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Abstract. Earning limits are an interesting novel aspect in the classic
Fisher market model. Here sellers have bounds on their income and can
decide to lower the supply they bring to the market if income exceeds the
limit. Beyond several applications, in which earning limits are natural,
equilibria of such markets are a central concept in the allocation of
indivisible items to maximize Nash social welfare.
In this paper, we analyze earning limits in Fisher markets with linear
and spending-constraint utilities. We show a variety of structural and
computational results about market equilibria. The equilibrium price
vectors form a lattice, and the spending of buyers is unique in non-
degenerate markets. We provide a scaling-based algorithm that computes
an equilibrium in time O(n3` log(` + nU)), where n is the number of
agents, ` ≥ n a bound on the segments in the utility functions, and U
the largest integer in the market representation. Moreover, we show how
to refine any equilibrium in polynomial time to one with minimal prices,
or one with maximal prices (if it exists). Finally, we discuss how our
algorithm can be used to obtain in polynomial time a 2-approximation
for Nash social welfare in multi-unit markets with indivisible items that
come in multiple copies.

1 Introduction

Fisher markets are a fundamental model to study competitive allocation of goods
among rational agents. In a Fisher market, there is a set B of buyers and a set G
of divisible goods. Each buyer i ∈ B has a budget mi > 0 of money and a utility
function ui that maps any bundle of goods to a non-negative utility value. Each
good j ∈ G is assumed to come in unit supply and to be sold by a separate seller.
A competitive or market equilibrium is an allocation vector of goods and a vector
of prices, such that (1) every buyer spends his budget to buy an optimal bundle
of goods, and (2) supply equals demand.

Fisher markets have been studied intensively in algorithmic game theory.
For many strictly increasing and concave utility functions, market equilibria
can be described by convex programs [12,17]. There are a variety of algorithms
for computing market equilibria [9, 10, 14, 21]. For linear markets, there are



even algorithms that run in strongly polynomial time [16, 20]. Moreover, sim-
ple tâtonnement [5, 7] or proportional response dynamics [4, 22] converge to
equilibrium (quickly).

A common assumption in all this work is that utility functions are non-
satiated, that is, the utility of every buyer i strictly increases with amount of
good allocated, and the utility of every seller j strictly increases with the money
earned. Consequently, when buyers and sellers are price-taking agents, it is in their
best interest to spend their entire budget and bring all supply to the market, resp.
In this paper, we study new variants of linear Fisher markets with satiated utility
functions recently proposed in [6]. In these markets, each seller has an earning
limit, which gives him an incentive to possibly reduce the supply that he brings
to the market. This is a natural property in many domains, e.g., when sellers
have revenue targets. Many properties of such markets are not well-understood.

Interestingly, equilibria in Fisher markets with earning limits also relate
closely to fair allocations of indivisible items. There has been a surge of interest
in allocating indivisible items to maximize Nash social welfare. Very recent
work [1,8] has provided the first constant-factor approximation algorithms for
this important problem. The algorithms first compute and then cleverly round
a market equilibrium of a Fisher market with earning limits. The tools and
techniques for computing market equilibria are a key component in this approach.

In this paper, we consider algorithmic and structural properties of markets
with earning limits and spending-constraint utilities. Spending-constraint utilities
are a natural generalization of linear utilities with many additional applica-
tions [10,18]. We show structural properties of equilibria and provide new and
improved polynomial-time algorithms for computation. Moreover, we show how
these algorithms can be used to approximate Nash social welfare in markets
where each item j is provided in dj copies (where dj is a given integer). We obtain
the first polynomial-time approximation algorithms for multi-unit markets.

Contribution and Outline After formal discussion of the market model,
we discuss some preliminaries in Section 2, including a formal condition for
existence of equilibrium. In Section 3, we show that the set of equilibrium price
vectors forms a lattice. While there always exists an equilibrium with pointwise
smallest prices, an equilibrium with largest prices might not exist. Moreover, in
non-degenerate markets (for a formal definition see Section 2) the spending of
buyers in every equilibrium is unique.

In Section 4 we outline a novel algorithm to compute an equilibrium in time
O(n3` log(` + nU)), where n is the total number of agents, ` is the maximum
number of segments in the description of the utility functions that is incident to
any buyer or any good, and U is the largest integer in the representation of utilities,
budgets, and earning limits. For linear markets, the running time simplifies to
O(n4 log nU)). Our algorithm uses a scaling technique with decreasing prices
and maintains assignments in which buyers overspend their money. A technical
challenge is to maintain rounded versions of the spending restrictions in the
utility functions. The algorithm runs until the maximum overspending of all
buyers becomes tiny and then rounds the outcome to an exact equilibrium. Given



an arbitrary equilibrium, we show how to find in polynomial time an equilibrium
with smallest prices, or one with largest prices (if it exists).

Finally, in Section 5 we round a market equilibrium in linear markets with
earning caps to an allocation in indivisible multi-unit markets to approximate
the Nash social welfare. In these markets, the representation is given by the set
of items and for each item j a number dj of the available copies. The direct
application of existing algorithms [1,8] would require pseudo-polynomial time.
Instead, we show how to adjust the rounding procedure in [8] to run in strongly
polynomial time. The resulting algorithm yields a 2-approximation and runs in
time O(n4 log(nU)), which is polynomial in the input size.

Related Work For Fisher markets we focus on some directly related work
about computation of market equilibria. For markets with linear utilities a number
of polynomial-time algorithms have been derived [9, 14,21], including ones that
run in strongly polynomial time [16, 20]. For spending-constraint utilities in
exchange markets [10] a polynomial-time algorithm was recently obtained [2].
For Fisher markets with spending-constraint utilities, the algorithm by Vegh [20]
runs in strongly polynomial time.

Linear markets with either utility or earning limits were studied only re-
cently [3,6]. The equilibria solve standard convex programs. The Shmyrev pro-
gram for earning limits also applies to spending-constraint utilities. Our paper
complements our previous results [3] on linear markets with utility limits, where
we proved that (1) equilibria form a lattice, (2) an equilibrium with maximum
prices can be computed in time O(n8 log(nU)), (3) it can be refined in polynomial
time to an equilibrium with minimum prices, and (4) several related problem
variants are NP- or PPAD-hard. The framework of [19] provides an (arbitrary)
equilibrium in time O(n5 log(nU)). For earning limits, our algorithm runs in time
O(n3` log(`+ nU)) for spending-constraint and O(n4 log(nU)) for linear utilities.
It computes an approximate solution that can be rounded to an exact equilib-
rium. An approximate solution could also be obtained with classic algorithms
for separable convex optimization [13,15]. These algorithms have slower running
times – in particular, the algorithm of [15] obtains the required precision only in
time O(n3`2 log(`) log(`+ nU)).

An interesting open problem are strongly polynomial-time algorithms for
arbitrary earning limits. A non-trivial challenge in adjusting [16] is the precision
of intermediate prices. For the framework of [20] the challenge lies in generalizing
the Error-method to markets with earning limits.

