zhang, L. Li and X. Wang. “Fast Correlation Attack on Stream Cipher ABC
v3.” Available at http://www.ecrypt.eu.org/stream/papersdir/2006/049.pdf

[137] H. Zhang, S. Wang and X. Wang. “The Probability Advantages of Two Linear
Expressions in Symmetric Ciphers.” Available at http://www.ecrypt.eu.org/

stream/papersdir/2006/046.pdf

Appendix A

The Number of IVs to Break DECIM

Table A.1 gives the number of IVs required to break DECIM with a 64-bit IV.
44 key bits can be recovered with less than 220 IVs. Table A.1 gives the number
of IVs required to break DECIM with an 80-bit IV. 41 key bits can be recovered
with less than 221 IVs. Only the first 2 bytes of the keystream are required in
the attack, and the amount of computation required in the attacks is negligible.

We explain Table A.1 with K0 as an example. K0 is related to s112 since
s112 = K0 ⊕ IV0. s112 is mapped to s192+60 with probability 0.0318 (this prob-
ability is obtained by tracing s112 through the initialization process). Thus K0

could be recovered by observing the first bits of the keystreams. About 218.95

IVs are required to achieve a success probability of 0.977.

119

120 APPENDIX A. THE NUMBER OF IVS TO BREAK DECIM

Table A.1: Number of IVs required to recover the key bits (64-bit IV)

Affected Bits Number
of IVs
(Log2)

Affected Bits Number
of IVs
(Log2)

K0 s112 ⇒ s192+60 18.95 K1 s57 ⇒ s192+122 20.83
K2 s58 ⇒ s192+116 18.80 K3 s115 ⇒ s192+104 20.46
K4 s116 ⇒ s192+105 21.41 K5 s117 ⇒ s192+106 21.54
K6 s118 ⇒ s192+107 21.67 K7 s119 ⇒ s192+108 21.72
K8 s120 ⇒ s192+145 21.21 K9 s121 ⇒ s192+110 21.92
K10 s10 ⇒ s192+116 17.69 K11 s11 ⇒ s192+117 19.62
K12 s68 ⇒ s192+6 18.88 K13 s69 ⇒ s192+7 20.82
K14 s70 ⇒ s192+8 18.82 K15 s127 ⇒ s192+116 16.66
K16 s128 ⇒ s192+117 18.70 K17 s17 ⇒ s192+6 16.92
K18 s18 ⇒ s192+7 18.82 K19 s19 ⇒ s192+8 16.80
K20 s20 ⇒ s192+9 18.73 K21 s21 ⇒ s192+6 18.59
K22 s22 ⇒ s192+7 20.67 K23 s23 ⇒ s192+8 18.70
K24 s80 ⇒ s192+146 20.80 K25 s25 ⇒ s192+116 17.97
K26 s138 ⇒ s192+6 17.79 K27 s139 ⇒ s192+7 19.87
K28 s140 ⇒ s192+8 17.86 K29 s141 ⇒ s192+9 19.67
K30 s142 ⇒ s192+10 21.46 K31 s31 ⇒ s192+182 18.36
K32 s32 ⇒ s192+183 20.70 K33 s33 ⇒ s192+113 20.97
K34 s34 ⇒ s192+114 21.03 K35 s91 ⇒ s192+116 19.95
K36 s36 ⇒ s192+116 15.55 K37 s37 ⇒ s192+117 17.56
K38 s94 ⇒ s192+145 18.94 K39 s39 ⇒ s192+104 19.62
K40 s152 ⇒ s192+60 16.43 K41 s153 ⇒ s192+116 17.90
K42 s154 ⇒ s192+117 19.93 K43 s43 ⇒ s192+108 20.61
K44 s156 ⇒ s192+145 16.90 K45 s157 ⇒ s192+146 18.96
K46 s46 ⇒ s192+35 20.45 K47 s47 ⇒ s192+6 16.68
K48 s160 ⇒ s192+145 18.68 K49 s161 ⇒ s192+181 15.59
K50 s162 ⇒ s192+182 17.59 K51 s51 ⇒ s192+116 15.62
K52 s52 ⇒ s192+117 17.64 K53 s53 ⇒ s192+118 19.47
K54 s54 ⇒ s192+119 20.05 K55 s55 ⇒ s192+120 20.61
K56 s168 ⇒ s192+76 22.27 K57 s169 ⇒ s192+103 18.43
K58 s170 ⇒ s192+104 18.17 K59 s171 ⇒ s192+105 18.93
K60 s172 ⇒ s192+106 19.11 K61 s173 ⇒ s192+107 19.24
K62 s174 ⇒ s192+108 19.42 K63 s175 ⇒ s192+109 19.58

