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Abstract

We consider the classic cake cutting problem where
one allocates a divisible cake ton participating agents.
Among all valid divisions, fairness and efficiency
(a.k.a. social welfare) are the most critical criteria to sat-
isfy and optimize, respectively. We study computational
complexity of computing an efficiency optimal division
given the conditions that the allocation satisfies propor-
tional fairness and assigns each agent a connected piece.
For linear valuation functions, we give a polynomial
time approximation scheme to compute an efficiency
optimal allocation. On the other hand, we show that the
problem is NP-hard to approximate within a factor of
Ω
(

1√
n

)

for general piecewise constant functions, and is
NP-hard to compute for normalized functions.

Introduction
Resource allocation is a fundamental problem studied exten-
sively in economics, social science, as well as in computer
science, due to its vast applications. A central question byits
nature ishow to allocate a given set of resources to some po-
tential consumers. For different application domains, there
are different requirements to be achieved, or different fac-
tors to be balanced. In particular, individual participants may
want to receive as many resources as possible, while a cen-
tralized authority may have some global objectives. What
criteria should be considered to select an allocation?

Fairness, which, balances individual participants’ com-
petitive interests, is one of the most important solution con-
ditions considered in practice. There are two commonly used
notions that capture fairness in resource allocation: envy-
freeness and proportionality. In anenvy-freeallocation, no
individual envies the allocation of any other individual; in a
proportionalallocation, every individual is allocated at least
an average share with respect to his own measure. It is easy
to see that an envy-free allocation is always proportional.
However, in many applications an envy-free allocation ei-
ther does not exist (e.g., determine accepted papers of a con-
ference) or is algorithmically intractable (e.g., cake cutting
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with large constant number of consumers). Thus, we will fo-
cus on proportionality in the current paper.

Another important measure of an allocation is that of ef-
ficiency (a.k.a. social welfare). In contrast with fairness, ef-
ficiency evaluates the performance of the solution from a
global point of view. Specifically, theefficiencyof an alloca-
tion is defined to be the sum of the values of all participants
with respect to their own allocation. Efficiency is therefore a
concrete quantity that can be optimized.

Fairness and efficiency together are among the most crit-
ical factors considered in many applications. An ideal solu-
tion is to have both (either satisfied or optimized), but this
may not necessarily be achievable. In this paper, we will
consider efficiency optimization given the required (propor-
tional) fairness condition. Specifically, we will address the
following question:

What is the computational complexity of computing an
efficiency optimal allocation while ensuring fairness?

We will study this question in an important resource allo-
cation model: cake cutting, where the resource is a continu-
ous cake and can be divided into pieces and allocated ton
individuals. Cake cutting has been a central problem studied
in computer science and social science; see, e.g., (Robert-
son and Webb 1998). An important feature of cake cutting
is that the cake is divisible and individuals may have differ-
ent values for different portions of the cake. The problem
is therefore represented by a valuation measure function for
each of the individuals.

Our interest is to find a division of the cake that maxi-
mizes efficiency given fairness. This question was first con-
sidered in (Cohler et al. 2011) where the authors gave a
linear program to compute an envy-free allocation with the
maximum possible efficiency for piecewise constant mea-
sure functions. Their algorithm can be generalized easily to
a polynomial time approximation scheme for any functions
that can be represented concisely1, and immediately implies
the same result for proportional fairness.

1We can divide the cake into small pieces and approximate each
small piece by a constant; this leads to piecewise constant func-
tions.



The solution generated by the linear program, however,
involves a large number of cuts and the allocation to each
participant consists of many separate “tiny” pieces, which
is not desirable in some applications (e.g., division of a ter-
ritory). We therefore focus on divisions with exactlyn − 1
cuts, that is, everyone obtains a connected region. Note that
with n − 1 cuts, a proportional allocation always exists,
e.g., the well known moving knife procedure (Dubins and
Spanier 1934) generates a fair allocation withn− 1 cuts for
n participants.

We will study two types of measure functions: linear and
piecewise constant. For linear functions, we give a polyno-
mial time approximation scheme (PTAS) that computes an
(1 − ǫ)-approximate efficiency optimal allocation. That is,
for any constantǫ > 0, the solution given by the scheme is
within a factor of(1−ǫ) to the optimum. Note that this is the
best we can hope for as for linear functions, an optimal solu-
tion may involve irrational numbers. Our algorithm is based
on a critical ingredient of determining an optimal order of
participants to cut the cake: While the intuition is that the
optimal order would be according to the slopes of the linear
functions, we show that this is actually not the case and give
a precise characterization of the order.