Approximating optimal allocations of indivisible items that maximize Nash
social welfare has been studied recently for markets with additive [6, 8] and
separable concave valuations [1]. Here equilibria of markets with earning limits
can be rounded to yield a 2-approximation. We extend this approach to markets
with multi-unit items, where each item j comes in dj copies (and the input
includes dj in standard logarithmic coding). In contrast to the direct, pseudo-
polynomial extensions of previous work, we show how to obtain a 2-approximation
in polynomial time.



2 Preliminaries

In a spending-constraint Fisher market with earning limits, there is a set B
of buyers and a set G of goods. Every buyer i ∈ B has a budget mi > 0 of
money. The utility of buyer i is a spending-constraint function given by non-
empty sets of segments Kij = {(i, j, k) | 1 ≤ k ≤ `ij} for each good j ∈ G.
Each segment (i, j, k) ∈ Kij comes with a utility value uijk and a spending limit
cijk > 0. We assume that the utility function is piecewise linear and concave,
i.e., uijk > uij,k+1 > 0 for all `ij − 2 ≥ k ≥ 1. W.l.o.g. we assume that the last
segment has uij`ij = 0 and cijk =∞.

Buyer i can spend at most an amount of cijk of money on segment (i, j, k).
We use f = (fijk)(i,j,k)∈Kij

to denote the spending of money on segments. f
is termed money flow. A segment is closed if fijk ≥ cijk, otherwise open. For
notational convenience, we let fij =

∑
(i,j,k)∈Kij

fijk.

Given a vector p = (pj)j∈G of strictly positive prices for goods, a money flow
results in an allocation xij =

∑
k fijk/pj of good j. The bang-per-buck ratio of

segment (i, j, k) is αijk = uijk/pj . To maximize his utility, buyer i spends his
budget mi on segments in non-increasing order of bang-per-buck ratio, while
respecting the spending limits. A bundle xi = (xij)j∈G that results from this
approach is termed a demand bundle and denoted by x∗i . The corresponding
money flow on the segments is termed demand flow f∗i .

Demand bundles and flows might not be unique, but they differ only on
the allocated segments with smallest bang-per-buck ratio. This smallest ratio
is termed maximum bang-per-back (MBB) ratio and denoted by αi. Note that
αi is unique given p. All segments with αijk ≥ αi are termed MBB segments.
The segments with αijk = αi are termed active segments. We assume w.l.o.g.
mi ≤

∑
j,k:uijk>0 cijk, since no buyer would spend more, and we can assume

there is no allocation on segments with uijk = 0. Therefore, we assume buyers
always spend all their money.

In this paper, we study a natural condition on seller supplies. Each good is
owned by a different seller, and the seller has a maximum endowment of 1. Seller
j comes with an earning limit dj . He only brings a supply ej ≤ 1 that suffices to
reach this earning limit under the given prices. Intuitively, while each seller has
utility min{dj , ejpj}, we also assume that he has tiny utility for unsold parts of
his good. Hence, he only brings a supply to earn dj .

More formally, the active price of good j is given by paj = min(dj , pj). His
good is capped if paj = dj and uncapped otherwise. A thrifty supply is ej = paj /pj ,
which guarantees ejpj ≤ dj , i.e., the earning limit holds when market clears.

The goal is to find a thrifty equilibrium.

Definition 1. A pair (f ,p) is a thrifty equilibrium if (1) fi is a demand flow
for prices p for every i ∈ B, and (2)

∑
i,k fijk = paj , for every j ∈ G.

Proposition 1. Across all thrifty equilibria: (1) the seller incomes are unique;
(2) there is a unique set of uncapped goods, and their prices are unique; and (3)
uncapped goods are available in full supply, capped goods in thrifty supply.



These uniqueness properties are a direct consequence of the fact [6] that
thrifty equilibria are the solutions of the following convex program.

Max.
∑
i∈B

∑
j∈G

∑
(i,j,k)∈Kij

fijk log uijk −
∑
j∈G

(qj log qj − qj)

s.t.
∑
j∈G

∑
(i,j,k)∈Kij

fijk = mi ∀i ∈ B∑
i∈B

∑
(i,j,k)∈Kij

fijk = qj ∀j ∈ G

fijk ≤ cijk ∀(i, j, k) ∈ Kij

qj ≤ dj ∀j ∈ G

fijk ≥ 0 ∀i ∈ B, j ∈ G, (i, j, k) ∈ Kij

(1)

The incomes of sellers and, consequently, the sets of capped and uncapped
goods are unique in all thrifty equilibria. The money flow, allocation, and prices
of capped goods might not be unique.

Buyers always spend all their budget, but this can be impossible when every
seller must not earn more than its limit5. Then a thrifty equilibrium does not
exist. This, however, turns out to be the only obstruction to nonexistence.

Let B̂ ⊆ B be a set of buyers, and N(B̂) = {j ∈ G | uij1 > 0, i ∈ B̂} be the

set of goods such that there is at least one buyer in B̂ with positive utility on its
first segment for the good. The following money clearing condition states that
buyers can spend their money without violating the earning limits.

Definition 2 (Money Clearing). A market is money clearing if for every
subset of buyers B̂ ⊆ B there is a flow f such that

fij ≤
k+∑
k=1

cijk, ∀i ∈ B̂, ∀j ∈ N(B̂), k+ = max{k | uijk > 0}∑
i∈B̂

fij ≤ dj , ∀j ∈ N(B̂) and
∑

j∈N(B̂)

fij ≥ mi, ∀i ∈ B̂ .
(MC)

Money clearing is clearly necessary for the existence of a thrifty equilibrium. It is
also sufficient since, e.g., our algorithm in Section 4 will successfully compute an
equilibrium iff money clearing holds. Alternatively, it can be verified that this is
the unique necessary and sufficient feasibility condition for convex program (1).
It is easy to check condition (MC) by a max-flow computation. We therefore
assume that our market instance satisfies it.

Lemma 1. A thrifty equilibrium exists iff the market is money clearing.

Let us define some more useful concepts for the analysis. For any pair (f ,p)
the surplus of buyer i is given by s(i) =

∑
j∈G fij −mi, and the surplus of good

5 Consider the example of a linear market with one buyer and one good. The utility is
u11 > 0, the buyer has a budget m1 = 2, the good has an earning limit d1 = 1.



j is s(j) = paj −
∑

i∈B fij . The active-segment graph G(p) is a bipartite graph
(B ∪ G,E) which contains edge {i, j} iff there is some active segment (i, j, k).
Note that there can be at most one active segment (i, j, k) for an (i, j). A market
is called non-degenerate if the active segment graph for any non-zero p is a forest.

3 Structure of Thrifty Equilibria

Some Intuition. We start by providing some intuition for the structural results
in the case where all utility functions are linear, i.e., with a single segment in
every Kij . Consider a thrifty equilibrium (f ,p). Call an edge (i, j) p-MBB if
uij/pj = αi. The active-segment graph here simplifies to an MBB graph G(p).

Let C be any connected component of the MBB graph. The buyers in C
spend all budget on the goods in C, and no other buyer spends money on the
goods in C. Thus∑

i∈C∩B
mi =

∑
j∈C∩G

paj =
∑

j∈C∩Gu

pj +
∑

j∈C∩Gc

dj ,

where Gc and Gu are the sets of capped and uncapped goods, resp. First, assume
all goods in C are capped. Let r be a positive real and consider the pair (f ,p′),
where p′j = r · pj if j ∈ C ∩Gc and p′j = pj otherwise.