121

Table A.2: Number of IVs required to recover the key bits (80-bit IV)

Affected Bits Number
of IVs
(Log2)

Affected Bits Number
of IVs
(Log2)

K0 s32 ⇒ s192+183 20.70 K1 s33 ⇒ s192+113 20.97
K2 s34 ⇒ s192+114 21.03 K3 s35 ⇒ s192+115 21.13
K4 s36 ⇒ s192+116 15.55 K5 s37 ⇒ s192+117 17.56
K6 s38 ⇒ s192+118 19.43 K7 s39 ⇒ s192+104 19.62
K8 s40 ⇒ s192+105 20.37 K9 s41 ⇒ s192+121 20.30
K10 s42 ⇒ s192+107 20.48 K11 s43 ⇒ s192+108 20.61
K12 s44 ⇒ s192+109 20.77 K13 s45 ⇒ s192+34 20.70
K14 s46 ⇒ s192+35 20.45 K15 s47 ⇒ s192+6 16.68
K16 s48 ⇒ s192+7 18.72 K17 s49 ⇒ s192+8 16.68
K18 s50 ⇒ s192+9 18.66 K19 s51 ⇒ s192+116 15.62
K20 s52 ⇒ s192+117 17.64 K21 s53 ⇒ s192+118 19.47
K22 s54 ⇒ s192+119 20.05 K23 s55 ⇒ s192+120 20.61
K24 s56 ⇒ s192+121 20.63 K25 s57 ⇒ s192+122 20.83
K26 s58 ⇒ s192+116 18.80 K27 s59 ⇒ s192+12 23.00
K28 s60 ⇒ s192+13 23.41 K29 s61 ⇒ s192+14 23.66
K30 s62 ⇒ s192+15 23.78 K31 s63 ⇒ s192+16 24.09
K32 s64 ⇒ s192+17 24.00 K33 s65 ⇒ s192+18 24.19
K34 s66 ⇒ s192+19 24.22 K35 s67 ⇒ s192+5 23.44
K36 s68 ⇒ s192+6 18.88 K37 s69 ⇒ s192+7 20.82
K38 s70 ⇒ s192+8 18.82 K39 s71 ⇒ s192+60 16.77
K40 s72 ⇒ s192+61 18.75 K41 s73 ⇒ s192+62 20.59
K42 s74 ⇒ s192+63 21.11 K43 s75 ⇒ s192+64 21.71
K44 s76 ⇒ s192+65 21.67 K45 s77 ⇒ s192+66 21.85
K46 s78 ⇒ s192+67 21.81 K47 s79 ⇒ s192+145 18.82
K48 s80 ⇒ s192+146 20.80 K49 s81 ⇒ s192+70 22.05
K50 s82 ⇒ s192+71 22.18 K51 s83 ⇒ s192+72 22.40
K52 s84 ⇒ s192+73 22.43 K53 s85 ⇒ s192+74 22.42
K54 s86 ⇒ s192+75 22.43 K55 s87 ⇒ s192+76 22.55
K56 s88 ⇒ s192+154 24.02 K57 s89 ⇒ s192+155 24.04
K58 s90 ⇒ s192+156 24.15 K59 s91 ⇒ s192+116 19.95
K60 s92 ⇒ s192+117 21.97 K61 s93 ⇒ s192+118 23.77
K62 s94 ⇒ s192+145 18.94 K63 s95 ⇒ s192+146 20.91
K64 s96 ⇒ s192+147 22.79 K65 s97 ⇒ s192+148 23.33
K66 s98 ⇒ s192+149 23.77 K67 s99 ⇒ s192+150 23.64
K68 s100 ⇒ s192+63 22.65 K69 s101 ⇒ s192+4 23.12
K70 s102 ⇒ s192+65 23.66 K71 s103 ⇒ s192+178 23.80
K72 s104 ⇒ s192+179 23.77 K73 s105 ⇒ s192+145 20.94
K74 s106 ⇒ s192+181 18.24 K75 s107 ⇒ s192+182 19.97
K76 s108 ⇒ s192+183 21.81 K77 s109 ⇒ s192+6 20.86
K78 s110 ⇒ s192+7 22.83 K79 s111 ⇒ s192+8 20.94

122 APPENDIX A. THE NUMBER OF IVS TO BREAK DECIM

Appendix B

Test Vectors of HC-256 and HC-128

The first 512 bits of keystream are given as test vectors for different values of key
and IV. Note that for each 32-bit output given below, the least significant byte
comes before the most significant byte in the keystream. For example, if S and
T are 32-bit words, and S = s3||s2||s1||s0, T = t3||t2||t1||t0, where each si and ti
is one byte, and s0 and t0 denote the least significant bytes, then the keystream
S, T is related to the keystream s0, s1, s2, s3, t0, t1, t2, t3.

