
Trial and Error in Influential Social Networks

Xiaohui Bei Ning Chen Liyu Dou

Division of Mathematical Sciences
Nanyang Technological University

Singapore

Xiangru Huang Ruixin Qiang

Department of Computer Science
Shanghai Jiao Tong University

Shanghai, China

ABSTRACT
In this paper, we introduce a trial-and-error model to study
information diffusion in a social network. Specifically, in
every discrete period, all individuals in the network concur-
rently try a new technology or product with certain respec-
tive probabilities. If it turns out that an individual observes
a better utility, he will then adopt the trial; otherwise, the
individual continues to choose his prior selection.

We first demonstrate that the trial and error behavior
of individuals characterizes certain global community struc-
tures of a social network, from which we are able to de-
tect macro-communities through the observation of micro-
behavior of individuals. We run simulations on classic bench-
mark testing graphs, and quite surprisingly, the results show
that the trial and error dynamics even outperforms the Lou-
vain method (a popular modularity maximization approach)
if individuals have dense connections within communities.
This gives a solid justification of the model.

We then study the influence maximization problem in
the trial-and-error dynamics. We give a heuristic algorithm
based on community detection and provide experiments on
both testing and large scale collaboration networks. Simu-
lation results show that our algorithm significantly outper-
forms several well-studied heuristics including degree cen-
trality and distance centrality in almost all of the scenar-
ios. Our results reveal the relation between the budget that
an advertiser invests and marketing strategies, and indicate
that the mixing parameter, a benchmark evaluating network
community structures, plays a critical role for information
diffusion.

Categories and Subject Descriptors
F.m [Theory of Computation]: Miscellaneous

General Terms
Economics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

Keywords
Trial and error, social networks

1. INTRODUCTION
It is well-documented that information spreads via indi-

viduals’ interactions in social networks. The dynamic pro-
cesses governing the diffusion of information and “word-of-
mouth”effects have been studied extensively in various disci-
plines, e.g., Epidemiology, Sociology, Economics, and Com-
puter Science. A central question studied in all of these dis-
ciplines is that how the dynamics of information diffusion
unfolds within a social network.

Motivated from the fact that individuals in a social net-
work are self-interested entities, applying game theoretical
analysis to study the diffusion of information has received
considerable attention in recent years [17, 10, 28, 29, 31, 22].
A common assumption in all of these game theoretical mod-
els is that an individual makes a rational choice to adopt a
new strategy (e.g., a product) if it increases his payoff, which
takes place when enough of his neighbors have adopted it. In
other words, the spread of information is driven by strategic
incentives.

While game theoretical analysis captures individuals’ self-
motivated behavior, in many real social networks, people
may have little knowledge about the structure of the un-
derlying network, either globally or locally. Therefore, the
interactions between individuals and adoptions of new prod-
ucts are rather blinded. Another important aspect ignored
by the aforementioned models is that some individuals, en-
dowed by their own personal characteristics, may have ad-
ventures to try new products. For instance, an iPhone user
may try for curiosity a Samsung’s product and even adopt it
if obtaining better experience. How does information diffuse
in a social network given such (to some extent) bounded ra-
tional behavior of individuals? In this paper we will address
this question by proposing a trial and error model to study
the diffusion of information.

Trial and error is a heuristic method of problem solving
and knowledge acquisition. It is often employed in incom-
plete information settings where limited guidance could be
drawn from theory. In a trial and error process, people learn
from both their successes and failures of occasional trials of
new strategies and adapt their future decisions according
to accumulated knowledge from experience. A large vol-
ume of literature has been accumulated on trial and error,
spanning across different disciplines from various aspects,
including, e.g., evolution of cognition [1], product develop-

ment [4], business innovation [26], game theory [30], and
computational complexity [2], to name a few.

In the trial and error model introduced in the present pa-
per, for every discrete period, individuals in a social network
concurrently try a new product with certain respective prob-
abilities. If an individual observes a better outcome, he will
then adopt the trial; otherwise (i.e., upon an error), the in-
dividual continues to use his prior selection. The trial and
error process is nondeterministic and concurrent, and cre-
ates a cascade of adaptive adoptions in a social network.
Our model still assumes that individuals behave rationally,
and beyond that, characterizes the aforementioned user be-
havior in a social network with incomplete information.

1.1 Our Results
In a real social network, people in the same community

tend to adopt the same product. We first demonstrate that
the trial and error dynamics exhibits the same phenomenon,
that is, we are able to detect macro-communities through
the observation of micro-behavior of individuals. Detect-
ing communities is of great importance in disciplines where
interactions are represented as graphs and has a variety of
algorithmic challenges (see a survey by Fortunato [11]). Our
results show that the natural trial and error behavior of indi-
viduals characterizes certain global community structures of
a social network; this gives a solid justification of the model.

Specifically, we simulate the trial and error dynamics on
the community detection testing graphs of Lancichinetti et
al. [20], who described a procedure that generates random
graphs with power law distributions on the degree of a node
and the size of a community. The graphs generated by [20]
are a refinement of the classic Girvan and Newman’s testing
graphs [12] and has been taken as benchmarks for commu-
nity detection algorithms. We compare the trial and er-
ror dynamics with the Louvain method [3], one of the most
widely used modularity maximization approaches for com-
munity detection. Our simulation results show that the trial
and error dynamics detects communities with high preci-
sion and even outperforms the Louvain method if individuals
have dense connections within communities.