Note that the allocations for any good j ∈ C ∩ Gc are scaled by 1/r. The
pair (f ,p′) is an equilibrium provided that all edges with positive allocation
are also p′-MBB and p′j ≥ dj for all j ∈ C ∩Gc. This certainly holds for r > 1
and r − 1 sufficiently small. If pj > dj for all j ∈ C this also holds for r < 1
and 1− r sufficiently small. Thus, there is some freedom in choosing the prices
in components containing only capped goods even for a fixed MBB graph. For
non-degenerate instances, the money flow is unique (but not the allocation).

Now assume that there is at least one uncapped good in C, and let ju be such
an uncapped good. The price of any other good j in the component is linearly
related to the price ju, i.e., pj = γjpju , where γj is a rational number whose
numerator and denominator is a product of utilities. Thus,∑

i∈C∩B
mi =

∑
j∈C∩G

paj =
∑

j∈C∩Gu

γjpju +
∑

j∈C∩Gc

dj ,

and the reference price is uniquely determined. All prices in the component
are uniquely determined. For a non-degenerate instance the money flow and
allocation are also uniquely determined.

Suppose in a component C containing only capped goods we increase the
prices by a common factor r > 1. We raise r continuously until a new MBB edge
arises. If we can raise r indefinitely, no buyer in the component is interested in
any good outside the component. Otherwise, a new MBB edge arises, and then
C is united with some other component. At this moment, the money flow over
the new MBB edge is zero. If the newly formed component contains an uncapped
good, prices in the component are fixed and money flow is exactly as in the



moment of joining the components. Otherwise, we raise all prices in the newly
formed component, and so on. If the market is non-degenerate, then money flow
is unique, and money will never flow on the new MBB edge.

If the component contains only capped goods j with pj > dj , we can decrease
prices continuously by a common factor r < 1 until a new MBB edge arises. If
no MBB edge ever arises, no buyer outside the component is interested in any
good in the component, which allows to argue as above.

We have so far described how the prices in a component of the MBB graph
of an equilibrium are determined if at least one good is uncapped, and how the
prices can be scaled by a common factor if all goods are capped. We have also
discussed how components are merged and that the new MBB edge arising in a
merge will never carry nonzero flow. Components can also be split if they contain
an edge with zero flow.

Consider an equilibrium (f ,p) and assume fij = 0 for some edge (i, j) of the
MBB graph w.r.t. p. Let C be the component containing (i, j) and let C1 and
C2 be the components of C \ {i, j}. Let the instance be non-degenerate. Hence,
the MBB graph is a forest. If we want to retain all MBB edges within C1 and C2

and only drop (i, j), we have to either increase all prices in the subcomponent
containing j or decrease all prices in the subcomponent containing i. Both options
are infeasible if both components contain a good with price strictly below its
earning limit. The first option is feasible if the component containing j contains
only goods with prices at least their earning limits. The latter option is feasible
if the component containing i contains only goods with prices strictly larger than
their earning limits. The split does not affect the money flow.

If the above described changes allow to change any equilibrium into any other
equilibrium, then money flow should be unique across all equilibria. Moreover,
the set of edges carrying flow should be the same in all equilibria. The MBB
graph for an equilibrium contains these edges, and maybe some more edges that
do not carry flow. Next, we prove that this intuition captures the truth, even for
the general case of spending-constraint utility functions.

Lattice Structure. We characterize the set of price vectors of thrifty equilibria,
which we denote by P = {p | ∃f s.t. (f ,p) is a thrifty equilibrium}. For money
clearing markets, we establish two results: (1) the set of equilibrium price vectors
forms a lattice, and (2) the money flow is unique in nondegenerate markets.
For the first result, we consider the coordinate-wise comparison, i.e., p ≥ p′ iff
pj ≥ p′j ,∀j ∈ G.

Theorem 1. The pair (P,≥) is a lattice.

The proof relies on the following structural properties. Given p and p′, we
partition the set of goods into sets Sr = {j | p′j = r · pj}, for r > 0. For a
price vector p, let segment (i, j, k) be p-MBB if uijk/pj ≥ αi, and p-active if
uijk/pj = αi. For a set T of goods and an equilibrium (f ,p), let

K(T,p) = {(i, j, k) | segment is p-MBB for some j ∈ T},
Ka(T,p) = {(i, j, k) | fijk > 0 for some j ∈ T and some equilibrium (f ,p)},



where the sets denote the set of p-MBB segments for goods in T and the ones
on which some good in T is allocated. Note that Ka(T,p) ⊆ K(T,p).

Lemma 2. For any two thrifty equilibria E = (f ,p) and E′ = (f ′,p′):

1. Ka(Sr,p) = Ka(Sr,p
′) for every r > 0, i.e., the goods in Sr are allocated on

the same set of segments in both equilibria.
2. Ka(Sr,p) = Ka(Sr,p

′) ⊆ K(Sr,p
′) ⊆ K(Sr,p) for r > 1. Similarly,

Ka(Sr,p
′) = Ka(Sr,p) ⊆ K(Sr,p) ⊆ K(Sr,p

′) for r < 1. For r = 1,
Ka(Sr,p

′) = Ka(Sr,p).
3. If fijk > 0 for (i, j, k) ∈ Ka(Sr,p) with r > 1, then (i, j, k) is p′-MBB. If

f ′ijk > 0 for (i, j, k) ∈ Ka(Sr,p
′) with r < 1, then (i, j, k) is p-MBB.

Corollary 1. There exists a thrifty equilibrium with coordinate-wise lowest prices.
Among all thrifty equilibria, it yields the largest supply in the market and the
maximum utility for every buyer.

Theorem 2. In a non-degenerate market, all thrifty equilibria have the same
money flow.

The convex program implies that there is a unique income for each seller.
This is consistent with our observation that a good can have different prices in
two equilibria only when income equals its earning limit.

While existence of an equilibrium with smallest prices is guaranteed, we might
or might not have an equilibrium with coordinate-wise largest prices (e.g., when
all goods are capped in equilibrium, prices can be raised indefinitely).

4 Algorithms to Compute Thrifty Equilibria

Scaling Algorithm. We first propose and discuss a polynomial-time scaling
algorithm to compute a thrifty equilibrium. We begin with defining some useful
tools and concepts. The active-segment network N(p) = ({s, t} ∪ B ∪ G,E)
contains a node for each buyer and each good, along with two additional nodes
s and t. It contains every edge (s, i) for i ∈ B with capacity mi − cci , where
cci =

∑
(i,j,k) closed cijk. Also, it contains every (j, t) for j ∈ G with capacity paj−ccj ,

where ccj =
∑

(i,j,k) closed cijk. It contains edge (i, j) with infinite capacity iff there

is some active segment (i, j, k). Finally, the active-residual network Gr(f ,p)
contains a node for each buyer and each good. It contains forward edge (i, j) iff
there is some active segment (i, j, k) with fijk < cijk and contains backward edge
(j, i) iff there is some active segment (i, j, k) with fijk > 0. Moreover, Gr(f ,p, i)
is the subgraph of Gr(f ,p) induced by the set of all buyers i′ ∈ Gr(f ,p) such
that there is an augmenting path from i′ to i.

