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Abstract. In this paper, we introduce the bounded budget betweenness central-
ity game, a strategic network formation game in which nodes build connections
subject to a budget constraint in order to maximize their betweenness centrality, a
metric introduced in the social network analysis to measure the information flow
through a node. To reflect real world scenarios where short paths are more impor-
tant in information exchange, we generalize the betweenness definition to only
consider shortest paths of length at most `. We present both complexity and con-
structive existence results about Nash equilibria of the game. For the nonuniform
version of the game where node budgets, link costs, and pairwise communication
weights may vary, we show that Nash equilibria may not exist and it is NP-hard to
decide whether Nash equilibria exist in a game instance. For the uniform version
of the game where link costs and pairwise communication weights are one and
each node can build k links, we construct two families of Nash equilibria based
on shift graphs, and study the properties of Nash equilibria. Moreover, we study
the complexity of computing best responses and show that the task is polynomial
for uniform 2-B3C games and NP-hard for other games.

Keywords: algorithmic game theory, network formation game, Nash equilibrium,
betweenness centrality

1 Introduction

Many network structures in real life are not designed by central authorities. Instead, they
are formed by autonomous agents who often have selfish motives [17]. Typical exam-
ples of such networks include the Internet where autonomous systems linked together
to achieve global connection, peer-to-peer networks where peers connect to one another
for online file sharing (e.g. [7, 19]), and social networks where individuals connect to
one another for information exchange and other social functions [18]. Since these au-
tonomous agents have their selfish motives and are not under any centralized control,
they often act strategically in deciding whom to connect to in order to improve their
own benefits. This gives rise to the field of network formation games, which studies the
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game-theoretic properties of the networks formed by these selfish agents as well as the
process in which all agents dynamically adjust their strategies [1, 9, 13–15].

A key measure of importance of a node is its betweenness centrality (or betweenness
for short), which is introduced originally in social network analysis [10, 16]. If we view
a network as a graph G = (V,E) (directed or undirected), the betweenness of a node
(or vertex) i in G is

btwi(G) =
∑

u6=v 6=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

(1)

where m(u, v) is the number of shortest paths from u to v in G, mi(u, v) is the number
of shortest paths from u to v that pass i in G, and w(u, v) is the weight on pair (u, v).
Intuitively, if the amount of information from u to v is w(u, v), and the information
is passed along all shortest paths from u to v equally, then the betweenness of node i
measures the amount of information passing through i among all pair-wise exchanges.

In this paper, we generalize the betweenness definition with a parameter ` such that
only shortest paths with length at most ` are considered in betweenness calculation.
Formally, we define

btwi(G, `) =
∑

u6=v 6=i∈V, m(u,v,`)>0

w(u, v)
mi(u, v, `)
m(u, v, `)

, (2)

where m(u, v, `) is the number of shortest paths from u to v in G with length at most
`, and mi(u, v, `) is the number of shortest paths from u to v that passes i in G with
length at most `. It is easy to see that btwi(G) = btwi(G,n−1), where n is the number
of vertices in G.

Betweenness with path length constraint is reasonable in real-world scenarios. In
peer-to-peer networks such as Gnetella [19], query requests are searched only on nodes
with a short graph distance away from the query initiator. In social networks, researches
(e.g. [4, 5]) show that short connections are much more important than long-range con-
nections.

In a decentralized network with autonomous agents, each agent may have incentive
to maximize its betweenness in the network. For example, in computer networks and
peer-to-peer networks, a node in the network may be able to charge the traffic that it
helps relaying, in which case the revenue of the node is proportional to its betweenness
in the network. So the maximization of revenue is consistent with the maximization of
the betweenness. In a social network, an individual may want to gain or control the most
amount of information travelling in the network by maximizing her betweenness.