We next study the influence maximization problem [18]:
Suppose that a new product is entering a market, which
was dominated by another product. A critical question is
how to spend the limited budget on initially seeding a few
individuals (e.g., giving free samples of the product) in order
to trigger a cascade of influence by which a large fraction of
individuals eventually adopt the new product.

We consider the influence maximization problem in the
trial and error model; here the problem becomes much more
complicated due to the nondeterministic and concurrent dy-
namics of the trial and error process. We give a heuristic
algorithm based on community detection and provide ex-
periments on both testing and large scale collaboration net-
works. Simulation results show that our algorithm signifi-
cantly outperforms several well-studied heuristics including
degree centrality and distance centrality in almost all of the
scenarios. Our results imply that given the limited budget,
seeding a large number of low-influence vertices is indeed
better than seeding a small number of high-influence ver-
tices. Our findings echo some real life advertising strategies
in terms of the amount of advertising investments, and in-
dicate that the mixing parameter, a benchmark evaluating

network community structures, plays a critical role for in-
formation diffusion.

1.2 Related Work
The dynamics of information diffusion has been studied

extensively in different disciplines with different focuses. It
is referred to [16, 9] for a comprehensive introduction of a
number of classic models analyzing the spread of information
and related issues.

Influence maximization was first proposed by Domingos
and Richardson [8, 25] as an algorithmic problem. Later on,
Kempe, Kleinberg, and Tardos [18] formulated the problem
as a discrete optimization problem described above. They
considered two natural diffusion models, linear threshold
and independent cascade, and showed that the simple high-
degree greedy algorithm gives a constant approximation to
the optimal. Since the seminal work of [18], the influence
maximization problem has received numerous attention for
different influence processes, see, e.g., [21, 5, 7, 6, 19] and
the references within.

As discussed earlier, game theoretical analysis has been
applied to model the process of information diffusion. One
of the most natural individual behaviors is that of the best
response dynamics, which has been studied extensively for
the emergence of technologies [29] and is similar but signifi-
cantly different from our trial and error dynamics; we give a
comprehensive comparison of the two models in the subse-
quent section. For the best response dynamics, Kandori et
al. [17] showed that with a small noise it always converges to
a monopoly state in which all individuals choose the same
product. Ellison [10] and Montanari and Saberi [22] then
studied the speed of convergence to such a dominant equi-
librium.

2. MODEL
In a social network G = (V,E), V is the set of vertices

(i.e., individuals) and E is the set of undirected edges that
represent relations between individuals in the network. We
assume that the network is connected. There is a weight
function w : E → R

+ associated with each pair. That is, for
any (i, j) ∈ E, w(i, j) gives the tie strength between i and
j. In the present paper, we define

w(i, j) =
∣

∣{k | (i, k) ∈ E, (j, k) ∈ E}
∣

∣+ 1

which is the number of common friends of i and j plus one.1

Assume that there is a set of products A, and each vertex
can choose one of the products. For each i ∈ V , let fi ∈ A
denote the product that i chooses; then (fi)i∈V defines a
configuration of the network. For any given configuration,

1The concept of tie strength was first introduced by Gra-
novetter in his landmark paper [13]; a basic hypothesis
in [13] is that the stronger the tie between two individuals,
the larger the proportion of individuals in the rest to whom
they both are tied. In other words, there is a monotonically
increasing relationship between weight and the number of
common friends. Our definition of weights is one of the sim-
plest functions that satisfy this hypothesis (note that the
addition of one is to count the direct relationship between
individuals). In fact, our weight function is characterized by
the matrix A2 + A, where A is the adjacency matrix of the
(unweighted) social network.

the normalized utility of agent i is defined as follows:

ui =

∑

j:(i,j)∈E,f(i)=f(j) w(i, j)
∑

j:(i,j)∈E
w(i, j)

.

The numerator in the above formula is the total weight of
the neighbors of i that choose the same product as him, and
the denominator is the total weight of all edges incident to
i, which is a fixed number. The utility of an individual thus
completely depends on his and his friends’ selections. In the
present paper, we will consider a simple setting with only
two products, i.e., A = {a, b}.

2.1 Trial and Error Dynamics
We will consider a trial and error model to study the dy-

namics of product adoption caused by self-interested behav-
ior of individuals. Initially, every vertex is associated with
a product. In each of the following rounds, all vertices will
try another product concurrently according to the following
probability function:2

p(u) = e−
u

1−u .

