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Abstract with large constant number of consumers). Thus, we will fo-

We consider the classic cake cutting problem where cuson proportlonalltyln the current paper. S
one allocates a divisible cake toparticipating agents. ~ Another important measure of an allocation is that of ef-
Among all valid diViSiOﬂS, fairness and efﬁciency f|C|ency (a.k.a. SOC|a| Welfare). In contrast W|th fa”’n,%
(a.k.a. social welfare) are the most critical criteria tb sa ficiency evaluates the performance of the solution from a
isfy and optimize, respectively. We study computational global point of view. Specifically, thefficiencyof an alloca-
complexity of computing an efficiency optimal division tion is defined to be the sum of the values of all participants
given the conditions that the allocation satisfies propor- with respect to their own allocation. Efficiency is therefar
tional fairness and assigns each agent a connected piece. concrete quantity that can be optimized.

For linear valuation functions, we give a polynomial

. S e Fairness and efficiency together are among the most crit-
time approximation scheme to compute an efficiency

: : ical factors considered in many applications. An ideal solu
optimal allocation. On the other hand, we show that the tion is to h both (eith tisfied timized). but thi
problem is NP-hard to approximate within a factor of ion is to have both (either satisfied or optimized), but this

Q(ﬁ) for general piecewise constant functions, and is may not necessarily be achievable. In this paper, we will

NP-hard to compute for normalized functions. c_onsider_efficiency opfcimization_g_iven the required (pnepo
tional) fairness condition. Specifically, we will addrebe t

following question:

Resource allocation is a fundamental problem studied exten \é\f/f?géﬁcthg ct?;]n arflgl?ct)?:t%r?svrﬂﬁéeggfr];:ogﬁﬂgggf n
sively in economics, social science, as well as in computer yop 9 '
science, due to its vast applications. A central questiaitsby We will study this question in an important resource allo-
nature ishow to allocate a given set of resources to some po- cation model: cake CUttl.ng, Wh_ere the resource Is a continu-
tential consumertsFor different application domains, there ~ 0us cake and can be divided into pieces and allocated to
are different requirements to be achieved, or different fac individuals. Cake cutting has been a central problem stlidie
tors to be balanced. In particular, individual particigamiay in computer science and social science; see, e.g., (Robert-
want to receive as many resources as possible, while a cen-son and Webb 1998). An important feature of cake cutting
tralized authority may have some global objectives. What is that the cake is divisible and individuals may have differ
criteria should be considered to select an allocation? ent values for different portions of the cake. The problem
Fairness, which, balances individual participants’ com- is therefore represented by a valuation measure function fo
petitive interests, is one of the most important solution-co ~ €ach of the individuals. o _
ditions considered in practice. There are two commonlyused ~ Our interest is to find a division of the cake that maxi-
notions that capture fairness in resource allocation: envy Mizes efficiency given fairness. This question was first con-
freeness and proportionality. In @amvy-freeallocation, no sidered in (Cohler et al. 2011) where the authors gave a
individual envies the allocation of any other individuail;a linear program to compute an envy-free allocation with the
proportionalallocation, every individual is allocated at least Maximum possible efficiency for piecewise constant mea-
an average share with respect to his own measure. It is easysure functions. Their algorithm can be generalized easily t
to see that an envy-free allocation is always proportional. @ polynomial time approximation scheme for any functions
However, in many applications an envy-free allocation ei- that can be represented concisend immediately implies
ther does not exist (e.g., determine accepted papers ofa con the same result for proportional fairness.
ference) or is algorithmically intractable (e.g., caketiogt

I ntroduction

We can divide the cake into small pieces and approximate each
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The solution generated by the linear program, however,
involves a large number of cuts and the allocation to each
participant consists of many separate “tiny” pieces, which
is not desirable in some applications (e.g., division ofra te
ritory). We therefore focus on divisions with exactly— 1
cuts, that is, everyone obtains a connected region. Note tha
with n — 1 cuts, a proportional allocation always exists,
e.g., the well known moving knife procedure (Dubins and
Spanier 1934) generates a fair allocation with 1 cuts for
n participants.