For piecewise constant functions, finding an efficiency
optimal allocation turns out to be much harder. While for any
given fixed order of participants, an exactly optimal solution
can still be found using a dynamic programming approach,
the problem is NP-hard to solve without knowing an optimal
order, even for normalized valuations. For general piecewise
constant functions, we show that it is even NP-hard to find
an allocation whose efficiency is within a factor ofΩ

(

1√
n

)

to the optimum. (We refer to (Papadimitriou 1993) as a clas-
sic textbook for computational complexity and approxima-
tions.)

Related Work
Maximizing efficiency in cake cutting with fairness has been
studied extensively in the past. (Reijnierse and Potters 1998)
studied the computation of a Pareto-efficient envy-free allo-
cation. (Brams et al. 2012) studied Pareto efficiency of op-
timal envy-free or equitable allocations. (Caragiannis etal.
2009) introduced the concept of price of fairness to charac-
terize the loss of efficiency at a cost of fairness. (Aumann
and Dombb 2010) followed the notion of price of fairness
and focused on divisions with only connected pieces. In con-
trast with our work which is to find exact allocations, the
work (Caragiannis et al. 2009; Aumann and Dombb 2010)
addressed on the worst case ratio between the optimum effi-
ciency without and with fairness conditions. Note that their
benchmark is optimum efficiency without fairness, whereas
in our efficient algorithm design the benchmark is opti-
mum efficiency with fairness. The work closest to ours was
by (Cohler et al. 2011), where the authors considered effi-
ciency optimization of several valuation functions given the
envy-free fairness condition (without requiring connected
pieces). Independent to our work, (Aumann, Dombb, and
Hassidim 2012) studied egalitarianor utilitarian welfare op-
timization withn− 1 cuts; however, we consider efficiency
optimizationwith the fairness condition.

Preliminaries
There aren agents to share a cake, which is represented
by the interval[0, 1]; we will call ‘0’ the left side and ‘1’
the right side. Each agenti has a density functionfi(·) :
[0, 1] → R

+ ∪ {0}. The valuation of agenti for the interval

[a, b] ⊆ [0, 1] is denoted byvi(a, b) =
∫ b

a
fi(x) dx. As-

sume without loss of generality thatvi(0, 1) > 0 (otherwise,
we can simply remove such agents). For anyS ⊆ [0, 1], let
vi(S) denote the valuation of agenti for S, i.e., the sum of
the valuations over disjoint intervals inS.

An allocation(i.e., division) of the cake is a partition into
n disjoint subsets, denoted byA = (A1, A2, . . . , An). We
require allocations to be fair, captured byproportionality:
vi(Ai) ≥ 1

n
vi(0, 1) for any i, i.e., every agent gets at least

an average share with respect to its own measure. Our ob-
jective is to find a proportional allocation that maximizes
efficiency, defined as

∑

i vi(Ai). We will restrict our atten-
tion on exactlyn − 1 cuts. That is, we can divide the cake
by onlyn− 1 cuts; thus, each agent will obtain a connected
interval.

Our interest is to study efficiency maximization from
an algorithmic viewpoint. We say an algorithm is anα-
approximation if the efficiency of its solution is always
within a factor ofα to the optimum efficiency, both con-
ditioned on proportionality. In other words, the compared
benchmark of an algorithm is the maximum efficiency
among all proportional allocations withn− 1 cuts.

In this paper we will consider two special families of den-
sity functions that can be represented concisely: linear valu-
ations and piecewise constant valuations.

Linear Functions
In this section we will consider linear density functions, i.e.,
eachfi(·) can be represented asfi(x) = ai · x + bi, where
ai, bi are two given numbers. We assume thatfi(x) ≥ 0 for
anyx ∈ [0, 1]; this implies in particular thatbi ≥ 0. Further,
we havevi(0, 1) = ai

2 +bi > 0. Linear function is one of the
most fundamental and well studied valuation functions. It
reflects gradually increasing or decreasing interests of agents
for the resource.

We will give a polynomial time approximation scheme
(PTAS) to compute an efficiency optimal allocation. First we
will characterize the order of allocations to the agents in an
optimal solution. Having this characterization, we will then
use a dynamic programming algorithm to compute a nearly
optimal solution.