That is, assume that a vertex i chooses product a with utility
ui at the beginning of the round; then with probably p(ui)
the vertex will try another product b, and with probability
1 − p(ui) he will continue to use a. If the vertex finds an
improved utility at the trial b (with respect to the trials of
all of his neighbors), then he will adopt the new product
b at the end of the round. Otherwise (which corresponds
to an “error”), he will continue to use the prior choice a.
The following figure shows the process of trial and error of
a vertex within one round.

choose product b

try product b

choose product a

choose product a

if better utility otherwise

with probability 1− p

with probility p

We say a configuration is a zero configuration if all vertices
have utility 0; otherwise we call it a nonzero configuration.
It can be seen that zero configurations only occur in bipar-
tite graphs where the two sides adopt different products. If
the trial and error dynamics starts from a zero configura-
tion, then at every round all vertices try another product
with probability 1 and realize that it does not give a better
utility (with respect to the trails of other vertices). Thus,
all vertices will continue to choose their prior selections, i.e.,
the zero configuration will stay forever. We first establish

2The intuition behind the probability function is that a ver-
tex is more likely to try a new product if his current utility
is small. In particular, if ui = 1 (i.e., all neighbors of i use
the same product as him), then p = 0, which means that
the vertex has no incentive to try a new product. If ui = 0,
then p = 1, which means that the vertex is surely to try a
new product.

the following characterization, which essentially eliminates
zero configurations in the trial and error dynamics.

Lemma 2.1. A nonzero configuration will never move to

a zero configuration in the trial and error dynamics.

2.2 Best Response Dynamics
In the context of game theory, our model can be consid-

ered as a game played on an underlying graph G = (V,E),
where each pair of vertices i and j with (i, j) ∈ E plays a co-
ordination game. A profile (in our language, a configuration)
is called a (pure) Nash equilibrium if no individual can im-
prove his utility by unilaterally adopting another product.
That is, from individuals’ strategic point of view, the dy-
namics of adoptions reaches a stable state. It is well-known
that coordination games with players in an underlying graph
are a potential game. Thus, a pure Nash equilibrium always
exists, and can be achieved by the best response dynam-

ics [24], i.e., individuals sequentially adopt products that
yield the highest utilities.

The trial and error dynamics by its nature is quite simi-
lar to the best response dynamics. However, the trial and
error dynamics allows concurrent moves for all individu-
als, whereas the best response dynamics considers sequential
moves. If concurrent moves are allowed, the best response
dynamics may not converge any more for many networks.
For instance, for the complete graph with n vertices, ini-
tially, n/2 vertices choose product a and n/2 vertices choose
product b; then at every round all vertices change to adopt
another product and the dynamics never converges.

The best response dynamics identifies the set of Nash equi-
libria as the set of stable configurations. But are all of these
configurations really “stable” in a social network? Consider
the example in Figure 1 in which there are a small clique
G1 with m vertices and a big clique G2 with n vertices, and
each vertex in G1 connect to a vertex in G2. Consider the
special case when m = 2, i.e., G1 contains only two vertices
i and j, and the configuration where i and j use product a
while all vertices in G2 use product b. It is easy to verify
that it is a Nash equilibrium, but such a Nash equilibrium
rarely happens in a social network: the utility of both i and
j is 0.5, and they are able to improve their utility to 1 if
both adopting product b. In other words, the small commu-
nity can be easily influenced by the large community even if
their connections are sparse.

j

i

G1

G2

Figure 1: Example of a non-stable Nash equilibrium

2.3 Stable Nash Equilibrium
In this subsection, we will consider whether and when the

trial and error dynamics stabilizes, and if yes, it stabilizes
to which configuration. First, it is natural to see that a
configuration that is not a Nash equilibrium should not be
considered as stable: In such a configuration there always

exists a vertex whose utility is less than 0.5 and can be better
if adopting the other product.

Second, not all Nash equilibria should be considered as
stable. In the example of Figure 1, when the clique G1

contains only 2 vertices, with probability
(

e−
0.5

1−0.5

)2
= e−2

both of them will try and then adopt product b. That is,
the Nash equilibrium configuration may jump to another
configuration with a constant probability even in a single
round; thus, the probability that such a configuration re-
mains unchanged decreases exponentially as the dynamic
process continues. However, if G1 contains more vertices,
then all vertices of G1 have more utilities when adopting
product a because of internal edges and their trial prob-
ability becomes much smaller. Further, the only way to
jump out of the Nash equilibrium configuration is to have
at least half of the vertices of G1 simultaneously try product
b; this happens, however, with an extremely small probabil-
ity. That is, while eventually the trial and error dynamics
will change to another configuration as the process contin-
ues, this Nash equilibrium configuration will stay for a very
long period.

Third, for some Nash equilibrium configuration, while there
is a non-negligible probability to jump out, it is also very
likely to return to the configuration. There are 2 small com-
munities G1 and G2 which are connected by a vertex k (see
Figure 2). The initial adoptions are labelled next to each
vertex. It can be seen that both i and j will try the other
product with a constant probability in each round, but due
to the dominance of their neighbors in the community, they
will continue to choose the prior selection (i.e., a and b, re-
spectively). Now let us consider the following dynamics:
both i and k try product b (this happens with a constant
probability), then i will continue to choose a but k will adopt
b. That is, the configuration is changed to a new one where
the only difference is on vertex k. For the new configura-
tion, consider another dynamics: both j and k try product
a (this happens again with a constant probability), then j
will continue to choose b but k will adopt a. That is, the
configuration is changed back to the original one. It can
be seen that the swaps between the two configurations will
continue forever.