In this paper, we introduce a network formation game in which every node in a
network is a selfish agent who decides which other nodes to connected to in order
to maximize its own betweenness. Building connections with other nodes incur costs.
Each node has a budget such that the cost of building its connections cannot exceed
its budget. We call this game the bounded budget betweenness centrality game or the
B3C game. When distinction is necessary, we use `-B3C to denote the games using
generalized betweenness definition btwi(G, `).
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Bounded budget assumption, first incorporated into a network formation game
in [14], reflects real world scenarios where there are physical limits to the number of
connections one can make. In computer and peer-to-peer networks, each node usually
has a connection limit. In social networks, each individual only has a limited time and
energy to create and maintain relationships with other individuals. An alternative treat-
ment to connection costs appearing in more studies [1, 9, 13, 15] is to subtract connec-
tion costs from the main objectives to be maximized. This treatment, however, restricts
the variety of Nash equilibria exhibited by the game, e.g. only allowing dense graphs to
be Nash equilibria [13]. Therefore, in this paper we choose to incorporate the bounded
budget assumption, even though it makes the game model more complicated.

In this paper, we consider the directed graph variant of the game, in which nodes
can only establish outgoing links to other nodes. Since incoming links help increasing
nodes’ betweenness, nodes should be happy to accept incoming links created by other
nodes. This mitigates the concern on many network formation games in which connec-
tion creation is one-sided decision. Since the game allows some trivial Nash equilibria
(such as a network with no links at all), we study a stronger form called maximal Nash
equilibria, in which no node can add more outgoing links without exceeding its bud-
get constraint. Adding outgoing links of a node can only help its betweenness, so it is
reasonable to study maximal Nash equilibria in the B3C games.

We present both complexity and existence results about B3C games. First, we study
the existence of maximal Nash equilibria in nonuniform `-B3C game, which is specified
by several parameters concerning the node budgets, link costs, and pairwise communi-
cation weights (Section 3). We show that a nonuniform `-B3C game may not have any
maximal Nash equilibria for any ` ≥ 2. Moreover, given these parameters as input, it
is NP-hard to determine whether the game has a maximal Nash equilibrium. The result
indicates that finding Nash equilibria in general `-B3C games is a difficult task.

Second, we address the complexity of computing best responses in `-B3C games
(Section 4). For uniform `-B3C games where all pair weights are one, all link costs
are one, and all node budgets are given as an integer k, we show that with ` = 2,
computing a best response takes O(n3) time. For all other cases (uniform games with
` ≥ 3 or nonuniform games with ` ≥ 2), the task is NP-hard.

Finally, we turn our attention to the construction and the properties of Nash equi-
libria in the uniform `-B3C game with n nodes and k outgoing edges from each node
(Section 5). We introduce a type of multi-partite graphs that we call shift graphs, which
are variants of better known De Bruijn graphs and Kautz graphs. Based on these shift
graphs, we construct two different families of Nash equilibria for uniform `-B3C games.
One family gives a stronger form of Nash equilibria called strict Nash equilibria, while
the other family belongs to what we call `-path-unique graphs (`-PUGs), which we
show are always Nash equilibria for uniform `-B3C games. We then use `-PUGs to
study several properties of Nash equilibria. In particular, we show that (a) for any `, k
and large enough n (n ≥ (k + `)!/k!), a maximal Nash equilibrium exists; (b) Nash
equilibria may exhibit rich structures, e.g. they may be disconnected or have unbalanced
in-degrees and betweenness among nodes; and (c) for 2-B3C games, all maximal Nash
equilibria must be 2-PUGs if the maximum in-degree is o(n) (with k being a constant).
The proofs for all results in this paper are available in our full technical report [2].
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Related work. There are a number of studies on network formation games with Nash
equilibrium as the solution concept [1, 3, 9, 13–15]. Most of the above work belong to
a class of games in which nodes try to minimize their average shortest distances to
other nodes in the network [1, 9, 14, 15], which is called closeness centrality in social
network analysis [10].

Our research is partly motivated by the work of [13], in which Kleinberg et al. study
a different type of network formation games related to the concept of structural holes
in organizational social network research. In this game, each node tries to bridge other
pairs of nodes that are not directly connected. In a sense, this is a restricted type of be-
tweenness where only length-2 shortest paths are considered. Besides some difference
in the game setup, there are two major differences between our work and theirs. First,
we consider betweenness with a general path length constraint of ` as well as no path
length constraints, while they only consider the bridging effect between two immediate
neighbors of a node. Second, we incorporate budget constraints to restrict the number
of links one node can build, while their work subtracts link costs in the payoff function
of each node. As the result of their treatment to link costs, they show that all Nash equi-
libria are limited to dense graphs with Ω(n2) edges where n is the number of vertices.
This is what we want to avoid in our study. A couple of other studies [6, 11] also address
strategic network formations with structural holes, but they do not address the compu-
tation issue, and their game formats have their own limitations (e.g. star networks as the
only type of equilibria [11] or limited to length-2 paths [6]).