We will study two types of measure functions: linear and
piecewise constant. For linear functions, we give a polyno-
mial time approximation scheme (PTAS) that computes an
(1 — ¢)-approximate efficiency optimal allocation. That is,
for any constant > 0, the solution given by the scheme is
within a factor of(1 —€) to the optimum. Note that this is the
best we can hope for as for linear functions, an optimal solu-
tion may involve irrational numbers. Our algorithm is based
on a critical ingredient of determining an optimal order of
participants to cut the cake: While the intuition is that the
optimal order would be according to the slopes of the linear
functions, we show that this is actually not the case and give
a precise characterization of the order.

For piecewise constant functions, finding an efficiency
optimal allocation turns out to be much harder. While for any
given fixed order of participants, an exactly optimal sauati
can still be found using a dynamic programming approach,
the problem is NP-hard to solve without knowing an optimal
order, even for normalized valuations. For general piesewi
constant functions, we show that it is even NP-hard to find
an allocation whose efficiency is within a factor @f =)

to the optimum. (We refer to (Papadimitriou 1993) as a clas-
sic textbook for computational complexity and approxima-
tions.)

Related Work

Maximizing efficiency in cake cutting with fairness has been
studied extensively in the past. (Reijnierse and Potte®8)9
studied the computation of a Pareto-efficient envy-frez-all
cation. (Brams et al. 2012) studied Pareto efficiency of op-
timal envy-free or equitable allocations. (Caragiannialet
2009) introduced the concept of price of fairness to charac-
terize the loss of efficiency at a cost of fairness. (Aumann
and Dombb 2010) followed the notion of price of fairness
and focused on divisions with only connected pieces. In con-
trast with our work which is to find exact allocations, the
work (Caragiannis et al. 2009; Aumann and Dombb 2010)
addressed on the worst case ratio between the optimum effi-
ciency without and with fairness conditions. Note thatithei
benchmark is optimum efficiency without fairness, whereas
in our efficient algorithm design the benchmark is opti-
mum efficiency with fairness. The work closest to ours was
by (Cohler et al. 2011), where the authors considered effi-
ciency optimization of several valuation functions givae t
envy-free fairness condition (without requiring connekcte
pieces). Independent to our work, (Aumann, Dombb, and
Hassidim 2012) studied egalitarianutilitarian welfare op-
timization withn — 1 cuts; however, we consider efficiency
optimizationwith the fairness condition.

Preliminaries
There aren agents to share a cake, which is represented
by the intervall0, 1]; we will call ‘0’ the left side and ‘1’
the right side. Each agenthas a density functiorf;(-) :
[0,1] = R* U {0}. The valuation of agenitfor the interval

[a,b] C [0,1] is denoted byv;(a,b) = [ fi(z) dz. As-
sume without loss of generality that(0, 1) > 0 (otherwise,
we can simply remove such agents). For &h¢ [0, 1], let
v;(S) denote the valuation of agenfor S, i.e., the sum of
the valuations over disjoint intervals

An allocation(i.e., division) of the cake is a partition into
n disjoint subsets, denoted by = (A4, As,..., A,,). We
require allocations to be fair, captured pyoportionality.
vi(A;) > %vi(o, 1) for anyi, i.e., every agent gets at least
an average share with respect to its own measure. Our ob-
jective is to find a proportional allocation that maximizes
efficiency defined as _, v;(A;). We will restrict our atten-
tion on exactlyn — 1 cuts. That is, we can divide the cake
by onlyn — 1 cuts; thus, each agent will obtain a connected
interval.

Our interest is to study efficiency maximization from
an algorithmic viewpoint. We say an algorithm is an
approximation if the efficiency of its solution is always
within a factor ofa to the optimum efficiency, both con-
ditioned on proportionality. In other words, the compared
benchmark of an algorithm is the maximum efficiency
among all proportional allocations with— 1 cuts.

In this paper we will consider two special families of den-
sity functions that can be represented concisely: linelar va
ations and piecewise constant valuations.

Linear Functions

In this section we will consider linear density functions, |
eachf;(-) can be represented ggx) = a, - « + b;, where

a;, b; are two given numbers. We assume tfidt:) > 0 for
anyx € [0, 1]; this implies in particular thai; > 0. Further,
we havey; (0, 1) = % +b; > 0. Linear function is one of the
most fundamental and well studied valuation functions. It
reflects gradually increasing or decreasing interestserftsg
for the resource.