B.1 Test Vectors of HC-256

Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7.

1. The key and IV are set as 0.

8589075b 0df3f6d8 2fc0c542 5179b6a6
3465f053 f2891f80 8b24744e 18480b72
ec2792cd bf4dcfeb 7769bf8d fa14aee4
7b4c50e8 eaf3a9c8 f506016c 81697e32

2. The key is set as 0, the IV is set as 0 except that IV0 = 1.

bfa2e2af e9ce174f 8b05c2fe b18bb1d1
ee42c05f 01312b71 c61f50dd 502a080b
edfec706 633d9241 a6dac448 af8561ff
5e04135a 9448c434 2de7e9f3 37520bdf

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55.

123

124 APPENDIX B. TEST VECTORS OF HC-256 AND HC-128

fe4a401c ed5fe24f d19a8f95 6fc036ae
3c5aa688 23e2abc0 2f90b3ae a8d30e42
59f03a6c 6e39eb44 8f7579fb 70137a5e
6d10b7d8 add0f7cd 723423da f575dde6

4. Let Ai =
⊕0xffff

j=0 s16j+i for i = 0, 1, · · · , 15, i.e. set a 512-bit buffer as 0 and
encrypt it repeatedly for 220 times. Set the key and IV as 0, the value of
A0||A1|| · · · ||A15 is given below:

c6b6fb99 f2ae1440 a7d4ca34 2011694e
6f36b4be 420db05d 4745fd90 7c630695
5f1d7bda 13ae7e36 aebc5399 733b7f37
95f34066 b601d21f 2d8cf830 a9c08937

B.2 Test Vectors of HC-128

Let K = K0||K1||K2||K3 and IV = IV0||IV1||IV2||IV3.

1. The key and IV are set as 0.

73150082 3bfd03a0 fb2fd77f aa63af0e
de122fc6 a7dc29b6 62a68527 8b75ec68
9036db1e 81896005 00ade078 491fbf9a
1cdc3013 6c3d6e24 90f664b2 9cd57102

2. The key is set as 0, the IV is set as 0 except that IV0 = 1.

c01893d5 b7dbe958 8f65ec98 64176604
36fc6724 c82c6eec 1b1c38a7 c9b42a95
323ef123 0a6a908b ce757b68 9f14f7bb
e4cde011 aeb5173f 89608c94 b5cf46ca

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55.

518251a4 04b4930a b02af931 0639f032
bcb4a47a 5722480b 2bf99f72 cdc0e566
310f0c56 d3cc83e8 663db8ef 62dfe07f
593e1790 c5ceaa9c ab03806f c9a6e5a0

4. Set the key and IV as 0, the value of A0||A1|| · · · ||A15 is:

B.2. TEST VECTORS OF HC-128 125

a4eac026 7e491126 6a2a384f 5c4e1329
da407fa1 55e6b1ae 05c6fdf3 bbdc8a86
7a699aa0 1a4dc117 63658ccc d3e62474
9cf8236f 0131be21 c3a51de9 d12290de

List of Publications

1. Hongjun Wu. “The Stream Cipher HC-128.” New Stream Cipher Designs
– The eSTREAM Finalists, Lecture Notes in Computer Science 4986, M.
Robshaw and O. Billet (Eds.), pp. 39-47, Springer-Verlag, 2008.

2. Hongjun Wu and Bart Preneel. “Differential-Linear Attacks against the
Stream Cipher Phelix.” Fast Software Encryption – FSE 2007, Lecture
Notes in Computer Science 4593, A. Biryukov (Ed.), pp. 87-100, Springer-
Verlag, 2007.

3. Hongjun Wu and Bart Preneel. “Differential Cryptanalysis of the Stream
Ciphers Py, Py6 and Pypy.” Advances in Cryptology – Eurocrypt 2007,
Lecture Notes in Computer Science 4515, M. Naor (Ed.), pp. 276-290,
Springer-Verlag, 2007.