Our game is also inspired by the Bounded Budget Connection game of Laoutaris
et al. [14]. This game considers directed links and bounded budgets on nodes, using
minimization of average shortest distances to others as the objective for each node. It
shows hardness results in determining the existence of Nash equilibria in general games,
and provides tree-like structures as Nash equilibria for the uniform version of the game.
It also shows that Abelian Cayley graphs cannot be Nash equilibria in large networks.

Solution concepts other than Nash equilibrium are also used in the study of network
formation games. Authors in [8, 12] consider games in which two end points of a link
have to jointly agree on adding the link, and they use pairwise stability as an alternative
to Nash equilibrium.

2 Problem Definition

A (nonuniform) bounded-budget betweenness centrality (B3C) game with parameters
(n, b, c, w) is a network formation game defined as follows. We consider a set of n
players V = {1, 2, . . . , n}, which are also nodes in a network. Function b : V → N
specifies the budget b(i) for each node i ∈ V (N is the set of natural numbers). Function
c : V × V → N specifies the cost c(i, j) for the node i to establish a link to node j,
for i, j ∈ V . Function w : V × V → N specifies the weight w(i, j) from node i to
node j for i, j ∈ V , which can be interpreted as the amount of traffic i sends to j, or the
importance of the communication from i to j.

The strategy space of player i in B3C game is Si = {si ⊆ V \{i} |
∑

j∈si
c(i, j) ≤

b(i)}, i.e., all possible subsets of outgoing links of node i within i’s budget. A strategy
profile s = (s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn is referred to as a configuration
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in this paper. The graph induced by configuration s is denoted as Gs = (V,E), where
E = {(i, j) | i ∈ V, j ∈ si}. For convenience, we will also refer Gs as a configuration.

In the game without path length constraint, the utility of a node i in configuration
G is defined by the betweenness centrality of i as given in equation (1). When we
generalize betweenness centrality and consider only shortest paths of length at most `,
the utility of node i is given as in equation (2). We use `-B3C to denote the generalized
version of game with parameter `.

In a configuration s, if no node can increase its own utility by changing its own
strategy unilaterally, we say that s is a (pure) Nash equilibrium, and we also say that
s is stable. Moreover, if in configuration s any strategy change of any node strictly
decreases the utility of the node, we say that s is a strict Nash equilibrium.

The following Lemma shows the monotonicity of node betweenness when adding
new edges to a node, which motivates our definition of maximal Nash equilibrium.

Lemma 1. For any graph G = (V,E), let G′ = (V,E ∪ {(i, j)}) where i, j ∈ V and
(i, j) 6∈ E. Then btwi(G) ≤ btwi(G′), and btwi(G, `) ≤ btwi(G′, `) for all ` ≥ 2.

Given a nonuniform B3C game with parameters (n, b, c, w), a maximal strategy of
a node v is a strategy with which v cannot add any outgoing edges without exceeding
its budget. We say that a graph (configuration) is maximal if all nodes use maximal
strategies in the configuration. A configuration is a maximal Nash equilibrium if it is
a maximal graph and it is a Nash equilibrium. By Lemma 1, it makes sense to study
maximal Nash equilibria where no node can add more edges within its budget limit.
Moreover, trivial non-maximal Nash equilibria exist (e.g. graphs with no edges), mak-
ing it less interesting to study all Nash equilibria. Therefore, for the rest of the paper,
we focus on maximal Nash equilibria in B3C games. The following lemma states the
relationship between maximal Nash equilibria and strict Nash equilibria, a direct con-
sequence of the monotonicity of betweenness centrality.

Lemma 2. Given a B3C game with parameters (n, b, c, w), any strict Nash equilibrium
in the game is a maximal Nash equilibrium.

Based on the above lemma, for positive existence of Nash equilibria, we sometimes
study the existence of strict Nash equilibria to make our results stronger.