G1 G2

ki j

aa b

a

a

b

b

b

a

Figure 2: Example of swapping Nash equilibria

In summary, in a social network some configurations may
stay for a long period or occur frequently. In both cases the
configurations to some extent slow down or even block the
diffusion of information, and thus, the network has reached
a rather stable state. Given this observation, we next define
the notion of k-stable Nash equilibrium, a refinement of the
definition of Nash equilibrium, to characterize a stable state
of a trial and error dynamic process.

Definition 2.1. For any given number k, we say that a

trial and error process reaches a k-stable state if a Nash

equilibrium configuration appears more than 0.5 · k times in

k consecutive rounds. Such a Nash equilibrium is called a

k-stable Nash equilibrium.

Note that the coefficient 0.5 in the definition can be re-
placed by any constant. This parameter together with k
characterize the extent of the stability of a Nash equilib-
rium. For instance, if k = 1 then the definition degenerates
to the normal Nash equilibrium; and if k =∞ then the only
stable configurations are those that will stay forever (e.g.,
monopoly).

The theorem below shows that any trial and error process
must reach a k-stable state for any finite k. However, differ-
ent realizations of the process may reach different k-stable
Nash equilibria. This is by the randomness of trial and er-
ror, and also reflects the nature of dynamics of information
diffusion.

Theorem 2.1. For any finite number k > 0, the trial

and error dynamics starting from a nonzero configuration

reaches a k-stable state with probability 1.

In the following sections, we simulate the trial and er-
ror dynamics on various benchmark graphs and real social
networks with vertex sizes ranging from 1000 to 25000. A
general guidance for picking the best value of k is that it
should give us the most reasonable stable state of an under-
lying network. In all of our simulations, the trial and error
process stabilizes to the first stable state within dozens of
rounds, and then it stays at that configuration with very
occasional local disturbances, for as long as 106 rounds. We
will therefore use k = 106 and consider the first k-stable
state in all of our simulations. For convenience, in the rest
of the paper, we will use stable state to denote a k-stable
state.

3. COMMUNITY DETECTION:
JUSTIFICATION OF TRIAL AND ERROR

In the above section, we argued that the trial and error
dynamics can lead to a more stable Nash equilibrium. In
this section, we will provide a further justification to the
trial and error model. Specifically, in practice, people in
the same community usually turn out to adopt the same
product. Does the trial and error dynamics exhibit the same
phenomenon?

To answer this question, we simulate the trial and error
dynamics to detect communities of a social network. We run
two types of experiments on the benchmark graphs of Lanci-
chinetti et al. [20] with 1000 and 5000 vertices, respectively.
Similar to the setup of [20], we choose parameters γ = 2 and
β = 1, where γ and β are the exponents of the power law
distributions of the degree of a vertex and the size of a com-
munity, respectively. We choose the average degree of all
vertices to be 15 and 20 for the 1000-vertex and 5000-vertex
graphs, respectively, and the maximum degree to be 100.
Further, every graph has an associated mixing parameter µ,
which denotes that each vertex shares a fraction of 1 − µ
of its edges with other vertices of its own community and a
fraction of µ with the rest vertices of the graph. The gener-
ated graphs have well defined built-in community structures;
more details of the benchmark graphs are referred to [20].

For every randomly generated graph, we run the following
experiment: Initially every vertex chooses one of the prod-
ucts a and b with equal probability; we then simulate the

trial and error process from the initial state until it reaches
a stable state. The simulation is repeated 100 times on the
graph. For every pair of vertices (i, j) that are connected by
an edge, we denote by p(i, j) the probability that i and j end
up with using the same product among all 100 simulations.

From the derived data, it can be seen clearly that when
the mixing parameter µ = 0.2, all pairs of vertices are di-
vided into two groups: one with small probabilities (roughly
between 0.3 and 0.7) and one with probability 1. When
µ = 0.5, the communities become fuzzy and there is no clear
separation on the probabilities (there are positive densities
for all probabilities larger than 0.3).

We next describe our community detection algorithm by
the trial and error dynamics.

Algorithm 1 Community Detection by Trial and Error

1: Let V be the set of vertices of the graph and k = 1.
2: Let threshold = 0.95.
3: while V 6= ∅ do
4: Pick i ∈ V and let Sk = {i}.
5: for j ∈ V do

6: if p(i, j) > threshold then

7: Sk ← Sk ∪ {j}.
8: end if

9: end for

10: Let V = V \ Vk and k = k + 1.
11: end while

12: Return (S1, S2, . . .).

In the algorithm, we first set a threshold value (which
is 0.95 in the description below), and cluster vertices in the
same community if their probabilities are beyond the thresh-
old value.3

We compare the performance of our algorithm with the
Louvain method [3], which is a popular modularity maxi-
mization approach. Modularity maximization is one of the
most widely used methods for community detection. The
Louvain method iteratively optimizes local communities un-
til global modularity can no longer be improved given per-
turbations to the current community state. To compare the
built-in community structures of the generated graphs with
our trial and error algorithm and the Louvain method, we
use the normalized mutual information, which is a measure
of similarity of partitions from information theory. The fol-
lowing figures show the comparison results (each point cor-
responds to an average over 10 graph realizations).