We will give a polynomial time approximation scheme
(PTAS) to compute an efficiency optimal allocation. First we
will characterize the order of allocations to the agentsin a
optimal solution. Having this characterization, we wileth
use a dynamic programming algorithm to compute a nearly
optimal solution.

Optimal Order

As there are in total — 1 cuts, an allocation correspondsto a
permutation of they agents. To design an algorithm to com-
pute an efficiency optimal allocation, we first need to decide
what order of the agents should be. For the considered lin-
ear functions, one might expect that the optimal order, from
left to right, would be according to the increasing order of
the slopen;. Counter-intuitively, this is not the case, as the
following example shows.

Example 1. Consider two agent$1, 2} with density func-
tions fi(x) = z and fa(x) = 2z 4 10000. Clearly, in an



optimal allocation, agen® will get as much as he can to
maximize efficiency. If the order 152 from left to right ac-

cording to slope, then agemtneeds to geEO, \Q to ensure
his proportional share and ager gets the rest. The effi-
ciency in this order is

1t 3
it /f (22+10000) dz = 1oooo+1—5ooo\/§ ~ 2930.75.
2
2

If the order is reversed, then agentgets [‘/_ 1] due to
proportionality, and agen® gets the rest. The efficiency in
this order is

1 V2

=2 3
it / (22 +10000) dzr = 7 + 5000v/2 ~ 7070.75,
0

which is larger. Thus, ordering agents according to their
slopes does not yield an optimal solution.

As we show in the following, the optimal order is actually
determined by a quantity;, calledorder determinantFor
agent with density functionf;(z) = a;x + b;, define

a;

a; + 2b;

Note that the denominator is guaranteed to be non-zero.
Proposition 1. For any agents andj and any0 < p <
g < r < 1, the order determinand; < d; if and only if

vi (p,q) v (p.q)
vi(p,r) 7 wvi(pr)”

i =

Proof. We first prove the case whege= 0 andr = 1.
For agent;, we havev;(0,1) = %ai + b; andwv;(0,q) =
fg a;x + b; dr = a;q* + bq. Thus, we have

vi(0,q9)  3a:iq° +biq - a .
ui(0,1)  Lai+b GHe =) 5 = et (@ —9)ds.
Similarly, we have(%fg = q+(q*—q)d;. Becausg’—q <

0, it is obvious thatl; < d; if and only if ”1(8’8 > 207(113

For the case wherg # 0 or r # 0, we apply a fransfor-
mation to the density functiofi(-): Let

{ a; =a;i- (r—p)

Define a new density functiom"( ) = aixz + b; and let
b
= [ fl(zx) dx. Lety = ; one can verify that
vi(p,q) _ 3ai(q® —p?) +bi(g - ) _ aiy® + biy _ vi(0,y)
vi(p,r)  3ai(r? —p?) + bi(r — p) 30, + 0 vi(0,1)

Using a similar transformation tg;(-), we can reduce the
problem to the case whepe= 0 andr = 1. Hence, we have

vip,a) _ vi(p,9) vi(0,y) _ vi(0,9)
vi(p,r) ~ vi(p,7) v;(0,1) = v5(0,1)
a) al
aj +2b;  aj + 20
- ai(r —p) a;(r —p)
ai(r+p)+2b;  aj(r+p)+2b;
a; aj
< a; + sz < CLJ‘ —+ 2bj
& di < dj

This completes the proof. O

The order determinant precisely characterizes the order of
the agents in an optimal allocation, shown by the following
lemma.

Lemma 1. There exists an efficiency optimal allocation in
which the allocation (from left to right) is according to the
non-decreasing order af;.

Proof. Given an efficiency optimal allocation, assume that
the allocation to the agents are in the ortlel, . .., n. Then
foranyl < i < n, it suffices to show the following:

o d; <djy1;
e if d; = d; 11, then switching the order afand: + 1 will
lead to an efficiency optimal allocation as well.

We will prove the claims by considering eath- 1,...,n
in the sequence.