Optimal Order
As there are in totaln−1 cuts, an allocation corresponds to a
permutation of then agents. To design an algorithm to com-
pute an efficiency optimal allocation, we first need to decide
what order of the agents should be. For the considered lin-
ear functions, one might expect that the optimal order, from
left to right, would be according to the increasing order of
the slopeai. Counter-intuitively, this is not the case, as the
following example shows.

Example 1. Consider two agents{1, 2} with density func-
tionsf1(x) = x andf2(x) = 2x + 10000. Clearly, in an



optimal allocation, agent2 will get as much as he can to
maximize efficiency. If the order is1, 2 from left to right ac-
cording to slope, then agent1 needs to get

[

0,
√
2
2

]

to ensure
his proportional share and agent2 gets the rest. The effi-
ciency in this order is

1

4
+

∫ 1

√
2

2

(2x+10000)dx = 10000+
3

4
−5000

√
2 ≈ 2930.75.

If the order is reversed, then agent1 gets
[

√
2
2 , 1

]

due to
proportionality, and agent2 gets the rest. The efficiency in
this order is

1

4
+

∫

√
2

2

0

(2x+ 10000) dx =
3

4
+ 5000

√
2 ≈ 7070.75,

which is larger. Thus, ordering agents according to their
slopes does not yield an optimal solution.

As we show in the following, the optimal order is actually
determined by a quantitydi, calledorder determinant: For
agenti with density functionfi(x) = aix+ bi, define

di =
ai

ai + 2bi
.

Note that the denominator is guaranteed to be non-zero.
Proposition 1. For any agentsi and j and any0 ≤ p <
q < r ≤ 1, the order determinantdi < dj if and only if
vi(p,q)
vi(p,r)

>
vj(p,q)
vj(p,r)

.

Proof. We first prove the case wherep = 0 and r = 1.
For agenti, we havevi(0, 1) = 1

2ai + bi andvi(0, q) =
∫ q

0 aix+ bi dx = 1
2aiq

2 + biq. Thus, we have

vi(0, q)

vi(0, 1)
=

1

2
aiq

2 + biq
1

2
ai + bi

= q+(q2−q)
ai

ai + 2bi
= q+(q2−q)di.

Similarly, we havevj(0,q)
vj(0,1)

= q+(q2−q)dj. Becauseq2−q <

0, it is obvious thatdi < dj if and only if vi(0,q)
vi(0,1)

>
vj(0,q)
vj(0,1)

.
For the case wherep 6= 0 or r 6= 0, we apply a transfor-

mation to the density functionfi(·): Let
{

a′i = ai · (r − p)
b′i = aip+ bi

Define a new density functionf ′
i(x) = a′ix + b′i and let

v′i(a, b) =
∫ b

a
f ′
i(x) dx. Let y = q−p

r−p
; one can verify that

vi(p, q)

vi(p, r)
=

1

2
ai(q

2 − p2) + bi(q − p)
1

2
ai(r2 − p2) + bi(r − p)

=
1

2
a′
iy

2 + b′iy
1

2
a′
i + b′i

=
v′i(0, y)

v′i(0, 1)
.

Using a similar transformation tofj(·), we can reduce the
problem to the case wherep = 0 andr = 1. Hence, we have
vi(p, q)

vi(p, r)
>

vj(p, q)

vj(p, r)
⇔ v′i(0, y)

v′i(0, 1)
>

v′j(0, y)

v′j(0, 1)

⇔ a′
i

a′
i + 2b′i

<
a′
j

a′
j + 2b′j

⇔ ai(r − p)

ai(r + p) + 2bi
<

aj(r − p)

aj(r + p) + 2bj

⇔ ai

ai + 2bi
<

aj

aj + 2bj

⇔ di < dj

This completes the proof.

The order determinant precisely characterizes the order of
the agents in an optimal allocation, shown by the following
lemma.

Lemma 1. There exists an efficiency optimal allocation in
which the allocation (from left to right) is according to the
non-decreasing order ofdi.

Proof. Given an efficiency optimal allocation, assume that
the allocation to the agents are in the order1, 2, . . . , n. Then
for any1 ≤ i < n, it suffices to show the following:

• di ≤ di+1;
• if di = di+1, then switching the order ofi andi + 1 will

lead to an efficiency optimal allocation as well.

We will prove the claims by considering eachi = 1, . . . , n
in the sequence.