Notice that our algorithm detects communities with high
precision (even outperforms the Louvain method) when the
mixing parameter is less than 0.4. When the community
structures become fuzzy as the mixing parameter approaches
0.5, the performance of our algorithm gradually drops. Note
that the runtime complexity of our algorithm is rather high,
as the probability p(i, j) for every pair is computed in terms
of 100 simulations. However, here we do not attempt to
propose a new community detection algorithm. Instead,
the simulations indicate that the trial and error dynamics

3Different social networks may have different optimal
threshold values depending on their structures. For instance,
we also run our community detection algorithm on the Gir-
van and Newman benchmark graph [12], and obtain similar
simulation results when setting the threshold to be 0.99.

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.94

0.95

0.96

0.97

0.98

0.99

1

mixing parameter

m
u
tu

a
l
in

fo
rm

a
ti
o
n

Our algorithm
Louvain algorithm

(a) 1000-vertex graph

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.94

0.95

0.96

0.97

0.98

0.99

1

mixing parameter

m
u
tu

a
l
in

fo
rm

a
ti
o
n

Our algorithm
Louvain algorithm

(b) 5000-vertex graph

Figure 3: Community detection results

exhibits certain community structures of a social network.
This gives a solid justification to the trial and error model.4

4. INFLUENCE MAXIMIZATION
In this section, we study the word-of-mouth effect in our

trial and error model: Given a social network G = (V,E),
initially all vertices use product a. A new product b now
is about to enter the market. Given a sharp budget B on
marketing, which vertices should be seeded in order to create
a large fraction of adoptions? For each node i ∈ V , let
c(i) =

∑

j:(i,j)∈E
w(i, j) be the cost to seed i using product

b at the beginning5. Let f(S) denote the expected amount
of adoptions if S is the set of seeded vertices. Then the
influence maximization problem is to find a set S ⊆ V to
maximize f(S) given that

∑

i∈S
c(i) ≤ B.

4.1 Algorithm
Our algorithm, at a high-level viewpoint, divides the net-

work into communities and then considers each community
separately. While we can use the community detection al-
gorithms described in the previous section, how should we
deal with each community? To answer this question, let us

4Note that the best response dynamics does not have such
community detection property; for instance, for the com-
plete graph discussed earlier with n/2 using product a and
n/2 using product b, the best response dynamics does not
even converge.
5The cost to seed a vertex i here is defined as the total weight
of all edges incident to i. This definition is motivated from
the observation that large degree vertices usually slow down
the diffusion process [22]. Thus, seeding these vertices needs
a larger cost.

first consider the special case where the underlying network
is a complete graph; such a complete graph closely approx-
imates the structure of a community. In a complete graph
with n vertices, the weight of every edge is n − 1 and thus
c(i) = (n − 1)2 for all vertex i. Since all vertices have the
same cost and the same influence, the only (optimal) strat-
egy is to seed

⌊

B

(n−1)2

⌋

vertices arbitrarily. Note that the

only Nash equilibria in a complete graph are the two mo-
nopolies where all vertices adopt the same product, either
a or b. Thus, the expected number of adoptions is equal to
n ·dominate(k, n), where dominate(k, n) denotes the proba-
bility that product b dominates the entire market if k vertices
are initially seeded.

The value of dominate(k, n) can be approximately com-
puted via a straightforward dynamic programming proce-
dure: Define Pr[i][t] to be the probability that there are i
vertices using product b at the end of round t. Initially let
Pr[k][0] = 1 and Pr[k′][0] = 0 for all other k′ 6= k. In gen-
eral the value of Pr[i][t] for each i can be computed precisely
given Pr[0][t−1], Pr[1][t−1], . . . , Pr[n][t−1]. Repeat the pro-
cedure until we have Pr[0][t′] + Pr[n][t′] > 1 − ǫ for some t′

and small enough ǫ, i.e., all vertices adopt the same product.
Then Pr[n][t′] gives an approximation of dominate(k, n).
Figure 4a shows the results for several values of k and n.
We can see clearly that the probability that product b dom-
inates increases rapidly when the fraction of targeted seeds
goes from 50% to 60%, and the probability grows to 1 when
the fraction is around 65%. In other words, seeding 65%
vertices is sufficient to influence the entire graph and extra
investment is redundant.

0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

k/n

d
o
m
i
n
a
t
e
(k

,n
)

n=40
n=60
n=80
n=100

(a) Domination probability

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

x 10
−3

k/n

i
n
v
e
s
t
(k

,n
)

n=40
n=60
n=80
n=100

(b) Investment efficiency

Figure 4: Bang for the buck of complete graphs

Note that a real social network in general exhibits strong
community structures and vertices in the same community
tend to use the same product. Given the connection be-
tween the trial and error dynamics and community structure

established in the previous section, our community-based al-
gorithm first partitions the network into disjoint communi-
ties, and then picks several communities and seed certain
amount of vertices from the picked communities. While a
network may not have perfect community structures in the
sense that vertices may not be linked in the same community
and there may have crossing-community edges, we expect
(and are supported by the simulation results) that our anal-
ysis for complete graphs above gives close approximations
to partitioned communities. A remaining question is which
communities should be considered first in the algorithm.

Note that if we seed k vertices in a complete graph with in
total n vertices, we spend k(n−1)2 amount of budget with an
expected return of n · dominate(k, n); thus, the efficiency of
the investment, i.e., the expected number of vertices adopt-
ing product b per unit budget spent, is given by

invest(k, n) ,
n · dominate(k, n)

k(n− 1)2
.