Our algorithm uses ∆-discrete capacities ĉijk = dcijk/∆e ·∆ for all i ∈ B, j ∈
G and (i, j, k) ∈ Kij , where we iteratively decrease ∆. Initially, the algorithm
overestimates the budget of buyer i, where it assumes the buyer has r∆ money



and every segment has ∆-discrete capacities. Then fi is a (∆, r)-discrete demand
for buyer i iff it is a demand flow for buyer i under these conditions.

We also adjust the definitions of MBB ratio, active segments, active-segment
graph, network, and residual network to the case of ∆-discrete capacities. We
denote these adjusted versions by α̂, Ĝ(p), N̂(p), Ĝr(f ,p) and Ĝr(f ,p, j) resp.

Finally, we make a number of assumptions to simplify the stated bound on
the running time. We assume w.l.o.g. that |B| = |G| (by adding dummy buyers
and/or goods) and define n = |B|+ |G|. Moreover, we let Ki =

⋃
j∈GKij and

Kj =
⋃

i∈B Kij and assume w.l.o.g. that ` = |Ki| = |Kj | ≥ n for every buyer i
and every good j (by adding dummy segments with 0 utility).

Algorithm 1 computes a thrifty equilibrium in polynomial time. It uses
descending prices and maintains a money flow on closed and open MBB segments
with increasing precision and decreasing surplus. We call a run of the outer while-
loop a ∆-phase. The algorithm runs until the precision parameter ∆ is decreased
to exponentially small size. Then a final rounding procedure PostProcessingS
(described in Appendix A) rounds the solution to an exact equilibrium.

For the analysis, we use the following notion of ∆-feasible solution.

Definition 3. Given a value ∆ > 0, a pair (f ,p) of flow and prices with p ≥ 0
and f ≥ 0 is a ∆-feasible solution if

– `∆ ≤ s(i) ≤ (`+ 1)∆,∀i ∈ B.
– ∀j ∈ G: If pj < p0j , then 0 ≤ s(j) ≤ ∆. If pj = p0j , then −∞ < s(j) ≤ ∆.
– f is ∆-integral, and fijk > 0 only if (i, j, k) is a closed or open MBB segment

w.r.t. ∆-discretized capacities.

For the running time, note that prices are non-increasing. Once a capped good
becomes uncapped, it remains uncapped. We refer to an execution of the repeat
loop in Algorithm 1 as an iteration. After the initialization, there may be goods
j for which dj is smaller than the initial value of ∆ and which receive flow from
some buyer. As long as their surplus is negative, these goods keep their initial
price. The following observations are useful to prove a bound on the running time.
We also observe that the precision of prices and flow values is always bounded.

Lemma 3. Once the surplus of a good is non-negative, it stays non-negative. If
the surplus of a good is negative, its price is the initial price.

Lemma 4. The first run of the outer while-loop in Algorithm 1 takes O(n3`)
time, every subsequent one takes O(n2`) time. At the end of each ∆-phase, the
pair (f ,p) is a ∆-feasible solution.

Lemma 5. If all budgets, earning limits and utility values are integers bounded
by U , then all flow values and prices at the end of each iteration are rational
numbers whose denominators are at most poly(1/∆, n, Un).

Finally, for correctness of the algorithm, it maintains the following condition
resulting from (MC) for active prices.



Algorithm 1. Scaling Algorithm for Markets Ms with Earning Limits

Input : Fisher market M with spending constraint utilities and earning limits
Budget mi, earning limits dj , and parameters uijk, cijk

Output : Thrifty equilibrium (f ,p)
1 ∆← Un+1 ∑

i∈B mi; p
0
j ← n(`+ 1)∆,∀j ∈ G;p← p0

2 fi ← (∆, `+ 1)-discrete demand for buyer i
3 while ∆ > 1/(2`(2nU)4n) do
4 ∆← ∆/2;
5 for each closed segment (i, j, k) do fijk ← dcijk/∆e ·∆
6 for each i ∈ B with s(i) > (`+ 1)∆ do
7 Pick any active segment (i, j, k) with fijk > 0 and set fijk ← fijk −∆
8 while there is a good j′ with s(j′) > ∆ do // ∆-phase

9 repeat // iteration

10 (B̂, Ĝ)← Set of (buyers, goods) in Ĝr(f ,p, j′)

11 x← 1; Define pj ← xpj , ∀j ∈ Ĝ // active prices & surpluses

change, too

12 Decrease x continuously down from 1 until one of the following events
occurs

13 Event 1: s(j′) = ∆

14 Event 2: s(j) ≤ 0 for a j ∈ Ĝ
15 P ← path from j to j′ in Ĝr(f ,p, j′) // ∆-augmentation

16 Update f : fijk =


fijk +∆ if (i, j) is a forward arc in P
fijk −∆ if (i, j) is a backward arc in P
fijk otherwise

17 Event 3: A capped good becomes uncapped

18 Event 4: New active segment (i, j, k) with i 6∈ B̂, j ∈ Ĝ, fijk < ĉijk
19 until Event 1 or 2 occurs

20 (f ,p)← PostProcessingS(f ,p) // see Appendix A

Lemma 6. Let B̂ ⊆ B be a set of buyers and let N(B̂) be the goods having
positive utility for some buyer in B̂. At all times

∑
j∈N(B̂) p

a
j −

∑
i∈B̂ mi ≥ 0 .

Lemma 7. Let (f ,p) be the flow and price vector computed by the outer while-
loop in Algorithm 1. The pair is ∆-feasible for ∆ = 1/(2`(2nU)4n) and −n(`+
1)∆ ≤ s(j) ≤ ∆ for all j ∈ G.

Theorem 3. Algorithm 1 computes a thrifty equilibrium for money-clearing
markets Ms with earning limits in O(n3` log (`+ nU)) time.

For the details on final rounding, we refer the reader to Appendix A.

Extremal Prices. Given an arbitrary thrifty equilibrium, Algorithm 2 com-
putes a thrifty equilibrium with smallest prices. Algorithm 3 computes a thrifty
equilibrium with largest prices if it exists. Otherwise, it yields a set S of goods
for which prices can be raised indefinitely.



Algorithm 2. MinPrices

Input : Market parameters and any thrifty equilibrium (f ,p)
Output : Thrifty equilibrium with smallest prices

1 E(f)← {(i, j, k) | fijk > 0}; Gc ← Set of capped goods at (f ,p)

2 Solve an LP in qj and λi:

min
∑

i λi

qj ≤ uijkλi, for segment (i, j, k) ∈ E(f)
qj = pj , ∀j ∈ G \Gc

qj ≥ dj , ∀j ∈ Gc

λi, qj ≥ 0 ∀i ∈ B, j ∈ G
return (f ,q)

Algorithm 3. MaxPrices

Input : Market parameters and any thrifty equilibrium (f ,p)
Output : Thrifty equilibrium with largest prices

1 Initialize active price paj ← min{dj , pj} for every good j
2 S ← {j | pj > 0 and j is not connected to any uncapped good in G(p)}
3 while S 6= ∅ do
4 x← 1; Set prices pj ← xpj , ∀j ∈ S
5 Increase x continuously from 1 until a new active segment appears
6 Recompute S

7 return (f ,p)

Theorem 4. Algorithm 2 computes a thrifty equilibrium with smallest prices.