A special case of B3C game is the uniform game, which has parameters n, k ∈ N
such that b(i) = k for all i ∈ V , and c(i, j) = w(i, j) = 1 for all i, j ∈ V .

3 Determining Nash Equilibria in Nonuniform Games

In this section we show that a nonuniform B3C game may not have any maximal (or
strict) Nash equilibrium, and determining whether a game has a maximal (or strict)
Nash equilibrium is NP-hard. For simplicity, we address the B3C game without path
length constraint first, and then present the results on the `-B3C game.
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Fig. 1. Main structure of the gadget that has no maximal (or strict) Nash Equilibrium.

3.1 Nonexistence of Maximal Nash Equilibria

We fist show that some B3C game with nonuniform edge cost has no maximal (or strict)
Nash equilibrium. We construct a family of graphs, which we refer to as the gadget, and
show that B3C games based on the gadget do not have any maximal Nash equilibrium.
The gadget is shown in Figure 1. There are 5+3t+ r nodes in the gadget, where t ∈ N
and r = 1, 2, 3. The values of t and r allow us to construct a graph of any size great than
5. There are r nodes, denoted asA,A′, A′′ in the figure, which establish edges toB and
C. Both B and C can establish at most one edge to a node in {D,E, F} respectively.
Each node in {D,E, F} connects to a cluster of size t each (not shown in the figure).
The only requirement for these three clusters is that they are identical to each other
and are all strongly connected, so D,E, F can reach all nodes in their corresponding
clusters. Nodes in the three clusters do not establish edges to the other clusters or to
A,A′, A′′, B, C,D,E, F .

We classify nodes and edges as follows. NodesB andC are flexible nodes since they
can choose to connect one node in {D,E, F}. NodesD,E, F are triangle nodes, nodes
in the clusters are cluster nodes, and nodesA,A′, A′′, are additional nodes. Edges (i, j)
with i ∈ {B,C} and j ∈ {D,E, F} are flexible edges. Other edges shown in the
figure plus the edges in the clusters are fixed edges. The remaining pairs with no edge
connected (e.g. (A,D), (A,E), etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a B3C game to realize the gadget. In particular,
(a) n = 5 + 3t + r; (b) b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge,
c(i, j) = 1 if (i, j) is a flexible edge, c(i, j) = M > 1 if (i, j) is a forbidden edge;
and (d) w(i, j) = 1 for all i, j ∈ V . Note that in the game only the edge costs are
nonuniform. With the above construction, we can show the following theorem.

Theorem 1. The B3C game based on the gadget of Figure 1 does not have any maximal
(or strict) Nash equilibrium. This implies that for any n ≥ 6, there is an instance of
B3C game with n players that does not have any maximal (or strict) Nash equilibrium.

proof (sketch). In any maximal graph, each of the flexible nodes B and C must have
exactly one flexible edges pointing to one of the triangle nodes {D,E, F}. It is me-
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chanical to verify that if one flexible node points to a traingle node X ∈ {D,E, F},
the best response of the other flexible node is to point to Y ∈ {D,E, F} that is “down-
stream” from X , i.e. (X,Y ) is a fixed edge. Then the best responses of B and C will
cycle through the triangle nodes forever. Therefore, there is no Nash equilibrium for
this game. By Lemma 2, there is no strict Nash equilibrium either. �

It is easy to verify that in the proof of Theorem 1 the critical paths that matter for
the argument are from A, A′ and A′′ to nodes D,E, F , and the lengths of these critical
paths are at most three. Therefore, with the same argument, we directly know that for
all ` ≥ 3, the `-B3C game based on Figure 1 does not have maximal Nash equilibrium
either. We develop a different gadget in [2] and show that for ` = 2, 3 that `-B3C game
based on that gadget has no maximal (or strict) Nash equilibrium. Therefore, we have

Theorem 2. For any ` ≥ 2 and n ≥ 6, there is an instance of `-B3C game with n
players that does not have any maximal (or strict) Nash equilibrium.

3.2 Hardness of Determining the Existence of Maximal Nash Equilibria

In this section we use the gadget given in Figure 1 as a building block to show that
determining the existence of maximal Nash equilibria given a nonuniform B3C game is
NP-hard. In fact, we use strict Nash equilibria to obtain a stronger result.