4. Hirotaka Yoshida, Dai Watanabe, Katsuyuki Okeya, Jun Kitahara, Hongjun
Wu, Ozgul Kucuk and Bart Preneel. “MAME: A compression function
proposal for RFID applications.” Cryptographic Hardware and Embedded
Systems – CHES 2007, Lecture Notes in Computer Science 4727, P. Paillier
and I. Verbauwhede (Eds.), pp. 148-165, Springer-Verlag, 2007.

5. Hongjun Wu and Bart Preneel. “Cryptanalysis of the Stream Cipher
ABC v2.” Selected Areas in Cryptography – SAC 2006, Lecture Notes
in Computer Science 4356, E. Biham and A. M. Youssef (Eds.), pp. 56-66,
Springer-Verlag, 2006.

6. Hongjun Wu and Bart Preneel. “Resynchronization Attacks on WG and
LEX.” Fast Software Encryption – FSE 2006, Lecture Notes in Computer
Science 4047, M. J. Robshaw (Ed.), pp. 422-432, Springer-Verlag, 2006.

7. Hongjun Wu and Bart Preneel. “Cryptanalysis of the Stream Cipher
DECIM.” Fast Software Encryption – FSE 2006, Lecture Notes in Com-
puter Science 4047, M. J. Robshaw (Ed.), pp. 30-40, Springer-Verlag, 2006.

127

8. Bin Zhang, Hongjun Wu, Dengguo Feng and Feng Bao. “A Fast Correlation
Attack on the Shrinking Generator.” RSA Conference – Cryptographers’
Track (CT-RSA 2005), Lecture Notes in Computer Science 3376, pp. 72-86,
Springer-Verlag, 2004.

9. Bin Zhang, Hongjun Wu, Dengguo Feng and Hong Wang. “Weaknesses of
COSvd (2, 128) Stream Cipher.” International Conference on Information
Security and Cryptology – ICISC 2005, Lecture Notes in Computer Science
3935, D. Won and S. Kim (Eds.), pp. 270-283, Springer-Verlag, 2006.

10. Hongjun Wu. “A New Stream Cipher HC-256.” In Fast Software Encryp-
tion – FSE 2004, Lecture Notes in Computer Science 3017, B. K. Roy and
W. Meier (Eds.), pp. 226-244, Springer-Verlag, 2004.

11. Hongjun Wu and Di Ma. “Efficient and Secure Encryption Schemes for
JPEG2000.” International Conference on Acoustics, Speech, and Signal
Processing – ICASSP 2004. MSP-L 1.6, Vol. V, pp. 869-872.

12. Bin Zhang, Hongjun Wu, Dengguo Feng and Feng Bao. “Security Analysis
of the Generalized Self-Shrinking Generator.” International Conference on
Information and Communications Security – ICICS 2004, Lecture Notes
in Computer Science 3269, J. Lopez, S. Qing and E. Okamoto (Eds.), pp.
388-400, Springer-Verlag, 2004.

13. Bin Zhang, Hongjun Wu, Dengguo Feng and Feng Bao. “Chosen Ciphertext
Attack on a New Class of Self-Synchronizing Stream Ciphers.” Progress
in Cryptology – INDOCRYPT 2004, Lecture Notes in Computer Science
3348, A. Canteaut and K. Viswanathan (Eds.), pp. 73-83, Springer-Verlag,
2005.

14. Bin Zhang, Hongjun Wu, Feng Bao and Dengguo Feng. “Cryptanalysis of
a Knapsack Based Two-Lock Cryptosystem.” Applied Cryptography and
Network Security – ACNS 2004, Lecture Notes in Computer Science 3089,
M. Jakobsson, M. Yung and J. Zhou (Eds.), pp. 303-309, Springer-Verlag,
2004.

15. Hongjun Wu, Feng Bao and Robert H. Deng. “Improved Known Plaintext
Attack on FEA-M.” International Conference on Information and Commu-
nication Security – ICICS 2003, Lecture Notes in Computer Science 2836,
S. Qing, D. Gollmann and J. Zhou (Eds.), pp. 84-87, Springer-Verlag, 2003.

16. Hongjun Wu and Feng Bao. “Cryptanalysis of Stream Cipher COS(2, 128)
Mode I.” Australasian Conference on Information Security and Privacy –
ACISP 2002, Lecture Notes in Computer Science 2384, L. Batten and J.
Seberry (Eds.), pp. 154-158, Springer-Verlag, 2002.