Theorem 5. Algorithm 3 computes a thrifty equilibrium with largest prices if it
exists.

5 Nash Social Welfare in Additive Multi-Unit Markets

Using our algorithm to compute a thrifty equilibrium in linear markets with
earning limits, we can approximate the optimal Nash social welfare for additive
valuations, indivisible items, and multiple copies for each item. Here there are n
agents and m items. For item j, there are dj ∈ N copies. The valuation of agent i
for an assignment x of goods is vi(x) =

∑
j vijxij , where xij denotes the number

of copies of item j that agent i receives. The goal is to find an assignment such

that the Nash social welfare (
∏

i vi(x))
1/n

is maximized.
When all dj = 1, the algorithm of [8] provides a 2-approximation [6]. It finds

an equilibrium for a linear market, where each agent i is a buyer with mi = 1,
and each item j is a good with earning limit dj = 1. Then it rounds the allocation
to an integral assignment. The direct adjustment to handle dj ≥ 1 copies is
to represent each copy of item j by a separate auxiliary item with unit supply
(all valued exactly the same way as item j) and run the algorithm from [8]. A
similar approach is used by [1] to provide a 2-approximation for separable concave
utilities. This, however, yields a running time polynomial in maxj dj , which is



only pseudo-polynomial for multi-unit markets (due to standard logarithmic
coding of dj ’s). We here outline a way to make the algorithm efficient.

Proposition 2. There is a polynomial-time 2-approximation algorithm for max-
imizing Nash social welfare in multi-unit markets with additive valuations.
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A Final Rounding

In this section, we describe the final rounding procedure PostProcessingS of
Algorithm 1.

Algorithm 4. PostProcessingS(f ,p)

Input : ε-feasible solution (f ,p) for ε = 1/(2`(2nU)4n)
Output : Market equilibrium (f ′,p′)

1 Ĝ(p) = (B ∪G,E)← active-segment graph at p w.r.t. ∆-discrete capacities ĉijk

2 while ∃ a component C in Ĝ(p) s.t. all goods are capped do
3 x← 1; Define prices as pj ← xpj , ∀j ∈ C ∩G
4 Decrease x continuously down from 1 until one of the following events occurs
5 Event 1: A capped good becomes uncapped
6 Event 2: A new segment (i, j, k) becomes active // components merge

7 Recompute active-segment graph Ĝ(p) and let C be the set of its components
8 Let Kc be the set of closed segments in (f ,p) w.r.t. ∆-discrete capacities
9 ĉcj ←

∑
(i,j,k)∈Kc ĉijk for every j ∈ G

10 ĉci ←
∑

(i,j,k)∈Kc ĉijk for every i ∈ B
11 for each component C ∈ C do
12 Set prices p as solution of the following system of equations
13 (1) uijkpj′ = uij′k′pj (for active segments from a buyer i to goods j and j′)
14 (2)

∑
j∈C∩G(paj − ĉcj)−

∑
i∈C∩B(mi − ĉci ) =

∑
u∈C s(u) (sum of surpluses)

// −n(`+ 1)∆ ≤ s(u) ≤ (`+ 1)∆

15 Let Ap = b be the matrix form of the above system
16 Let Ap′ = b′ be the system where b′ is obtained from b after substituting

s(u) = 0 and using ccu based on original cijk, for all u ∈ B ∪G
17 f ′ ← maximum s-t-flow in network N(p′)
18 return (f ′,p′)

Note that by Lemma 7 we call PostProcessingS with a pair (f ,p) that is
∆-feasible for ∆ = 1/(2`(2nU)4n). Also −n(`+ 1)∆ ≤ s(u) ≤ (`+ 1)∆ for every
u ∈ B ∪G.

The while-loop in PostProcessingS ensures that all components of the active-
segment graph Ĝ(p) contain an uncapped good. For each component C of Ĝ(p),
the algorithm sets up a system of linear equations in price variables of the form
Ap = b, and we show that after perturbing b slightly, we get an equilibrium.
Since we apply the same procedure on each component separately, we assume
without loss of generality that there is exactly one component C of Ĝ(p).

All goods in C are connected with each other through a set of active MBB
edges. Whenever there are two active segments (i, j, k) and (i, j′, k′) for a buyer
i and two goods j, j′, we have the following relation between pj and pj′ :

uijkpj′ = uij′k′pj (2)



It is easy to check that there are |C ∩G| − 1 of these MBB relations, which are
linearly independent, and there is essentially one free price variable. Additionally,
we have a condition for C on the sum of surpluses:∑

j∈C∩G
(paj − ĉcj)−

∑
i∈C∩B

(mi − ĉci ) =
∑
u∈C

s(u) . (3)

Since there is at least one uncapped good, the set of active prices paj can be
divided into a set for capped goods and a set for uncapped goods; paj = pj for
each uncapped j, and paj = dj for each capped j. We can rewrite (3) as:∑
j∈C∩G uncapped

pj =
∑
u∈C

s(u)−
∑

j∈C∩G capped

dj+
∑

i∈C∩B
mi+

∑
j∈C∩G

ĉcj−
∑

i∈C∩B
ĉci .

(4)
We can write the system of equations (2) and (4) in matrix form as Ap = b.
All entries of A are integers due to our assumption on the input parameters,
and b has exactly one non-zero entry resulting from (4). Now consider another
system Ap′ = b′ for a price vector p′, where b′ is obtained after setting s(u) = 0
and using ccu that sums the original capacities of closed segments. Next we show
that p′ gives an equilibrium. For this we show that there is a feasible flow in the
active-segment network N(p′) with min-cuts (s,B ∪ G ∪ t) and (s ∪ B ∪ G, t).
The proof is based on an adaption of a similar result in [11].

Note that all entries of A are integers in [−U,U ]. For b′ all entries are integers
in [−2n`U, 2n`U ]. By Cramer’s rule, the solution of Ap′ = b′ is a vector of rational
numbers with common denominator D ≤ (nU)n. That is, all p′j are of form qj/D,
where both qj and D are integers. Let ε = n(`+1)∆+n`∆. Since ||b|−|b′|| < ε, we
have |pj − p′j | ≤ εD,∀j. Let ε′ = εD2, then |Dpj − qj | = |D(pj − p′j)| ≤ εD2 = ε′.

Lemma 8. Every MBB segment with respect to p is also an MBB segment with
respect to p′. Furthermore, the set of capped and uncapped goods with respect to
p and p′ are the same.

Proof. Suppose for two segments (i, j, k) and (i, j′, k′) we have uijkpj′ ≤ uij′k′pj ,
then

uijkqj′ ≤ uijkDpj′ ≤ Duij′k′pj ≤ Duij′k′(p′j+εD) ≤ uij′k′qj+ε
′uij′k′ < uij′k′qj+1.