We define a problem TWOEXTREME as follows. The input of the problem is
(n, b, c, w) as the parameter of a B3C game. The output of the problem is Yes or No,
such that (a) if the game has a strict Nash equilibrium, the output is Yes; (b) if the game
has no maximal Nash equilibrium, the output is No; and (c) for other cases, the output
could be either Yes or No. Both deciding the existence of maximal Nash equilibria and
deciding the existence of strict Nash equilibria are stronger problems than TWOEX-
TREME, because their outputs are valid for the TWOEXTREME problem by Lemma 2.
We show the following result by a reduction from the 3-SAT problem.

Theorem 3. The problem of TWOEXTREME is NP-hard.

Corollary 1. Both deciding the existence of maximal Nash equilibria and deciding the
existence of strict Nash equilibria of a B3C game are NP-hard.1

We obtain the same result for the `-B3C game.

Theorem 4. For any ` ≥ 2, both deciding the existence of maximal Nash equilibria
and deciding the existence of strict Nash equilibria in an `-B3C game are NP-hard.

1 In fact, the decision problem for any intermediate concept between maximal Nash equilibrium
and strict Nash equilibrium is also NP-hard. For example, deciding the existence of nontran-
sient Nash equilibria [9] is also NP-hard because any strict Nash equilibrium is a nontransient
Nash equilibrium while the existence of a nontransient Nash equilibrium implies the existence
of a maximal Nash equilibrium in B3C games.
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4 Complexity of Computing Best Responses

The best response of a node in a configuration is its strategy that gives the node the best
utility (i.e. best betweenness). In this section, we show the complexity of computing
best responses for uniform games first, and then extend it for nonuniform games.

In a uniform game with parameters (n, k), one can exhaustively search all
(
n−1

k

)
strategies and find the one with the largest betweenness. Computing the betweenness
of nodes given a fixed graph can be done by all-pair shortest paths algorithms in poly-
nomial time. Therefore, the entire brute-force computation takes polynomial time if k
is a constant. However, if k is not a constant, the result depends on `, the parameter
bounding the shortest path length in the `-B3C game.

Consider first the case of a uniform 2-B3C game. Let G = (V,E) be a directed
graph. For a node v in G, let Gv,S be the graph where v has outgoing edges to nodes in
S ⊆ V \ {v} and all other nodes have the same outgoing edges as in G. Then we have

Lemma 3. For all S ⊆ V \ {v}, btwv(Gv,S , 2) =
∑

u∈S btwv(Gv,{u}, 2).

The lemma shows that for a uniform 2-B3C game, the betweenness of a node can be
computed by the sum of its betweenness when adding each of its outgoing edges alone.

Theorem 5. Computing the best response in a uniform 2-B3C game with parameters
(n, k) can be done in O(n3) time.

proof (sketch). For each u ∈ V \ {v}, node v computes btwv(Gv,{u}, 2) in O(n2) time.
Then v selects the top k nodes u with the largest btwv(Gv,{u}, 2) as its strategy, which
is guaranteed to be v’s best response by Lemma 3. �

For cases other than the uniform 2-B3C game, we show that best response computa-
tion is NP-hard, via a reduction from either the knapsack problem (for nonuniform the
2-B3C game) or the set cover problem (the other cases).

Theorem 6. It is NP-hard to compute the best response in either a nonuniform 2-B3C
game, or an `-B3C game with ` ≥ 3 (uniform or not), or a B3C game without path
length constraint (uniform or not).

5 Nash Equilibria in Uniform Games

In this section we focus on uniform `-B3C games. we first define a family of graph
structures called shift graphs and show that they are able to produce Nash equilibria for
B3C games. We then study some properties of Nash equilibria in uniform games.

5.1 Construction of Nash Equilibria Via Shift Graphs

We first define shift graphs and non-rotational shift graphs. Then we show that for any
`, k and any `′ ≥ `, the non-rotational shift graphs with n = (`′ + k)!/k! nodes are all
Nash equilibria in the uniform `-B3C game with parameter n and k. Moreover, we use
shift graphs to construct strict Nash equilibria for both `-B3C games and B3C games
without path length constraint, for certain combinations of n and k where k = Θ(

√
n).
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Fig. 2. Non-rotational shift graph SGnr(2, 4).