Therefore, in order to spend the budget efficiently, we should
always first consider those communities with larger invest

values. Figure 4b shows the values of invest(k, n) for several
choices of k and n, from which we can conclude that: (1)
for every n, invest(k, n) achieves maximal at around k =
0.6 · n, and (2) the smaller a community is, the larger value
invest(k, n) is.

Therefore, in the algorithm we always pick communities
according to the increasing order of their sizes. The algo-
rithm is described as follows.

Algorithm 2 CommunityUp

1: Let (C1, . . . , Ck) be a partition of graph G based on some
community detection algorithm.

2: Let fraction be the percentage of seeded vertices in a
community.

3: Order communities by their sizes, e.g., |C1| ≤ |C2| ≤
· · · ≤ |Ck|.

4: for ℓ = 1, . . . , k do

5: For the community Cℓ, randomly pick fraction · |Cℓ|
vertices, and seed them if there is enough remaining
budget.

6: end for

Notice that we use a parameter fraction instead of the
nearly optimal value 60% in the description of the algorithm.
In real social networks, a vertex may also be influenced by
those from other communities, and the optimal value of the
parameter fraction depends on the structure of the under-
lying network. In particular, if a network has poor commu-
nity structures, one may need to seed a larger fraction of
vertices in order to derive the same domination probability.
In the simulations, we choose a slightly larger parameter
fraction = 65%.

4.2 Simulations
We run a number of experiments to evaluate the per-

formance of our community-based algorithm. We compare
our algorithm with several other heuristic algorithms based
on vertices’ structural measures of influence. Following the
benchmarks considered in [18], we use degree and distance
centrality heuristics as our comparison algorithms. Degree
has long been considered as a standard estimate of a vertex’s
influence in a network. Distance centrality, which is defined

as the total distance from one vertex to all other vertices, is
another commonly used influence measure in sociology. It
is based on the assumption that a vertex that has shorter
distances to all other vertices has more chance to influence
them.

Clearly seeding vertices with larger influences stands a
better chance to influence more vertices. However, in our
model a more influential vertex may have a larger cost.
Thus, the fixed budget constraint yields a trade-off between
the number of vertices one can seed and their influences. In
our experiments, we consider two extremes of this trade-off:
one always seeds vertices with larger influences and the other
always tries to pick as many vertices as possible. Specifically,
we run the following algorithms in the simulations.

• CommunityUp: Our proposed community-based algo-
rithm. We use the Louvain method for community de-
tection due to time efficiency, and select fraction =
65% as the percentage of seeding vertices in each com-
munity.

• DegreeUp: The degree greedy algorithm that seeds ver-
tices in the order of increasing degree until the budget
is exhausted.

• DegreeDown: The degree greedy algorithm that seeds
vertices in the order of decreasing degree until the bud-
get is exhausted.

• DistanceUp: The distance greedy algorithm that seeds
vertices in the order of increasing distance centrality
until the budget is exhausted. Note that some tested
graphs are not connected. We then apply the approach
of [18] by assigning a sufficiently large (e.g., the sum
of all edge distances in the network) distance to all
disconnected pairs of vertices.

• DistanceDown: The distance greedy algorithm that
seeds vertices in the order of decreasing distance cen-
trality until the budget is exhausted.

We choose the following two types of social networks as
our testing data:

• The benchmark graphs of Lancichinetti et al. [20] with
1000 vertices, i.e., the same benchmark graphs used
in the previous section for community detection. We
pick two graphs with mixing parameter 20% and 50%,
respectively. (We also run simulations for other sce-
narios with different mixing parameters and number
of vertices, and obtain almost the same results.)

• A collaboration network denoted by CondMat from
the e-print arXiv that covers scientific collaborations
between authors with papers submitted to Condense
Matter category.6 The CondMat network contains
23133 vertices and 186936 edges. Each vertex in the
networks represents an author, and an edge between
i and j indicates that there is at least one paper co-
authored by i and j (multiple co-authored papers by
two authors only count one edge). It is well-known
that collaboration networks capture many of the key
features of general social networks [23].

6The testing data of the simulation network is available at
http://snap.stanford.edu/data/ca-CondMat.html

To compare simulation results on different graphs, we as-
sume for convenience that the budget B is of a proportion
λ of the total cost of all vertices, i.e., B = λ · Σi∈V cost(i).
We run all of the aforementioned algorithms on the testing
networks with λ = 1%, 3%, 5%, 10%, 20%, up to 70%, re-
spectively. For each specific setting, we simulate the trial
and error dynamics 100 times and take the average result.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

budget fraction λ

a
d
o
p
ti
o
n
o
f
th
e
n
ew

p
ro
d
u
ct

CommunityUp
DegreeUp
DegreeDown
DistanceUp
DistanceDown

(a) 1000-vertex graph with mixing parameter 0.2

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

budget fraction λ

a
d
o
p
ti
o
n
o
f
th
e
n
ew

p
ro
d
u
ct

CommunityUp
DegreeUp
DegreeDown
DistanceUp
DistanceDown

(b) 1000-vertex graph with mixing parameter 0.5

Figure 5: Results for the benchmark graph of [20]

Figure 5 shows the performances of different algorithms
in the benchmark graphs of Lancichinetti et al. [20]. Our
community-based algorithm CommunityUp outperforms all
other algorithms by a big margin. This shows that taking
community structures into account can reduce the amount
of inefficient investment and greatly improve the marketing
result. A more detailed analysis shows that in the trial and
error process with the CommunityUp algorithm, almost all
communities picked by the algorithm are dominated by the
new product in the stable state. For all other algorithms,
however, there are a number of communities to which the
algorithm invests a fairly amount of budget, but eventually
all vertices inside still use the original product in the stable
state.