Since both uijkqj′ and uij′k′qj are integers, we have uijkqj′ ≤ uij′k′qj . This
implies that all bang-per-buck relations for segments in the market are preserved.
In particular, a segment is MBB w.r.t. p iff it is MBB w.r.t. p′. The capped goods
w.r.t. p remain capped w.r.t. p′. Suppose pj ≥ dj , then qj ≥ Dpj − ε′ > Ddj − 1.
Since qj and dj are integers, we have that qj ≥ Ddj and p′j ≥ dj . Similarly, if
pj ≤ dj , then qj ≤ Dpj + ε′ < Ddj + 1. Again, qj ≤ Ddj and p′j ≤ dj . ut

Note that after the rounding, all (active) prices p′ are rational numbers with
common denominator D. We assign to all closed segments the full amount cijk.
For the active segments, consider the network N(p′), and let c be the capacity



of cut (s,B ∪G ∪ t) in N(p′). Suppose there is a min-cut in N(p′) with value
less than c. Then that value is at most c− 1/D. This same cut in N̂(p) will have
value at most c− 1/D+ εD|G|+ ε|B|. Also the capacity of the cut (s,B ∪G∪ t)
in N̂(p) is at least c− ε|B|. Therefore the total surplus in N̂(p) is at least

c− ε|B| − (c− 1/D + εD|G|+ ε|B|) ≥ 1/D − nεD > ε,

which is a contradiction. Hence (s,B ∪ G ∪ t) is a min-cut in N(p′). Hence,
after removing the money allocated to closed segments from buyer budgets and
prices of goods, the remaining money on the active segments allows an allocation
that clears the market. This shows that PostProcessingS works correctly. Hence,
we know the algorithm is correct, requires only bounded precision and runs in
polynomial time.

B Missing Proofs

B.1 Proof of Theorem 1

We first show that (f ,p) is a thrifty equilibrium, where the spending f is defined
simply as f = f . As such, the new state (f ,p) is feasible with respect to earning
limits and has thrifty supplies. It remains to show that the allocation is MBB.
Compared to p, p has higher prices for the goods in Sr with r > 1. Hence the
allocations to the goods in Sr with r ≤ 1 are still MBB. Consider any good
j ∈ Sr with r > 1. If fijk > 0, then (i, j, k) is p′-MBB by part 3 of Lemma 2.
Thus uijk/pj = uijk/p

′
j = α′j ≥ uij′k′/p′j′ for all p′-active segments (i, j′, k′).

Since p′j′ = pj′ for ` ∈ Sr with r > 1 and p′j′ ≤ pj = pj for j′ ∈ Sr with r ≤ 1,

we observe (i, j, k) is p-MBB. We conclude that (f ,p) is a thrifty equilibrium.
Let us now consider (f ,p) with spending f defined as

f
ijk

=

{
fijk if j ∈ Sr with r > 1

f ′ijk if j ∈ Sr with r ≤ 1.

Again, the new state (f ,p) is feasible with respect to earning limits and has
thrifty supplies. It remains to show that the allocation is MBB.

Consider the goods in Sr with r > 1 and a buyer i ∈ Ba(Sr,p). For prices
p′, we know by part 3 of Lemma 2 that for buyer i every segment (i, j, k) with
fijk > 0 is p′-MBB. Now, to reach p, we keep prices of Sr with r ≤ 1 as in p′

and decrease the prices of Sr with r > 1 to p. As such, i does not obtain new
MBB segments for goods in Sr with r ≤ 1. For the remaining goods in Sr with
r ≥ 1, however, the allocation for i is MBB, since prices and spending for these
goods are as in equilibrium E = (f ,p).

Similarly, consider the goods in Sr with r < 1 and a buyer i ∈ Ba(Sr,p
′). For

prices p, we know by part 3 of Lemma 2 that for buyer i every segment (i, j, k)
with f ′ijk > 0 is p-MBB. Now, to reach p, we keep prices of Sr with r ≥ 1 as in
p and decrease the prices of Sr with r < 1 to p′. As such, i does not obtain new
MBB segments for goods in Sr with r ≥ 1. For the remaining goods in Sr with



r < 1, however, the allocation for i is MBB, since prices and spending for these
goods are as in equilibrium E′ = (f ′,p′).

Finally, consider the goods in S1 and a buyer i ∈ Ba(Sr,p
′) = Ba(Sr,p).

Hence, since for j ∈ S1 we have pj = p′j , a segment (i, j, k) is p-MBB iff it is
p′-MBB. Repeating the above arguments for r > 1 and r < 1, we observe that
for buyer i no new MBB segments evolve in Sr with r 6= 1. Hence, the spending
f
ij

is MBB for i.

We conclude that (f ,p) is a thrifty equilibrium. ut

B.2 Proof of Lemma 2

For the analysis we also consider

B(T,p) = {i | ∃(i, j, k) ∈ K(T,p)},
Ba(T,p) = {i | ∃(i, j, k) ∈ Ka(T,p)},

as the sets of buyers corresponding to K(T,p) and Ka(T,p), where Ba(T,p) ⊆
B(T,p).

We first focus on Sr1 with r1 = maxj p
′
j/pj , i.e., the set of goods with largest

factor of price increase from p to p′. For any i ∈ B(Sr1 ,p
′), there is some

(i, j, k) ∈ K(Sr1 ,p
′) such that uijk/p

′
j ≥ uij′k′/p′j′ for all p′-active (i, j′, k′) with

j′ 6∈ Sr1 . Since uijk/pj = r1uijk/p
′
j and r1uij′k′/p′j′ > uij′k′/pj′ we conclude

K(Sr1 ,p
′) ⊆ K(Sr1 ,p).

Next we analyze the total money spent on segments with j ∈ Sr1 by buyers
in B(Sr1 ,p

′), with respect to equilibria E and E′. Since the prices p′j of goods
j ∈ Sr1 decrease by the largest factor, the spending on these goods in E can only
increase. In fact, we have that∑

(i,j,k)∈K(Sr1
,p)

fijk ≥
∑

(i,j,k)∈K(Sr1
,p)

f ′ijk , for every buyer i ∈ B. (5)

This implies ∑
j∈Sr1

paj =
∑

i∈B(Sr1 ,p)

∑
(i,j,k)∈K(Sr1 ,p)

fijk

≥
∑

i∈B(Sr1
,p′)

∑
(i,j,k)∈K(Sr1

,p′)

f ′ijk =
∑

j∈Sr1

p′j
a
. (6)

However, since p′j > pj for every j ∈ Sr1 , this can only be fulfilled when the
inequalities in (5) and (6) are equalities. In particular, all goods in Sr1 must
exactly reach their earning limit in both E and E′ (as already observed in
Proposition 1 part 2). Moreover, in E, no i ∈ B(Sr1 ,p) \ B(Sr1 ,p

′) can ever
receive allocation from goods in Sr1 . Hence, Ba(Sr1 ,p) = Ba(Sr1 ,p

′).
In both E and E′ each buyer i ∈ Ba(Sr1 ,p) spends the same amount of

money on Sr1 , which we denote by mi(Sr1). Every buyer spends on segments in
non-increasing order of uijk/pj . This implies that a segment is p-MBB iff it is



p′-MBB. The possible allocations are the solution of a transportation problem,
where each good j ∈ Sr1 receives dj flow, each buyer i ∈ Ba(Sr1 ,p) emits mi(Sr1)
flow, routed over the same set of MBB edges in non-increasing order of bang-
per-buck ratio. Every such allocation is a possible spending in both equilibria.
This implies Ka(Sr1 ,p) = Ka(Sr1 ,p

′). Note that Ka(Sr1 ,p
′) ⊂ K(Sr1 ,p

′) when
there are two p′-active segments (i, j, k), (i, j′, k′) ∈ K(Sr1 ,p

′) with fijk = 0 and
fij′k′ > 0.