Definition 1. A shift graph G = (V,E) with parameters m, t ∈ N+ and t ≥ m,
denoted as SG(m, t), is defined as follows. Each vertex of G is labeled by an m-
dimensional vector such that each dimension has t symbols and no two dimensions
have the same symbol appeared in the label. That is, V = {(x1, x2, . . . , xm) | xi ∈ [t]
for all i ∈ [m], and xi 6= xj for all i, j ∈ [m], i 6= j}. A vertex u has a directed edge
pointing to a vertex v if we can obtain v’s label by shifting u’s label to the left by one
digit and appending the last digit on the right. That is, E = {(u, v) | u, v ∈ V, u[2 :
m] = v[1 : (m − 1)]}, where u[i : j] denote the sub-vector (xi, xi+1, . . . , xj) with
u = (x1, x2, . . . , xm).

In the shift graph SG(m, t), we know that the number of vertices is n = t · (t −
1) · · · (t −m + 1) = t!/(t −m)!, and each vertex has out-degree t −m + 1. Notice
that the definition requires that m dimensions have all different symbols. If they are
allowed to be the same, then the graphs are the well-known De Bruijn graphs, whereas
if we require only that the two adjacent dimensions have different symbols, the graphs
are Kautz graphs, which are iterative line graphs of complete graphs.

Definition 2. A non-rotational shift graph with parameter m, t ∈ N+ and t ≥ m + 1,
denoted as SGnr(m, t), is a shift graph with the further constraint that if (u, v) is
an edge, then v’s label is not a rotation of u’s label to the left by one digit. That is,
E = {(u, v) | u, v ∈ V, u[2 : m] = v[1 : (m − 1)] and u[1] 6= v[m]}, where u[i]
denotes the i-th element of u.

Graph SGnr(m, t) also has t!/(t −m)! vertices but the out-degree of every vertex
is t − m. A simple non-rotational shift graph SGnr(2, 4) is given in Figure 2 as an
example. Non-rotational shift graphs is a class of vertex-transitive graphs that are Eule-
rian and strongly connected. More importantly, they have one property that makes them
Nash equilibria of `-B3C games, as we now explain.

We say that a vertex v in a graph G is `-path-unique if any path that passes through
v (neither starting nor ending at v) with length no more than ` is the unique shortest path
from its starting vertex to its ending vertex. A graph is k-out-regular if every vertex in
the graph has out-degree k. A k-out-regular graph is an `-path-unique graph (or `-PUG
for short) if every vertex in the graph is `-path-unique.
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Lemma 4. Non-rotational shift graph SGnr(`, k + `) is an `-PUG.

Lemma 5. If a directed graph G has n nodes and is k-out-regular and `-path-unique,
then G is a maximal Nash equilibrium for the uniform `-B3C game with parameter n
and k.

With the above results, we immediately have

Theorem 7. For any ` ≥ 2, `′ ≥ `, k ∈ N+, graph SGnr(`′, k+ `′) is a maximal Nash
equilibrium of the uniform `-B3C game with parameters n = (k + `′)!/k! and k.

The above construction of maximal Nash equilibria is based on path-unique graphs.
Next we show that shift graphs also lead to another family of Nash equilibria not based
on path uniqueness. In fact, we show that they are strict Nash equilibria for uniform
`-B3C games for every ` ≥ 2 as well as B3C games without path length constraint.

Definition 3. Given a graph G = (V,E), a vertex-duplicated graph G′ = (V ′, E′) of
G with parameter d ∈ N+, denoted as D(G, d), is a new graph such that each vertex of
G is duplicated to d copies, and each duplicate inherits all edges incident to the original
vertex. That is, V ′ = {(v, i) | v ∈ V, i ∈ [d]}, and E′ = {((u, i), (v, j)) | u, v ∈
V, (u, v) ∈ E, i, j ∈ [d]}.
Theorem 8. For any t ≥ 2, d ≥ 2, graph D(SG(2, t), d) is a strict Nash equilibrium
of the uniform `-B3C game with parameters n = dt(t− 1) and k = d(t− 1). It is also
a strict Nash equilibrium of the uniform B3C game without the path length constraint.