Suppose that in an efficiency optimal allocation, agenti is
assigned interval[p, q], and agenti + 1 is assigned to[q, r].
Let αi = vi(p,q)

vi(p,r)
andαi+1 = vi+1(q,r)

vi+1(p,r)
denote the ratio of

the valuation of agenti andi + 1 between their own alloca-
tion and the union of their allocations, respectively. We next
consider two cases.

(1) αi ≥ αi+1. We can find a pointq′ ∈ [p, q], such that
vi(p,q

′)
vi(p,r)

= αi+1. Now we consider a new allocation, in
which agenti + 1 gets[p, q′], agenti gets[q′, r], and the
allocation of all other agents remains unchanged. The so-
cial welfare difference between the original allocation and
the new one is

δ , (vi(p, q) + vi+1(q, r))− (vi+1(p, q
′) + vi(q

′
, r))

= (vi+1(q, r)− vi+1(p, q
′)) + (vi(p, q

′)− vi(q, r))

If di > di+1, by Proposition 1, we have

vi+1(p, q
′)

vi+1(p, r)
>

vi(p, q
′)

vi(p, r)
= αi+1 and

vi+1(p, q)

vi+1(p, r)
>

vi(p, q)

vi(p, r)
.

Hence,

vi+1(p, q
′) > αi+1 · vi+1(p, r)

=
vi+1(q, r)

vi+1(p, r)
· vi+1(p, r) = vi+1(q, r),

and

vi(q, r)

vi(p, r)
= 1− vi(p, q)

vi(p, r)

> 1− vi+1(p, q)

vi+1(p, r)
=

vi+1(q, r)

vi+1(p, r)
= αi+1.

Hence,vi(q, r) > αi+1 · vi(p, r) = vi(p, q
′). This means

that δ < 0, i.e., the new allocation has larger efficiency
than the original allocation, which contradicts the fact that
the original one is an efficiency optimal allocation. Thus,
we havedi ≤ di+1.
On the other hand, ifdi = di+1, then by the same cal-
culation as above, we can getvi(q, r) = vi(p, q

′) and
vi+1(p, q

′) = vi+1(q, r), which implies thatδ = 0.
Hence, we get another optimal allocation with the order
of i andi+ 1 switched.



(2) αi < αi+1. In this case we can find a pointq′ ∈ [q, r]

such thatvi+1(q
′,r)

vi+1(p,r)
= αi. The remaining details of the

proof are similar to the first case and are omitted.

Therefore, by considering eachi = 1, . . . , n − 1 sequently,
the lemma follows.

Polynomial Time Approximation Scheme
Having a characterization of the order of allocations in an
optimal solution, we will next compute such an allocation.
However, there is one issue: For linear functions, a fair al-
location may require to cut the cake at irrational points. For
instance, in Example 1, the unique fair allocation requiresto
cut the cake at point

√
2
2 . This barrier prevents us from find-

ing a tractable algorithm that always outputs a precisely fair
allocation. As a result, we relax our requirement by consid-
ering(1−ǫ)-fair allocation, in which each agent gets no less
than 1−ǫ

n
share of its value for the entire cake. Such an ap-

proximation on fairness has been considered in, e.g., (Cohler
et al. 2011; Zivan 2011).

We will use the approach of dynamic programming. For
any givenǫ > 0, we divide the interval[0, 1] evenly into
K =

⌈

2n
ǫ

⌉

subintervals; and we will keep each subinterval
as a whole in the allocation. LetH(i, k) denote the maxi-
mum efficiency one can get if we allocate the interval[0, k

K
]

to the firsti agents in the given optimal order, under the con-
dition that each agentj, 1 ≤ j ≤ i, gets a share of at least
1−ǫ
n

. The dynamic programming algorithm is described as
follows.

ALG-L INEAR

1: Sort all agents in a non-decreasing order with respect to
their order determinantdi.

2: LetH(0, 0) = 0 andH(0, k) = −∞ for all 0 < k ≤ K.
3: for 1 ≤ i ≤ n, 1 ≤ k ≤ K do
4: Among all 0 ≤ k′ ≤ k such thatvi(k

′

K
, k
K
) ≥

(1−ǫ
n

)vi(0, 1), let

H(i, k) = max
k′

{

H(i− 1, k′) + vi

( k′

K
,
k

K

)

}

.

5: end for
6: ReturnH(n,K) and its corresponding allocation.

Theorem 1. When all agents have linear density functions,
for anyǫ > 0, ALG-L INEAR runs in time polynomial in the
input size and1

ǫ
, and outputs an(1− ǫ)-fair allocation with

efficiency within a factor of(1− ǫ) to the optimum.