Figure 6 shows the results of the CondMat collaboration
network. The structure in this real social network is more
complicated then the benchmark graphs. As a result, the
improvement margins between CommunityUp and other algo-
rithms are not as large as those in the benchmark graphs.

4.3 Discussions
From the simulations we can derive the following obser-

vations and conclusions.

0 10 20 30 40 50 60 70
0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

budget fraction λ

a
d
o
p
ti
o
n
o
f
th
e
n
ew

p
ro
d
u
ct

CommunityUp
DegreeUp
DegreeDown
DistanceUp
DistanceDown

Figure 6: Result for CondMat network

Quantity vs. quality. Among all other algorithms, we
notice that DegreeUp and DistanceDown perform significantly
better than the other two algorithms DegreeDown and Dis-

tanceUp in almost all data sets. For a vertex with a small
degree or a large distance centrality, the edges incident to the
vertex usually have smaller weights. This indicates that for
the limited budget, seeding a large number of low-influence
vertices is strategically better than seeding a small number
of high-influence vertices. A similar conclusion has been de-
rived in Watts and Dodds [27].

Low budget vs. high budget. The amount of budget
also plays different roles in different algorithms. The algo-
rithms that prioritize low-influence vertices perform much
better than the ones that prioritize high-influence vertices
when the budget is small. As the budget increases, the lat-
ter start to catch up and even outperform the former in
some cases. Such phenomena echo some real world scenar-
ios: Many companies tend to market products with small
investments through local advertising and promotions to at-
tract as many customers as possible (e.g., giving free sam-
ples), whereas for companies with enormous budget, their
strategy is to sign celebrities who have large influences as
their spokespersons.

Mixing parameter. When the mixing parameter of a
network is small, each community in the graph is more or
less independent to each other. Thus, the number of com-
munities adopting the new product should be roughly pro-
portional to the budget invested, which is confirmed by the
approximately straight lines in Figure 5a.

Meanwhile, networks with large mixing parameters have
bad community structures. Each vertex would receive more
influences from vertices of other communities. As a result,
the performances of some heuristic algorithms on such a
graph (Figure 5b) become very similar to that of a purely
random strategy on a complete graph: the fraction of ver-
tices adopting the new product increases rapidly when the
budget goes from 40% to 60%, and then slowly goes to 1 as
the budget keeps growing to around 70%. Yet our Commu-

nityUp algorithm can still take advantages from such fuzzy
community structures and outperform the other algorithms.

Testing vs. real networks. When comparing the bench-
mark graphs of [20] with the real network CondMat, one can
see a noticeable similarity between Figure 5a and Figure 6.
In fact, the average mixing parameter of the CondMat net-
work is 0.289, which indicates that the CondMat network

has a pretty good community structure. On a side note, it
also shows that mixing parameter, a benchmark evaluating
whether a network has good community structures, is essen-
tial for the performances of different influence maximization
algorithms.

5. CONCLUDING REMARKS
The diffusion of information in a social network is affected

not only by its network structure but also by individuals’
preferences and experiences. We introduced a trial and er-
ror model to study the dynamics of information diffusion due
to strategic incentives of individuals. We showed that the
trial and error dynamics reveals certain global community
structures of a social network and from which we are able to
detect macro-communities through the observation of micro-
behavior of individuals. We also studied the influence maxi-
mization problem and proposed a heuristic algorithm based
on community detection. Simulations showed that the algo-
rithm significantly outperforms several well-studied heuris-
tics including degree and distance centralities.

We believe that investigating trial and error as the bridge
linking individuals’ behavior in the micro-level and social
phenomena in the macro-level would bring us a deeper un-
derstanding of how information diffuses in a social network.
Our work leaves a number of intriguing questions and direc-
tions for future studies.

• In our work, we considered only two products. It is
natural to extend the model to more generalized set-
tings with more products. It is also interesting to con-
sider other probability and edge weight functions.

• The main focus of our study is to investigate the con-
sequence of trial and error behavior in social networks
assuming homogenous individuals, and we only utilize
undirected social networks in the current analysis. It is
argued in [14] that social relationships could be asym-
metric as the LinkedIn network. Thus, for some set-
tings it is more appropriate to use a directed network
to model the asymmetric influences among individuals.

• A key question in the study of information diffusion is
the rate of convergence. For epidemic models, a major
prediction is that information spreads quickly in highly
connected networks [9], whereas for game theoretical
models, it was argued that information spreads quickly
in locally connected networks [22]. What is the rate of
convergence in our trial and error model?