Suppose that in an efficiency optimal allocation, agesit
assigned intervdp, ¢|, and agent + 1 is assigned tdqg, 7].

Leto; = L@a) ando;, = =240 (@.7) denote the ratio of
}11,(1077“) U1+1(;D )

the valuation of agentandi: + 1 between their own alloca-

tion and the union of their allocations, respectively. Wgtne

consider two cases.

(1) a; > ;1. We can find a poing’ € [p, q|, such that
vilpd) _ . Now we consider a new allocation, in
i (p,r) +
which agent + 1 gets[p, ¢’], agenti gets[¢’, 7], and the
allocation of all other agents remains unchanged. The so-
cial welfare difference between the original allocatiod an
the new one is

6 (vi(p, q) + viv1(q,7)) = (vit1(p, ¢') +vilg', 7))
= (viri(g,r) —vit1(p,q)) + (vi(p,q') — vilq, 7))
If d; > d;11, by Proposition 1, we have

'Ui+1(p, q’) 'Ui(p, q/) = Qit1 and Ui+1(p7 q) > Ui(p, q)
viti(p,r)  wvilp, ) virr(p,7) ~ wilp,T)
Hence,
vir1(p,q) > @it viga(p, )
Ui+1(Q7 T)
= —— " U; T)=vU; T),
'Ui+1(p,7”) +1(p7 ) +1(Q7 )
and
vilgr)  _ , _ vi(p,9)
op.7) o p.1)
o o tineg) _ vinler) _ i
vit1(p,r) v (p,7)

Hencew;(q,r) > a;11 - vi(p,r) = vi(p, ¢’). This means
thaté < 0, i.e., the new allocation has larger efficiency
than the original allocation, which contradicts the faettth
the original one is an efficiency optimal allocation. Thus,
we haved; < d; ;.

On the other hand, ifl; = d;+1, then by the same cal-
culation as above, we can gef(q,7) = v;(p,¢’) and
vir1(p,¢") = wvit1(g,7), which implies thaty = 0.
Hence, we get another optimal allocation with the order
of s andi + 1 switched.



(2) a; < ;1. In this case we can find a poigt € [q, 7]

such that% = «;. The remaining details of the

proof are similar to the first case and are omitted.

Therefore, by considering ea¢h= 1,...,n — 1 sequently,
the lemma follows. O

Polynomial Time Approximation Scheme

Having a characterization of the order of allocations in an
optimal solution, we will next compute such an allocation.
However, there is one issue: For linear functions, a fair al-
location may require to cut the cake at irrational points. Fo
instance, in Example 1, the unique fair allocation requioes

cut the cake at poin@. This barrier prevents us from find-
ing a tractable algorithm that always outputs a precisaty fa
allocation. As a result, we relax our requirement by consid-
ering (1 — ¢)-fair allocation, in which each agent gets no less
than % share of its value for the entire cake. Such an ap-
proximation on fairness has been considered in, e.g., €¢ohl
etal. 2011; Zivan 2011).

We will use the approach of dynamic programming. For
any givene > 0, we divide the interval0, 1] evenly into
K = [22] subintervals; and we will keep each subinterval
as a whole in the allocation. Ld (i, k) denote the maxi-
mum efficiency one can get if we allocate the inter[@aliﬁ(]
to the firsti agents in the given optimal order, under the con-
dition that each agent 1 < j < i, gets a share of at least
1< The dynamic programming algorithm is described as
follows.

ALG-LINEAR

(1—€) >, vi(A;), which is always within a factor dfl — ¢)
to the optimum. This finishes the proof of the theoreni]

Piecewise Constant Functions

In this section, we consider piecewise constant functidns.
density functionf(-) is calledpiecewise constaiitone can
partition the whole intervdD, 1] into subintervals such that
f has a constant value on each subinterval. Piecewise con-
stant functions are a representative class because ityis eas
to describe algorithmically and can approximate any dgnsit
functions with arbitrarily good accuracy.