Proof. It is easy to check that this algorithm can be done
in O(n3(1

ǫ
)2) time, and it will always output an efficiency

maximal ǫ-fair allocation in which the cake is cut only
at the given separations, assuming there exists one. Let
A = (A1, . . . , An) be an efficiency optimal fair allocation.
If we round each cutting point ofA to the closest smaller
separation given byK, in the new allocation every agent
i will get a value no less thanvi(Ai) − ǫ

2n (ai + bi) ≥
vi(Ai)− ǫ

n
vi(0, 1) ≥ (1− ǫ)vi(Ai). Thus, it is anǫ-fair al-

location, and the efficiency of this allocation will be at least

(1− ǫ)
∑

i vi(Ai), which is always within a factor of(1− ǫ)
to the optimum. This finishes the proof of the theorem.

Piecewise Constant Functions
In this section, we consider piecewise constant functions.A
density functionf(·) is calledpiecewise constantif one can
partition the whole interval[0, 1] into subintervals such that
f has a constant value on each subinterval. Piecewise con-
stant functions are a representative class because it is easy
to describe algorithmically and can approximate any density
functions with arbitrarily good accuracy.

For a given piecewise constant functionf(·), we say it
containsk segments if there exist

0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ak < bk ≤ 1

such that (i)f has a constant positive value on each[ai, bi],
(ii) f has value 0 on all remaining regions, and (iii) for each
[ai, bi] and[ai+1, bi+1], eitherbi < ai+1 or f has different
values on these two segments. We say[ai, bi] asegmentand
ai, bi its endpoints.

Next we will consider computational complexity of com-
puting an efficiency optimal allocation for piecewise con-
stant functions. As can be seen, its complexity is completely
different from the linear function case.

Fixed Order
For a piecewise constant function, its input consists of its
value and two endpoints (all rational numbers) of all of its
(finite) segments. It can be seen (below) that there always
exists an optimal solution whose cutting points are rational.
Indeed, if the winning order of the agents is explicitly given,
such an optimal solution can be found in polynomial time.
This result is in contrast with the linear function case, in
which an optimal order can be found efficiently but an opti-
mal solution can only be approximated.

Suppose the order of the agents, from left to right, is fixed
as 1, 2, . . . , n. Let 0 ≤ p1 ≤ p2 ≤ . . . ≤ pK ≤ 1 be
the lists of endpoints of all segments of all agents. While
in an optimal allocation, the points of cuts are not necessar-
ily in {p1, . . . , pK}, those cutting points that are not in the
set can be nicely characterized. This leads to the following
dynamic programming, which computes anexactlyoptimal
allocation.

LetH(i, pk) denotes the maximum efficiency one can get
if we allocate the interval[0, pk] to the firsti agents. The
dynamic programming is described as follows.

Theorem 2. Given a fixed winning order of agents,ALG-
PIECEWISE-CONSTANT computes an efficiency optimal
proportional allocation in polynomial time.

Proof. In order to prove correctness of the algorithm, we
first show the following characterization, which immedi-
ately implies that the dynamic programming always outputs
an optimal solution. That is, to allocate interval[pk′ , pk]
to agentsj, j + 1, . . . , i under the fairness condition, there
always is an efficiency optimal allocation such that one of
the following holds:
• Some agent’s allocation is cut at one endpoint of one of

its own segments.



ALG-PIECEWISE-CONSTANT

1: Let H(0, pk) = 0 for all 1 ≤ k ≤ K.
2: for 1 ≤ i ≤ n, 1 < k ≤ K do
3: Let

H(i, pk) = max
1≤j≤i

1≤k′<k

{

H(j−1, pk′)+S(j, i, pk′ , pk)
}

,

whereS(j, i, pk′ , pk) is the maximum efficiency of
proportional allocation one can get by allocating in-
terval[pk′ , pk] to agentsj, j+1, . . . , i under the con-
dition that at most one agent can have valuation more
than1/n of its share (if no such allocation exists, de-
fine it to be 0).

4: end for
5: ReturnH(n, pK) and its corresponding allocation.