In the simple case of t = 2, graph D(SG(2, 2), d) is the complete bipartite graph
with d nodes on each side. For larger t, D(SG(2, t), d) is a t-partite graph with more
complicated structure. When d = 2, we have n = 2t(t − 1) and k = 2(t − 1). Thus,
we have found a family of strict Nash equilibria with k = Θ(

√
n).

An important remark is that when d ≥ 2, each node is split into at least two nodes
inheriting all incoming and outgoing edges, and thus graphs D(SG(2, t), d) for all t ≥
2 and d ≥ 2 are not `-PUGs for any ` ≥ 2. Therefore, the construction by splitting
nodes in shift graphs SG(2, t) are a new family of construction not based on path-
unique graphs.

5.2 Properties of Nash Equilibria

From Lemma 5, we learn that `-PUGs are good sources for maximal Nash equilibria
for uniform `-B3C games. Thus we start by looking into the properties of `-PUGs to
obtain more ways of constructing Nash equilibria. The following lemma provides a few
ways to construct new `-PUGs given one or more existing `-PUGs.

Lemma 6. Suppose that G is a k-out-regular `-PUG. The following statements are all
true:

(1) If G′ is a k′-out-regular subgraph of G for some k′ ≤ k, then G′ is an `-PUG.
(2) Let v be a node of G and {v1, v2, . . . , vk} be v’s k outgoing neighbors. We add

a new node u to G to obtain a new graph G′. All edges in G remains in G′, and u has
k edges connecting to v1, v2, . . . , vk. Then G′ is also an `-PUG.

(3) If G′ is another k-out-regular `-PUG and G′ does not shared any node with G,
then the new graph G′′ simply by putting G together with G′ is also an `-PUG.
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Lemma 6 has several important implications. First, by repeatedly applying
Lemma 6 (2) on an existing `-PUG, we can obtain an `-PUG with an arbitrary size.
Combining it with Theorem 7, it immediately implies the following theorem.

Theorem 9. For any ` ≥ 2, k ∈ N+, and n ≥ (k + `)!/k!, there is a maximal Nash
equilibrium in the uniform `-B3C game with parameters n and k.

Next, Lemma 6 implies that Nash equilibria of uniform `-B3C games could be dis-
connected, or weakly connected, or have very unbalanced in-degrees or betweenness
among nodes, which implies that there exist rich structures among Nash equilibria.

Finally, we investigate non-PUG maximal Nash equilibria in the uniform 2-B3C
game with parameters (n, k), which by Theorem 5 is the most interesting case since its
best response computation is polynomial. We want to see that when we fix k, whether
we can find non-PUG maximal Nash equilibria for arbitarily large n. Let maxInd(G)
denotes the maximum in-degree in graphG. The following result provides the condition
under which all maximal Nash equilibria are PUGs.

Theorem 10. LetG be a k-out-regular graph with n nodes. IfmaxInd(G) ≤ n−k
k2+k+1 ,

then G is a maximal Nash equilibrium for the uniform 2-B3C game with parameter n
and k if and only if G is a 2-PUG.

The above theorem implies that non-PUG equilibria is only possible if
maxInd(G) = Θ(n) when k is a constant, which means that non-PUG equilibria
must have very unbalanced in-degrees when n is large. In [2], we show an example of
how to construct such a non-PUG equilibria for arbitrarily large n when k = 2.

Theorem 10 can also be used to eliminate some families of graphs with balanced
in-degrees as maximal Nash equilibria. For example, in [2], we show that when n ≥
k3 + k2 + 2k, a family of symmetrical graphs called Abelian Cayley graphs cannot be
maximal Nash equilibria for uniform 2-B3C games.

6 Future Work

There are a number of directions to continue the study of B3C games. First, besides the
Nash equilibria we found in the paper, there are other Nash equilibria in the uniform
games, some of which have been found by our experiments. We plan to further search
for other Nash equilibrium structures and more properties of Nash equilibria. Second,
we may also look into other variants of the game and solution concept, such as undi-
rected connections or approximate Nash equilibria. Another direction is to study beyond
betweenness definitions based on shortest paths, e.g. betweenness definitions based on
network flows or random walks. This can be coupled with enriching the strategy set of
the nodes to include fractional weighted edges.
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