For a given piecewise constant functigi), we say it
containsk segments if there exist

0<a1<by<as<by<---<apr<b. <1

such that (i)f has a constant positive value on e&eh b;],

(ii) f has value 0 on all remaining regions, and (iii) for each
[a;,b;] and]a;+1,bi41], eitherb; < a;11 or f has different
values on these two segments. We kayb;] asegmenand

a;, b; its endpoints.

Next we will consider computational complexity of com-
puting an efficiency optimal allocation for piecewise con-
stant functions. As can be seen, its complexity is completel
different from the linear function case.

Fixed Order

For a piecewise constant function, its input consists of its
value and two endpoints (all rational numbers) of all of its
(finite) segments. It can be seen (below) that there always
exists an optimal solution whose cutting points are rationa
Indeed, if the winning order of the agents is explicitly give
such an optimal solution can be found in polynomial time.

1: Sortall agents in a non-decreasing order with respectto Thjs result is in contrast with the linear function case, in

their order determinant;.
2: LetH(0,0) = 0andH(0,k) = —ooforall0 < k < K.
for1<i<n,1<k<Kdo
4: Among all0 < k' < k such thatvl-(’%, £) >
(=);(0,1), let

n

Kk
; — ._ / . —_ JE—
H(z,k)—n}ﬁx{H(z 1,/{)—!—1}1(K,K)}.

5: end for
6: ReturnH (n, K) and its corresponding allocation.

Theorem 1. When all agents have linear density functions,
for anye > 0, ALG-LINEAR runs in time polynomial in the
input size ano}, and outputs anfl — ¢)-fair allocation with
efficiency within a factor of1 — ¢) to the optimum.

Proof. It is easy to check that this algorithm can be done
in O(n3(1)?) time, and it will always output an efficiency
maximal e-fair allocation in which the cake is cut only

at the given separations, assuming there exists one. Let

A = (A4,...,A,) be an efficiency optimal fair allocation.
If we round each cutting point ofl to the closest smaller
separation given bys, in the new allocation every agent
i will get a value no less than;(4;) — 5=(a; + b)) >
v;(Ai) — £v;(0,1) > (1 — €)v;(A;). Thus, itis are-fair al-
location, and the efficiency of this allocation will be atdea

which an optimal order can be found efficiently but an opti-
mal solution can only be approximated.

Suppose the order of the agents, from left to right, is fixed
asl,2,....,n. Let0 < p; < py < ... < pg < 1he
the lists of endpoints of all segments of all agents. While
in an optimal allocation, the points of cuts are not necessar
ily in {p1,...,px}, those cutting points that are not in the
set can be nicely characterized. This leads to the following
dynamic programming, which computes exactlyoptimal
allocation.

Let H (i, px) denotes the maximum efficiency one can get
if we allocate the interval0, p,] to the firsti agents. The
dynamic programming is described as follows.

Theorem 2. Given a fixed winning order of agent&L G-
PIECEWISE-CONSTANT computes an efficiency optimal
proportional allocation in polynomial time.

Proof. In order to prove correctness of the algorithm, we
first show the following characterization, which immedi-
ately implies that the dynamic programming always outputs
an optimal solution. That is, to allocate interviak., p]

to agentsj,j + 1,...,4 under the fairness condition, there
always is an efficiency optimal allocation such that one of
the following holds:

e Some agent’s allocation is cut at one endpoint of one of
its own segments.



ALG-PIECEWISEECONSTANT

1. Let H(0,px) =0foralll <k < K.
2. for1<i<n,1<k<Kdo
3. Let

H(i,pk) =

ax. {H(.]_lapk’)+s(.]a iapk’vpk)}a
1<j<i
1<k'<k

where S(7,4, prr, pi.) is the maximum efficiency of
proportional allocation one can get by allocating in-
terval[py/, pi] to agentsj, j + 1,. .., i under the con-
dition that at most one agent can have valuation more
thanl/n of its share (if no such allocation exists, de-
fine it to be 0).

4: end for

5: ReturnH (n, px) and its corresponding allocation.

e At most one agent has valuation more thgfm of its
total share.