• At most one agent has valuation more than1/n of its
total share.
To prove this, given an optimal allocation, assume that

no agent’s allocation is cut at any endpoint of its segments
and there are two agentsx, y both getting more than1/n of
their total shares. If we keep the allocation valuations of all
other agents fixed, exceptx, y, and add a disturbance∆x to
agentx’s valuation, it will sequentially result in a change
−∆y in agenty’s valuation, where∆x,∆y > 0. (That is,
we slightly move the cutting points for all agents betweenx
andy, including themselves; and all these agents exceptx
andy still obtain the same valuations.) Similarly, if we dis-
turb x’s valuation by−∆x, y’s valuation will be changed
by ∆y. This means that if∆x 6= ∆y, we can always per-
form such a disturbance to get a proportional allocation with
larger efficiency. If∆x = ∆y, we can keep performing this
disturbance, until either one ofx andy has reached exactly
1/n of its share, or one agent (in the between ofx andy)
has reached an endpoint cut. In this process, the efficiency of
the allocation remains unchanged. (Note that the piecewise
constant condition is critical for the argument to apply.) The
claim then follows by applying this process repeatedly until
the number of agents whose share is more than1/n is 1 in
the final allocation.

Finally we prove that the algorithm runs in polynomial
time. It suffices to show thatS(j, i, pk′ , pk) can be polyno-
mially computed. In fact, one can just enumerate the agent
whose valuation is (potentially) more than1/n of its total
share. Once that agent is fixed, all other agents should have
exactly1/n of their total shares. Thus the allocation can be
uniquely determined, and can be computed in polynomial
time. This finishes the proof of the theorem.

NP-Hardness
While the above algorithm gives a hope to find an optimal
solution in polynomial time, we do not necessarily know the
optimal order of the agents in an optimal allocation. In gen-
eral, we have the following hardness result, which says that
computing an allocation whose efficiency is within a factor
of Ω

(

1√
n

)

to the optimum, conditioned on proportionality,
is NP-hard.

Theorem 3. When all agents have piecewise constant den-
sity functions, it is NP-hard to approximate the optimum ef-
ficiency within a ratio ofΩ

(

1√
n

)

, even if all functions have
at most 2 segments.

Proof. Our reduction is from the partition problem. Con-
sider the following partition problem instance: given a setA′

of 2k positive integersA′ = {a′1, a′2, . . . , a′2k}; let 2m′ =
∑

i a
′
i. It is NP-complete to decide whetherA′ can be di-

vided into two subsets such that both of them have exactlyk
integers, and the sum of the numbers in each subset equals
m′ (Garey and Johnson 1979). Without loss of generality, we
assume that alla′i are even numbers. Further, we add an inte-
ger2km′ to eacha′i and get a new setA = {a1, a2, . . . , a2k}
whereai = a′i+2km′. It is easy to see thatA has a partition
of summ , 2k2m′ +m′ if and only ifA′ has a partition of
summ′. LetM = maxi ai.

For the instanceA, we have the following observations,
which can be verified easily.

1. If A can be partitioned intoA1 andA2 with equal sums,
then|A1| = |A2| = k.

2. If the absolute value of the difference between the total
values ofA1 andA2 is less than or equal to 1, then they
have the same total value (as all numbers are even).

We next construct a cake cutting instance from the par-
tition instanceA. Assume that the cake is modeled as an
interval[0, 3m(2k− 1)+2k(n+1)− 1] (which can be eas-
ily normalized to[0, 1]). There are in totaln = 4k2 agents,
divided into 3 groups:A,B andC.

• GroupA has2k − 1 agents. We label them by

1, 1+ (2k+ 1), 1 + 2(2k+ 1), ..., 1 + (2k− 2)(2k+ 1),

and define their valuation density functions to be

f1+t(2k+1)(x) =

{

1 x ∈
[

m+ 3mt,m+ 3mt+ 1
]

0 otherwise

for t = 0, 1, 2, ..., 2k− 2. Note that the total value of each
agent is1.

• GroupB has in total2k(2k− 1) agents, which are further
divided into2k − 1 subgroupsB0, B1, . . . , B2k−2. Each
subgroupBt has2k agents, which are labeled by

2+t(2k+1), 3+t(2k+1), 4+t(2k+1), ..., 2k+1+t(2k+1).

Corresponding to each groupBt, define two intervals on
the cake as follows:

I1t ,
[

3mt, 3mt+ 2m+ 1
]

and

I2t ,
[

3m(2k−1)+t(n+1)+n, 3m(2k−1)+t(n+1)+n+1
]

The valuation functions of the agents inBt are

fi+1+t(2k+1)(x) =

{

1 x ∈ I1t
nai − (2m+ 1) x ∈ I2t
0 otherwise

wherei = 1, 2, ..., 2k. Note that it is guaranteed thatnai−
(2m+ 1) > 0.