In this sense, the spending and the way goods are allocated in p remains a
feasible assignment on p′-MBB segments. As such, we can drop the goods from
S1 from consideration. Then, we can apply the analysis in the same way for r2 =
maxj 6∈Sr1

p′j/pj and Sr2 . Iterative application shows the properties for all Sr with
r > 1; that is, Ka(Sr,p) = Ka(Sr,p

′) and Ka(Sr,p) ⊆ K(Sr,p
′) ⊆ K(Sr,p).

Reversing the role of E = (f ,p) and E′ = (f ′,p′) we obtain the same claims for
sets Sr with r < 1. That is, Ka(Sr,p

′) = Ka(Sr,p), Ka(Sr,p) ⊆ K(Sr,p) ⊆
K(Sr,p

′). Finally, since all segments Ka(Sr,p) = Ka(Sr,p
′), for every r 6= 1,

this must also hold for r = 1. This proves parts 1 and 2. Part 3 is a consequence
of part 2 – since Ka(Sr,p) = Ka(Sr,p

′), every p-MBB segment with fijk > 0 is
p′-MBB and vice versa. This proves part 3 and concludes the proof. ut

B.3 Proof of Theorem 2

We first observe the following fact about transportation problems on forests.

Lemma 9. The solution for a transportation problem on a forest is unique.

Proof. Let e = (x, y) be any edge of the forest. Removal of e splits the tree
containing e into two sets X and Y with x ∈ X and y ∈ Y . The flow across e in the
direction from x to y is

∑
u∈X b(u) = −

∑
v∈Y b(y). Note that

∑
w∈X∪Y b(w) = 0.

Alternatively, we may consider any edge (x, y) incident to a leaf x in the
forest. Then the flow across the edge (x, y) is equal to b(x). We add b(x) to b(y),
remove x, and iterate. ut

Consider the equilibrium E = (f ,p) with smallest prices. Suppose there is
another equilibrium E′ = (f ′,p′) with prices p′ ≥ p. By Lemma 9, there are
unique money flows in f and f ′ in E and E′, respectively. Every good j ∈ S1

with pj = p′j has inflow paj in both equilibria. Every good with p′j > pj has
inflow dj in both equilibria due to Proposition 1 part 2. Every MBB segment
(i, j, k) with fijk > 0 remains MBB under p′ due to Lemma 2 part 3. Thus, f
remains a feasible flow for E′. Since by Lemma 9 money flows are unique, we
have f = f ′. ut

B.4 Proof of Lemma 3

The surplus of a good can only decrease if its price decreases or if additional
money flow is pushed into it – in particular, observe that the adjustment of the
flow to ∆-discrete capacities only increases the surplus of each good. If additional



money flow is pushed into a good, its surplus before the push is at least ∆. Hence,
it is non-negative after the push. Price decreases stop once there is a good with
a non-positive surplus, so a non-negative surplus cannot become negative. ut

B.5 Proof of Lemma 4

After initialization, all buyers have surplus `∆ ≤ s(i) ≤ (`+ 1)∆ and all goods
have surplus s(j) ≤ n(` + 1)∆. In the beginning of the outer while-loop, we
reduce ∆ to half and adjust the flow to ∆-discrete capacities. Due to reduction
of ∆, all buyers have surplus 2`∆ ≤ s(i) ≤ 2(`+ 1)∆ and all goods have surplus
s(j) ≤ 2n(`+ 1)∆. Due to adjustment of the flow to ∆-discrete capacities, s(i)
decreases by at most `∆, and s(j) increases by at most `∆, for every i ∈ B,
j ∈ G. This results in `∆ ≤ s(i) ≤ 2(`+ 1)∆ and s(j) ≤ 2n(`+ 1)∆+ `∆. In the
following loop, we reduce the surplus of all buyers to `∆ ≤ s(i) ≤ (`+ 1)∆, which
takes at most n(`+ 1) iterations. This implies that every buyer surplus satisfies
the conditions of a ∆-feasible solution. Every buyer surplus stays unchanged in
the ∆-phase.

In the subsequent ∆-phase, we reduce the surplus of every good to at most
∆. All prices are non-increasing, hence without flow adjustment all surpluses
of goods are non-increasing. In a flow adjustment along path P , we keep every
surplus of intermediate goods the same. We reduce the surplus of good j′ and
increase the surplus of good j by ∆. Since good j has non-positive surplus, this
never increases the surplus beyond ∆. Since good j′ has surplus more than ∆,
this never makes the surplus of good j′ negative.

Hence, in the first ∆-phase there can be at most n iterations that terminate
with Event 1, and at most 2n2(`+1)+n` that terminate with Event 2. Furthermore,
since prices are decreasing, Event 3 happens at most n times overall. Moreover,
since the residual network Gr expands at most n times by including a new buyer,
Event 4 happens at most n times in each iteration. Overall, the first ∆-phase
takes time at most n(`+ 1) + n(n+ 2n2(`+ 1) + n`) + n = O(n3`).

Note that at the end of the ∆-phase, we have a ∆-feasible solution. The
conditions for the surplus of all buyers hold, since they were unchanged during
the ∆-phase. By Lemma 3, we have negative surplus only for goods whose price
has not been touched in the process. By termination of the ∆-phase, it follows
that every good surplus satisfies the conditions of ∆-feasible solution.

Hence, in every subsequent run of the outer while-loop, we start with s(j) ≤ ∆
for all goods. After adjustment of ∆ and the flow to ∆-discrete capacities, we
have s(j) ≤ (`+ 2)∆ for every j ∈ G and `∆ ≤ s(i) ≤ 2(`+ 1)∆ for every i ∈ B.
The next for-loop then guarantees s(i) ≤ (`+ 1)∆ for all buyers. By repeating
the arguments above, the following ∆-phase takes time O(n2`). ut

B.6 Proof of Lemma 5

Note that the flow values are always ∆-integral, hence they are rational numbers
with desired size. Also, the starting prices are rational numbers of desired size.
At the end of each iteration, one of the four events occurs. In all cases, we show



that prices remain polynomially bounded if they are so at the beginning of the
iteration. This will complete the proof.

In case of Event 3, a capped good j becomes uncapped, so pj = dj and the
ratio of any other price in the active component and pj can be written as the ratio
of product of at most n utility values. Hence, they are polynomially bounded.
The other prices are not touched, so they remain same.

In case of Event 4, a new active segment arises, and therefore we can again
write any price in the active component in terms of a price variable which has
not been touched. All prices are polynomially bounded.

Event 1 can happen only if pak = pk. In that case, pk is ∆-integral and all
other prices in the active component can be expressed in terms of pk using the
MBB relation. Hence, all prices are of desired size.