To prove this, given an optimal allocation, assume that
no agent’s allocation is cut at any endpoint of its segments
and there are two agentsy both getting more thai/n of
their total shares. If we keep the allocation valuationsliof a
other agents fixed, excepty, and add a disturbanc®, to
agenta’s valuation, it will sequentially result in a change
—A, in agenty’s valuation, whereA,, A, > 0. (That is,
we slightly move the cutting points for all agents between
andy, including themselves; and all these agents exeept
andy still obtain the same valuations.) Similarly, if we dis-
turb 2’s valuation by—A,., y’s valuation will be changed
by A,. This means that i\, # A,, we can always per-
form such a disturbance to get a proportional allocatioh wit
larger efficiency. IfA, = A,, we can keep performing this
disturbance, until either one afandy has reached exactly
1/n of its share, or one agent (in the betweenzcind y)
has reached an endpoint cut. In this process, the efficigncy o
the allocation remains unchanged. (Note that the piecewise
constant condition is critical for the argument to apphheT
claim then follows by applying this process repeatedlylunti
the number of agents whose share is more thanis 1 in
the final allocation.

Finally we prove that the algorithm runs in polynomial
time. It suffices to show thaf(j, 7, px/, px,) can be polyno-
mially computed. In fact, one can just enumerate the agent
whose valuation is (potentially) more tharin of its total

share. Once that agent is fixed, all other agents should have

exactlyl/n of their total shares. Thus the allocation can be
uniquely determined, and can be computed in polynomial
time. This finishes the proof of the theorem.

NP-Hardness

While the above algorithm gives a hope to find an optimal

solution in polynomial time, we do not necessarily know the

optimal order of the agents in an optimal allocation. In gen-

eral, we have the following hardness result, which says that
computing an allocation whose efficiency is within a factor

of Q(%) to the optimum, conditioned on proportionality,

is NP-hard.

Theorem 3. When all agents have piecewise constant den-
sity functions, it is NP-hard to approximate the optimum ef-
ficiency within a ratio of2 , even if all functions have

at most 2 segments.

(7%)

Proof. Our reduction is from the partition problem. Con-
sider the following partition problem instance: given aét
of 2k positive integersd’ = {a},d},...,ab.}; let2m’ =
>, a;. It is NP-complete to decide whethel’ can be di-
vided into two subsets such that both of them have exactly
integers, and the sum of the numbers in each subset equals
m/ (Garey and Johnson 1979). Without loss of generality, we
assume that all; are even numbers. Further, we add an inte-
ger2km/’ to eachs) and getanew set = {aq, aq, ..., as:}
wherea; = al+2km/’. Itis easy to see that has a partition
of summ £ 2k%m’ + m’ if and only if A’ has a partition of
summ’. Let M = max; a;.

For the instanced, we have the following observations,
which can be verified easily.

1. If A can be partitioned intal; and A; with equal sums,
then|A1| = |A2| = k.

2. If the absolute value of the difference between the total
values of4; and As is less than or equal to 1, then they
have the same total value (as all numbers are even).

We next construct a cake cutting instance from the par-
tition instanceA. Assume that the cake is modeled as an
interval[0, 3m(2k — 1) + 2k(n + 1) — 1] (which can be eas-
ily normalized to[0, 1]). There are in totah = 4k? agents,
divided into 3 groupsA, B andC'.

e GroupA has2k — 1 agents. We label them by
L1+@2k+1),14+22k+1),.... 1+ (2k — 2)(2k + 1),
and define their valuation density functions to be

1 z¢ [m+3mt,m+3mt+1}
0 otherwise

f1+t(2k+1)(17) = {

fort =0,1,2,...,2k — 2. Note that the total value of each
agentisl.

GroupB has in totakk(2k — 1) agents, which are further
divided into2k — 1 subgroups3y, By, ..., Bor_o. Each
subgroupB; has2k agents, which are labeled by

2Ht(2k+1), 34(2k+1), 4+t(2k+1), ..., 2k+1+(2k+1).

Corresponding to each group, define two intervals on
the cake as follows:

I & [3mt, 3Imt 4+ 2m + 1] and

Iy £ [3m(2k—1)+t(n+1)+n, 3m(2k—1)+t(n+1)+n+1]
The valuation functions of the agentsih are

1
na; — (2m + 1)
0

x € I
fir14errn) () = x€ I

otherwise
wherei = 1,2, ..., 2k. Note that it is guaranteed thad; —
(2m+1) > 0.