17. Hongjun Wu. “Cryptanalysis of Stream Cipher Alpha1.” Australasian
Conference on Information Security and Privacy – ACISP 2002, Lecture
Notes in Computer Science 2384, L. Batten and J. Seberry (Eds.), pp.
169-175, Springer-Verlag, 2002.

18. Hongjun Wu. “Related-Cipher Attacks.” International Conference on In-
formation and Communication Security – ICICS 2002, Lecture Notes in
Computer Science 2513, R. Deng, S. Qing, F. Bao and J. Zhou (Eds.), pp.
447-455, Springer-Verlag, 2002.

19. Hongjun Wu, Feng Bao and Robert H. Deng. “Cryptanalysis of Some Hash
Functions Based on Block Ciphers and Codes.” Informatica (Slovenia)
26(3): (2002).

20. Feng Bao, Robert H. Deng, Peirong Feng, Yan Guo and Hongjun Wu,
“Secure and Private Distribution of Online Video and Some Related Cryp-
tographic Issues.” Australasian Conference on Information Security and
Privacy – ACISP 2001, Lecture Notes in Computer Science 2119, V. Varad-
harajan and Y. Mu (Eds.), pp. 190-205, Springer-Verlag, 2001.

21. Feng Bao, Robert H. Deng, Willi Geiselmann, Claus-Peter Schnorr, Rainer
Steinwandt and Hongjun Wu, “Cryptanalysis of Two Sparse Polynomial
Based Public Key Cryptosystems.” Public Key Cryptography – PKC 2001,
Lecture Notes in Computer Science 1992, K. Kim (Ed.), pp. 153-164,
Springer-Verlag, 2001.

22. Hongjun Wu, Feng Bao and Robert H. Deng, “Cryptanalysis of a Digital
Signature Scheme on ID-Based Key-Sharing Infrastructures.” Public Key
Cryptography – PKC 2001, Lecture Notes in Computer Science 1992, K.
Kim (Ed.), pp. 173-179, Springer-Verlag, 2001.

23. Hongjun Wu, Feng Bao, Ding-Feng Ye and Robert H. Deng. “Cryptanal-
ysis of Polynominal Authentication and Signature Scheme.” Australasian
Conference on Information Security and Privacy – ACISP 2000, Lecture
Notes in Computer Science 1841, E. Dawson, A. Clark and C. Boyd (Eds.),
pp. 278-288, Springer-Verlag, 2000.

24. Hongjun Wu, Feng Bao, Ding-Feng Ye and Robert H. Deng, “Cryptanal-
ysis of the m-Permutation Protection Schemes.” Australasian Conference
on Information Security and Privacy – ACISP 2000, Lecture Notes in Com-
puter Science 1841, E. Dawson, A. Clark and C. Boyd (Eds.), pp. 97-111,
Springer-Verlag, 2000.

129

25. Hongjun Wu, Feng Bao, Robert H. Deng and Qin-Zhong Ye. “Crypt-
analysis of Rijmen-Preneel Trapdoor Ciphers.” Advances in Cryptology –
ASIACRYPT’98, Lecture Notes in Computer Science 1514, K. Ohta and
D. Pei (Eds.), pp. 126-132, Springer-Verlag, 1998.

26. Hongjun Wu, Feng Bao, Robert H. Deng and Qin-Zhong Ye. “Improved
Truncated Differential Attacks on SAFER.” Advances in Cryptology – ASI-
ACRYPT’98, Lecture Notes in Computer Science 1514, K. Ohta and D. Pei
(Eds.), pp. 133-147, Springer-Verlag, 1998.

Other Articles

27. Hongjun Wu. “The Misuse of RC4 in Microsoft Word and Excel.” IACR
ePrint, 2005. Available at http://eprint.iacr.org/2005/007

28. Hongjun Wu. “Breaking the Stream Cipher Whitenoise.” IACR ePrint,
2003. Available at http://eprint.iacr.org/2003/250

Hongjun Wu received the Bachelor and Master of Engineering degrees from the
Department of Electrical Engineering of the National University of Singapore in
1998 and 2000, respectively. From 1999 to 2005, he was working on informa-
tion security at the Institute for Infocomm Research in Singapore. In 2005, he
started doctoral studies in the research group COSIC (Computer Security and
Industrial Cryptography) at the Department of Electrical Engineering (ESAT)
of the Katholieke Universiteit Leuven in Belgium.