In case of Event 2, if s(j) < 0, then this implies that pj has not been decreased
since the beginning, so all prices are again fine. For the other case, s(j) = 0 and
that implies pj is ∆-integral. Therefore, all prices are polynomially bounded. ut

B.7 Proof of Lemma 6

Consider the connected components of bipartite graph (B ∪G,E), where E =
{(i, j) ∈ B ×G | fij > 0}. We show the claim for each connected component C
separately. If there is a good j with negative surplus, then pj = p0j . This implies
that ph ≥ dh and pah = dh for all goods h ∈ C ∩ G. Hence the claim follows
from (MC). If all goods have non-negative surplus,

∑
j∈N(B̂)

paj −
∑
i∈B̂

mi =
∑

j∈N(B̂)

paj −∑
i∈B̂

fij

+
∑
i∈B̂

 ∑
j∈N(B̂)

fij −mi


≥

∑
j∈N(B̂)

(
paj −

∑
i∈B

fij

)
+
∑
i∈B̂

 ∑
j∈N(B̂)

fij −mi


=

∑
u∈B̂∪N(B̂)

s(u) ≥ 0 .

ut

B.8 Proof of Lemma 7

The first claim follows from Lemma 4. Thus, s(j) ≤ ∆ for every good j. By
Lemma 6

0 ≤
∑
j∈G

paj −
∑
i∈B

mi =
∑

u∈B∪G
s(u) ≤ n(`+ 1)∆−

∑
u; s(u)<0

‖s(u)‖ ,

and hence s(j) ≥ −n(`+ 1)∆ for every good j. ut



B.9 Proof of Theorem 3

At the beginning, ∆ ≤ Un+1 and ∆ is reduced to ∆/2 until ∆ < 1/(2`(2nU)4n).
Therefore, since ` ≥ n, the total number of ∆-phases is O(n log(`+ nU)). While
the first phase takes time O(n3`), each subsequent phase takes time O(n2`).
Further, PostProcessingS takes O(n4 log (nU)) time [11]. The total running time
of Algorithm 1 is O(n3` log (`+ nU)). ut

B.10 Proof of Theorem 4

By Lemma 2 part 3, we know that if fijk > 0, then (i, j, k) is an MBB segment in
every thrifty equilibrium. Let E(f) = {(i, j, k) | fijk > 0}, and let Gc and Gu be
the (unique) sets of capped and uncapped goods in thrifty equilibria, respectively.
Note that a vector q of pointwise smallest prices implies a pointwise largest MBB
ratio αi for all buyers i ∈ B. Using λi = 1/αi > 0, Algorithm 2 optimizes the
LP to find the minimal λi with prices q that preserve the MBB segments. The
prices q then determine all active segments, and they determine the flow on all
segments that are non-active and MBB (and, thus, closed). For the active ones,
the feasible flows are exactly the solutions to a straightforward transportation
problem. In particular, the original flow f stays an equilibrium flow, since all
edges that carry flow in f stay MBB, the outflow of every buyer i is mi, the
inflow of every good j is paj . Moreover, f saturates non-active MBB segments
under prices q, which is directly implied by the proof of Lemma 2, part 2. ut

B.11 Proof of Theorem 5

It is easy to check that throughout the algorithm, (f ,p) always remains a thrifty
equilibrium. Assume by contradiction that at the end of the algorithm, (f ,p)
is not an equilibrium with largest prices. Let E′ = (f ′,p′) be an equilibrium
with largest prices, and define S1 = {j | p′j > pj}. By Proposition 1 part 2, all
goods in S1 are capped goods. Moreover, by Lemma 2 part 3 every segment with
fijk > 0 for j ∈ S1 is also an MBB segment in E′. Because prices of goods in
S1 strictly decrease from p′ to p, every buyer i with active edges in S1 in the
active segment graph with prices p′ will have active edges only to S1 with prices
p. Therefore, set S is nonempty for the While loop, and the algorithm should
not terminate. ut

B.12 Proof of Proposition 2

First, we replace each item with dj ≤ 2n by dj auxiliary items with supply 1
as in the direct adjustment. Each of these gets an auxiliary good with earning
limit 1 in the market. For each item with dj > 2n, we introduce an uncapped
good in the market. For every auxiliary good, we assume that every buyer i has
utility uij = vij . For every uncapped good, we assume every buyer i has utility
uij = vijdj . Then we use our algorithm above to compute a thrifty equilibrium



for this market in time O((nm)4 log((nm) · maxi,j vijdj)). Let (x,p) be this
equilibrium.

The subsequent rounding of the equilibrium allocation follows [8]. Consider
the spending graph, i.e., the subgraph of the MBB graph where buyers spend
their money. Because of non-degeneracy of the MBB graph [8, 16], the spending
graph is a forest. To handle the uncapped goods, we first present an inefficient
approach and then observe how to implement it implicitly in polynomial time.

Given an uncapped good j, let us expand the spending graph in the following
way: Introduce dj many copies, each with price p′j = pj/dj . The valuation of
buyer i for each copy is vij . Since good j is uncapped, we know pj ≤

∑
imi = n.

Moreover, since dj > 2n, this implies p′j < 1/2. Let fij = xijpj be the money that
agent i spends on good j. The parent agent i0 in the spending graph becomes
direct parent of dfi0,j/p′je many copies. If fi0,j/p

′
j is not integer, the parent pays

p′j to bfi0,j/p′jc many copies, and the rest to one additional copy. The first child
i1 of good j is assigned to contribute the missing money for this additional copy
(until it is fully paid for) and becomes its child. Then, if i1 still has remaining
money, it contributes this money to purchase further copies, for which it becomes
the parent. Also, it remains parent of any other goods j′ 6= j for which it is a
parent in the spending graph. Naturally, if i0 exactly pays an integer number of
copies, i1 becomes the root of a new tree component and purchases additional
copies of good j in the same way.

More formally, i1 becomes parent of

max
(
0,
⌈(
fi1,j −

(
p′j · dfi0,j/p′je − fi0,j

))
/p′j
⌉)

further copies of good j. We continue this expansion process, in which child
agent ik of good j becomes parent of

max

(
0,

⌈(
fik,j −

(
p′j ·

⌈
k−1∑
`=0

fi`,j/p
′
j

⌉
−

k−1∑
`=0

fi`,j

))
/p′j

⌉)
. (7)

many copies of good j. Since prices and utilities are both scaled by dj , it
is easy to verify that this represents an equilibrium assignment for the market
where we introduce dj auxiliary goods for good j, each with earning limit 1.

Now, since p′j < 1/2, the rounding procedure in [8] applied to this expanded
spending graph will assign all copies of item j to the parent agent of the corre-
sponding good and remove them from the graph. Thus, the rounding procedure
simply removes good j from the spending graph and assigns the number of copies
given by (7) to parent buyer i0 and children i`, for ` = 1, 2, . . .. Obviously, this
can be done directly for each uncapped good j in O(n) time without explicit
expansion of the spending graph. Consequently, our adjusted algorithm achieves
a running time of O(n4 log nU) because our algorithm takes O(n4 log nU) time
and the rounding procedure takes O(n4) time. ut