It can be seen that the total value of each agentl +
t(2k 4 1) is na,; thus, in a proportional allocation, its
share is at least;. In addition, the intervals are disjoint
for agents in different subgrou, and eactB, contains
exactly one agent (i.el,+ ¢(2k + 1)) from A.

e GroupC contains only one agent, and his density function
is (wherec is a large integer)

Me z € [3m(2k— 1),

3m(2k — 1) +2k(n + 1) — 1]
0 otherwise
The figure below shows the construction of the cake cutting

instance. Note that all agents have piecewise constant valu
ations with at most two segments.

Y

3m(2k — 1)+ 2k(n+1) -1
.
I

Me

3m(2k—1)+t(n+1)+n+1
na; — (2m + 1) i

3mt Jr,m 3mt +,2m +1

0 I I I I
. . . .
3mt 3mt+m+1 3m(2k — 1) 3m(2k —1)+t(n+1)+n

x

D Player C |:| Players in group B, . Players in group A

For each agent in subgroup,, he can get at leadt/n
of his total valuation only if he gets an allocation ir, of
length at leasti; or in I, of at least certain length. If there
is a valid partition in the partition instancé, then, for each
t, agents inB; can share the interv@mt, 3m¢ + m| and
[3mt+m+1,3mt+ 2m+ 1] completely to get /n of their

where the first term is an upper bound on the valuation for
the agentin group’, and the last two terms are for the agents
in groupsA andB (note thaina; — (2m + 1) < nM).

Note that

Me(n+1)+ (2k — 1)(2m + 1) + (2k — 1)nM
Me(2k(n + 1) — 1) + (2k — 1)(2m + 1)
Me(n+1) 4 (2k — 1)(2m + 1) + (2k — 1)nM
Me(2k(n+1) — 1)
(2k — 1)(2m + 1) + (2k — 1)nM
Me(2k(n+1)—1)
1 1
(35) = Q(ﬁ)

where the last inequality follows from the observationg tha
m < kM and we can pick: to be a sufficiently large
number. Therefore, it is NP-hard to approximate efficiency
within a ratio ofQ( ). O

Normalized Valuations

We say a density functiofi normalizedf ji)l flx) de = 1.
For such functions, computing an efficiency optimal alloca-
tion is NP-hard as wéll

Theorem 4. When all agents have normalized piecewise
constant density functions, it is NP-hard to compute the opt
mum efficiency, even if all functions have exactly 1 segment.

n+1
2k(n+1) —1

IN

Proof. We again reduce from the partition problem: There
is a set of2k positive integersd’ = {a}, a5, ..., a%,. } with
Zfﬁl a; = 2m’. The problem is to partition these integers
to two subsets with equal size such that both sets have sum
m’. Without loss of generality, we assume that< a}, <
.-+ < ab, and eachy} is a multiple of3. We construct a new
setA = {a1, ag, ..., a2}, Where each,; = a) + (4k+8)m/.
It is easy to see thatl has a partition of sumn £ m’ +
k(4k 4+ 8)m/ each if and only ifA” has a valid partition.

We have the following observations.

total valuation. Thus, we can allocate agents in grdugmd 1. If A can be partitioned intel; and A, with equal sums,
groupC all of their interested intervals. The total value of  then|A;| = [As] = k.
all agents in this case is therefore 2. If the absolute value of the difference between the sums

M(2k(n+1)—1)+ 2k —1)(2m +1).

On the other hand, if the partition instance does not have a
valid solution, by the two observations established aboee,
cannot partition4 into two subsets such that the difference
between their sums is less than or equal to 1. This means that
each subgrou,; has at least one agent allocated a piece
inside the intervally;. As there ar&k — 1 subgroups and
the allocation must be continuous, agéhtan get only one
of the 2k leftover segments:

[Bm(2k —1),3m(2k — 1) + (n + 1) — 1]
Bm(2k — 1) +n+1,3m(2k — 1) +2(n+ 1) — 1]
[Bm(2k — 1) +2(n +1),3m(2k — 1) + 3(n + 1) — 1]
Bm(2k — 1)+ (2k — 1)(n + 1),
3m(2k — 1) +2k(n + 1) — 1]
where each segment has lengthThe total value of all
agents in this case is then at most