It can be seen that the total value of each agenti + 1 +
t(2k + 1) is nai; thus, in a proportional allocation, its
share is at leastai. In addition, the intervals are disjoint
for agents in different subgroupsBt, and eachBt contains
exactly one agent (i.e.,1 + t(2k + 1)) fromA.

• GroupC contains only one agent, and his density function
is (wherec is a large integer)

fn(x) =







M c x ∈
[

3m(2k − 1),
3m(2k − 1) + 2k(n+ 1)− 1

]

0 otherwise

The figure below shows the construction of the cake cutting
instance. Note that all agents have piecewise constant valu-
ations with at most two segments.

0

M c

nai − (2m+ 1)

x

y

1

3mt+m+ 1

3mt+ 2m+ 13mt+m

3mt

· · · · · ·

3m(2k − 1) + 2k(n+ 1)− 1

3m(2k − 1) 3m(2k − 1) + t(n+ 1) + n

3m(2k − 1) + t(n+ 1) + n+ 1

· · · · · ·

Player C Players in group Bt Players in group A

For each agent in subgroupBt, he can get at least1/n
of his total valuation only if he gets an allocation inI1t of
length at leastai or in I2t of at least certain length. If there
is a valid partition in the partition instanceA, then, for each
t, agents inBt can share the interval[3mt, 3mt + m] and
[3mt+m+1, 3mt+2m+1] completely to get1/n of their
total valuation. Thus, we can allocate agents in groupA and
groupC all of their interested intervals. The total value of
all agents in this case is therefore

M c(2k(n+ 1)− 1) + (2k − 1)(2m+ 1).

On the other hand, if the partition instance does not have a
valid solution, by the two observations established above,we
cannot partitionA into two subsets such that the difference
between their sums is less than or equal to 1. This means that
each subgroupBt has at least one agent allocated a piece
inside the intervalI2t. As there are2k − 1 subgroups and
the allocation must be continuous, agentC can get only one
of the2k leftover segments:

[3m(2k − 1), 3m(2k − 1) + (n+ 1)− 1]

[3m(2k − 1) + n+ 1, 3m(2k − 1) + 2(n+ 1)− 1]

[3m(2k − 1) + 2(n+ 1), 3m(2k − 1) + 3(n+ 1)− 1]

· · · · · ·
[3m(2k − 1) + (2k − 1)(n+ 1),

3m(2k − 1) + 2k(n+ 1)− 1]

where each segment has lengthn. The total value of all
agents in this case is then at most

M c(n+ 1) + (2k − 1)(2m+ 1) + (2k − 1)nM,

where the first term is an upper bound on the valuation for
the agent in groupC, and the last two terms are for the agents
in groupsA andB (note thatnai − (2m+ 1) < nM ).

Note that
Mc(n+ 1) + (2k − 1)(2m+ 1) + (2k − 1)nM

Mc(2k(n+ 1)− 1) + (2k − 1)(2m + 1)

<
Mc(n+ 1) + (2k − 1)(2m+ 1) + (2k − 1)nM

Mc(2k(n+ 1)− 1)

=
n+ 1

2k(n+ 1) − 1
+

(2k − 1)(2m+ 1) + (2k − 1)nM

Mc(2k(n+ 1)− 1)

≤ Ω
( 1

2k

)

= Ω
( 1√

n

)

where the last inequality follows from the observations that
m ≤ kM and we can pickc to be a sufficiently large
number. Therefore, it is NP-hard to approximate efficiency
within a ratio ofΩ

(

1√
n

)

.

Normalized Valuations
We say a density functionf normalizedif

∫ 1

0
f(x) dx = 1.

For such functions, computing an efficiency optimal alloca-
tion is NP-hard as well2.
Theorem 4. When all agents have normalized piecewise
constant density functions, it is NP-hard to compute the opti-
mum efficiency, even if all functions have exactly 1 segment.

Proof. We again reduce from the partition problem: There
is a set of2k positive integersA′ = {a′1, a′2, ..., a′2k} with
∑2k

i=1 a
′
i = 2m′. The problem is to partition these integers

to two subsets with equal size such that both sets have sum
m′. Without loss of generality, we assume thata′1 ≤ a′2 ≤
· · · ≤ a′2k and eacha′i is a multiple of3. We construct a new
setA = {a1, a2, ..., a2k}, where eachai = a′i+(4k+8)m′.
It is easy to see thatA has a partition of summ , m′ +
k(4k + 8)m′ each if and only ifA′ has a valid partition.