• Another important individuals’ behavior is the noisy

best response dynamics where instead of always choos-
ing the best response strategy, there is a small per-
turbation for individuals to choose a different strategy
even though it may give them a worse payoff. Noisy
best response has been studied extensively in [15, 17,
28, 29], with a focus on the stationary distribution of
the corresponding Markov chain. A main result along
this line is that the noisy best response dynamics al-
ways converges to a particular equilibrium in which a
product dominates the market.

We may consider a similar noisy trial and error model:
even though an individual has utility 1, he still has a
nonzero probability to try a new product, and adopt it
if obtaining a larger utility (which occurs when some

of his neighbors also make a trial). We can show sim-
ilarly that the noisy trial and error dynamics also al-
ways reaches a monopoly equilibrium. In contrast to
the noisy best response dynamics, the perturbation in
our model is purely at trials and all individuals are still
completely rational (i.e., they never adopt a product
that yields a smaller utility). All our simulation results
carry to the noisy trial and error dynamics. Therefore,
while it may need an extremely long period to reach a
monopoly equilibrium, the dynamics arrives quickly at
a fairly stable state which allows coexistence of both
products. Indeed, this is precisely what we observe in
a real marketplace where in most cases several com-
peting products survive. An intriguing question is to
theoretically characterize stable state and stable Nash
equilibrium in the (noisy) trial and error model.

6. REFERENCES
[1] C. Beer. Trial and error in the evolution of cognition.

Behavioral Processes, 35:215–224, 1996.

[2] X. Bei, N. Chen, and S. Zhang. On the complexity of
trial and error. In Proceedings of the ACM Symposium

on Theory of Computing, pages 31–40, 2013.

[3] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory

and Experiment, 2008:P10008, 2008.

[4] S. Callander. Searching and learning by trial and error.
American Economic Review, 101:2277–2308, 2011.

[5] N. Chen. On the approximability of influence in social
networks. In ACM-SIAM Symposium on Discrete

Algorithms, pages 1029–1037, 2008.

[6] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in
large-scale social networks. In SIGKDD Conference on

Knowledge Discovery and Data Mining, pages
1029–1038, 2010.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In SIGKDD

Conference on Knowledge Discovery and Data Mining,
pages 199–208, 2009.

[8] P. Domingos and M. Richardson. Mining the network
value of customers. In SIGKDD Conference on

Knowledge Discovery and Data Mining, pages 57–66,
2001.

[9] D. Easley and J. Kleinberg. Networks, Crowds, and

Markets: Reasoning about a highly connected world.
Cambridge University Press, 2010.

[10] G. Ellison. Learning, local interaction, and
coordination. Econometrica, 61:1047–1071, 1993.

[11] S. Fortunato. Community detection in graphs. Physics
Reports, 486:75–174, 2010.

[12] M. Girvan and M. Newman. Community structure in
social and biological networks. Proceedings of the

National Academy of Sciences, 99:7821–7826, 2002.

[13] M. Granovetter. The strength of weak ties. The
American Journal of Sociology, 78:1360–1380, 1973.

[14] S. Hangal, D. MacLean, M. S. Lam, and J. Heer. All
friends are not equal: Using weights in social graphs
to improve search. In 5th SIGKDD Workshop on

Social Network Mining and Analysis, 2011.

[15] J. C. Harsanyi and R. Selten. A General Theory of

Equilibrium Selection in Games. MIT Press,
Cambridge, 1988.

[16] M.O. Jackson. Social and economic networks.
Princeton University Press, 2008.

[17] M. Kandori, H. Mailath, and F. Rob. Learning,
mutation, and long run equilibrium in games.
Econometrica, 61:29–56, 1993.

[18] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 137–146, 2003.

[19] M. Lahiri and M. Cebrian. The genetic algorithm as a
general diffusion model for social networks. In
Proceedings of the AAAI Conference on Artificial

Intelligence, 2010.

[20] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Physical Review E, 78:046110, 2008.

[21] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. In SIGKDD Conference on

Knowledge Discovery and Data Mining, pages
420–429, 2007.

[22] A. Montanari and A. Saberi. The spread of
innovations in social networks. Proceedings of the

National Academy of Sciences, 2010.

[23] M. Newman. The structure of scientific collaboration
networks. Proceedings of the National Academy of

Sciences, 98:404–409, 2001.

[24] N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

[25] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. In
SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 61–70, 2002.

[26] M. Sosna, R.N. Trevinyo-Rodriguez, and S.R.
Velamuri. Business model innovation through
trial-and-error learning: The naturhouse case. Long
Range Planning, 43:383–407, 2010.

[27] D.J. Watts and P.S. Dodds. Influentials, networks, and
public opinion formation. Journal of Consumer

Research, 34:441–458, 2007.

[28] H. P. Young. The evolution of conventions.
Econometrica, 61:57–84, 1993.

[29] H. P. Young. Individual Strategy and Social Structure:

An Evolutionary Theory of Institutions. Princeton
University Press, 2001.

[30] H. P. Young. Learning by trial and error. Games and

Economic Behavior, 65:626–643, 2009.

[31] H.P. Young. The diffusion of innovations in social
networks. In L. E. Blume and S. N. Durlauf, editors,
The Economy As an Evolving Complex System, III:

Current Perspectives and Future Directions, pages
267–282. Oxford University Press, 2005.