M¢n+1)+ (2k—-1)2m+1) + (2k — 1)nM,

3.

of A; and A is less than or equal to 2, then they have the
same sum (as all numbers are multiples of 3).
(2k + 3)ay > 2m + 2. This is because

2k +3)ar = (2k+3)(a} + (4k +8)m’)
> (2k +3)(4k +8)m’
> 2(m' +k(4k +8)m') +2=2m +2
4. We have
2m+2 > m=m'+k(4k +8)m/’
> 2m/(2k + 3) > a5 (2k + 3)
> (b —at)(2k + 3)

(agk — al)(Qk’ + 3)
This implies that, (2k + 3) > a9k (2k + 3) — (2m + 2).

2Note that Theorem 3 does not imply the claim here, as in

its proof agents’ valuations are not normalized. On the rothe
hand, the NP-hardness result established by Theorem Zeayipli
non-normalized setting as well; but the statement of ThaoBe
Q(%)-hardness, is much stronger.



Lety; = fori =1,...,2k, and define
B 1
a2k +3) - (2m +2)°
Hencep > by > by > --- > byy. Further, a careful calcula-
tion shows tha2m(by — bor) < a1 (b — by).
Now we construct a cake cutting instance with + 3
agents. For the firstk agents, their density functions are

Ui(l') = { b € [0,&1(2/{4—3)]

1
a:(2k+3) "

0 otherwise
For the last three agents, their density functions are

(z) = 1 z€[mm+1]
V2k+1\T) =9 (0 otherwise

)= 1 ze2m+1,2m+ 2]
vzkt2(2) = 0 otherwise

b ze2m+ 2,a2:(2k + 3)]
— ] 0 otherwise

The figure below shows the construction.

Vak43()

Yy *2m + 2
I

ask(2k + 3)
)

o

bay

0 |
meé

| |
sm+1 2m 414

D First 2k players D Player 2k + 3 . Players 2k + 1 and 2k 4 2

In this construction, note that each agent’s valuation den-
sity function is normalized, and each of the figét agents
needs a length af; to get its proportional share. Moreover,
the two intervalgm, m + 1] and[2m + 1,2m + 2| are “re-
served” to agent®k + 1 and2k + 2 due to their large density
values and the second observation above.

It can be seen that if the partition instance has a valid so-
lution, the total value of all agents,., is at least

2k

Vyes = 3 aibi + 2+ 1 > 2mbax + 3.

=1
On the other hand, if the partition instance does not have a
valid solution, the total value of all agenits,, is at most

Vo < 2mb1 + 2 + a1b1 + [a2k(2k + 3) — (2m + 2) — aq]d.

Therefore,
Vyes - Vno
1—aiby — [QQk(Qk + 3) — (2m + 2) — al]b — 2m(61 — bzk)
al(b — bl) — 2m(61 — bzk) >0
Since the partition problem is NP-complete dnds > V,,,,
computing an optimal allocation for the constructed normal
ized cake cutting problem is NP-hard. O

>

Concluding Remarks

We study efficiency optimization in cake cutting. The solu-
tion conditions are that of proportional fairness and- 1
cuts. While the fairness condition is relatively easy to-han
dle (see, e.g., (Cohler et al. 2011)), the requirement on the
number of cuts makes the problem much more difficult to
analyze. For instance, some powerful tools like convex pro-
gramming do not apply. We give an optimal design for lin-
ear valuation functions, and show hardness results foepiec
wise constant functions. A natural and intriguing diretio
for future research is to design (approximate) algorithms,
especially for (normalized) piecewise constant functjioos
maximize efficiency given fairness and- 1 cuts. In partic-
ular, an important question is whether there exists a cahsta
approximation algorithm.

Our work purely focuses on efficiency and fairness—we
do not attempt to consider strategic behaviors of the agents
in the model. Designing incentive compatible protocols in
cake cutting has been considered in (Chen et al. 2010). It
is an interesting direction to study efficiency, fairness an
incentive altogetherin order to design more robust prdsoco
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