We have the following observations.
1. If A can be partitioned intoA1 andA2 with equal sums,

then|A1| = |A2| = k.
2. If the absolute value of the difference between the sums

of A1 andA2 is less than or equal to 2, then they have the
same sum (as all numbers are multiples of 3).

3. (2k + 3)a1 > 2m+ 2. This is because

(2k + 3)a1 = (2k + 3)(a′
1 + (4k + 8)m′)

> (2k + 3)(4k + 8)m′

≥ 2(m′ + k(4k + 8)m′) + 2 = 2m+ 2

4. We have

2m+ 2 > m = m
′ + k(4k + 8)m′

> 2m′(2k + 3) > a
′
2k(2k + 3)

> (a′
2k − a

′
1)(2k + 3)

= (a2k − a1)(2k + 3)

This implies thata1(2k+ 3) > a2k(2k+ 3)− (2m+ 2).

2Note that Theorem 3 does not imply the claim here, as in
its proof agents’ valuations are not normalized. On the other
hand, the NP-hardness result established by Theorem 4 applies to
non-normalized setting as well; but the statement of Theorem 3,
Ω
(

1√
n

)

-hardness, is much stronger.



Let bi = 1
ai(2k+3) , for i = 1, . . . , 2k, and define

b =
1

a2k(2k + 3) − (2m+ 2)
.

Hence,b > b1 ≥ b2 ≥ · · · ≥ b2k. Further, a careful calcula-
tion shows that2m(b1 − b2k) < a1(b − b1).

Now we construct a cake cutting instance with2k + 3
agents. For the first2k agents, their density functions are

vi(x) =

{

bi x ∈ [0, ai(2k + 3)]
0 otherwise

For the last three agents, their density functions are

v2k+1(x) =

{

1 x ∈ [m,m+ 1]
0 otherwise

v2k+2(x) =

{

1 x ∈ [2m+ 1, 2m+ 2]
0 otherwise

v2k+3(x) =

{

b x ∈ [2m+ 2, a2k(2k + 3)]
0 otherwise

The figure below shows the construction.

0 x

y

m m+ 1 2m+ 1

2m+ 2

1

a2k(2k + 3)

b

a1(2k + 3)

b1

b2k

First 2k players Player 2k + 3 Players 2k + 1 and 2k + 2

In this construction, note that each agent’s valuation den-
sity function is normalized, and each of the first2k agents
needs a length ofai to get its proportional share. Moreover,
the two intervals[m,m+ 1] and[2m+ 1, 2m+ 2] are “re-
served” to agents2k+1 and2k+2 due to their large density
values and the second observation above.

It can be seen that if the partition instance has a valid so-
lution, the total value of all agentsVyes is at least

Vyes =

2k
∑

i=1

aibi + 2 + 1 ≥ 2mb2k + 3.

On the other hand, if the partition instance does not have a
valid solution, the total value of all agentsVno is at most
Vno < 2mb1 + 2 + a1b1 + [a2k(2k + 3)− (2m+ 2)− a1]b.

Therefore,
Vyes − Vno

> 1− a1b1 − [a2k(2k + 3)− (2m+ 2) − a1]b− 2m(b1 − b2k)

= a1(b− b1)− 2m(b1 − b2k) > 0

Since the partition problem is NP-complete andVyes > Vno,
computing an optimal allocation for the constructed normal-
ized cake cutting problem is NP-hard.

Concluding Remarks
We study efficiency optimization in cake cutting. The solu-
tion conditions are that of proportional fairness andn − 1
cuts. While the fairness condition is relatively easy to han-
dle (see, e.g., (Cohler et al. 2011)), the requirement on the
number of cuts makes the problem much more difficult to
analyze. For instance, some powerful tools like convex pro-
gramming do not apply. We give an optimal design for lin-
ear valuation functions, and show hardness results for piece-
wise constant functions. A natural and intriguing direction
for future research is to design (approximate) algorithms,
especially for (normalized) piecewise constant functions, to
maximize efficiency given fairness andn− 1 cuts. In partic-
ular, an important question is whether there exists a constant
approximation algorithm.

Our work purely focuses on efficiency and fairness—we
do not attempt to consider strategic behaviors of the agents
in the model. Designing incentive compatible protocols in
cake cutting has been considered in (Chen et al. 2010). It
is an interesting direction to study efficiency, fairness and
incentive altogether in order to design more robust protocols.
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