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Earning limits and utility limits are novel aspects in the classic Fisher market model. Sellers with earning

limits have bounds on their income and lower the supply they bring to the market if income exceeds the limit.

Buyers with utility limits have an upper bound on the amount of utility that they want to derive and lower the

budget they bring to the market if utility exceeds the limit. Markets with these propertiescan have multiple

equilibria with different characteristics.

We analyze earning limits and utility limits in markets with linear and spending-constraint utilities. For

markets with earning limits and spending-constraint utilities, we show that equilibrium price vectors form a

lattice and the spending of buyers is unique in non-degenerate markets. We provide a scaling-based algorithm

to compute an equilibrium in time O(n3ℓ log(ℓ + nU )), where n is the number of agents, ℓ ≥ n a bound on the

segments in the utility functions, and U the largest integer in the market representation. We show how to

refine any equilibrium in polynomial time to one with minimal prices, or one with maximal prices (if it exists).

Moreover, our algorithm can be used to obtain in polynomial time a 2-approximation for maximizing Nash

social welfare in multi-unit markets with indivisible items that come in multiple copies.

For markets with utility limits and linear utilities, we show similar results – lattice structure of price vectors,

uniqueness of allocation in non-degenerate markets, and polynomial-time refinement procedures to obtain

equilibria with minimal and maximal prices. We complement these positive results with hardness results for

related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes

social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation

points for each buyer and each good.
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1 INTRODUCTION
The concept of market equilibrium is a fundamental and well-established notion in economics to

analyze and predict the outcomes of strategic interaction in large markets. Initiated by Walras in

1874, the study of market equilibrium has become a cornerstone of microeconomic analysis, mostly

due to general results that established existence under very mild conditions [3]. Since efficient

computation is a fundamental criterion to evaluate the plausibility of equilibrium concepts, the

algorithmic aspects of market equilibrium are one of the central domains in algorithmic game

theory. Over the last decade, several new algorithmic approaches to compute market equilibria were

discovered. Efficient algorithms based on convex programming techniques can compute equilibria

in a large variety of domains [14, 27, 30]. More importantly, several approaches were proposed

that avoid the use of heavy algorithmic machinery and follow combinatorial strategies [19, 22, 23,

31, 35, 41], or even work as a tâtonnement process in unknown market environments [5, 13, 16].

Designing such combinatorial algorithms is useful also beyond the study of markets, since the

underlying ideas can be applied in other areas. Variants of these algorithms were shown to solve

scheduling [29] and cloud computing problems [18], or can be used for fair allocation of indivisible

items [17].

Fisher markets are a fundamental model to study competitive allocation of goods among rational

agents. In a Fisher market, there is a set B of buyers and a set G of divisible goods. Each buyer

i ∈ B has a budgetmi > 0 of money and a utility function ui that maps any bundle of goods to a

non-negative utility value. Each good j ∈ G is assumed to come in unit supply and to be sold by a

separate seller. A competitive or market equilibrium is an allocation vector of goods and a vector of

prices, such that (1) every buyer spends his budget to buy an optimal bundle of goods, and (2) supply

equals demand. Fisher markets have been studied intensively in algorithmic game theory. For many

strictly increasing and concave utility functions, market equilibria can be described by convex

programs [24, 37]. There are a variety of algorithms for computing market equilibria [19, 20, 30, 42].

For linearmarkets, there are even algorithms that run in strongly polynomial time [35, 41]. Moreover,

simple tâtonnement [13, 16] or proportional response dynamics [8, 43] converge to equilibrium

(quickly).

A common assumption in all this work is that utility functions are non-satiated, that is, the utility

of every buyer strictly increases with the amount of good allocated to it, and the utility of every

seller strictly increases with the money earned by it. Consequently, when buyers and sellers are

price-taking agents, it is in their best interest to spend their entire budget and bring all supply to

the market, resp. In this paper, we study new variants of linear Fisher markets with satiated utility

functions recently proposed in [15].

First, we consider markets in which each seller has an earning limit, which gives him an incentive

to be thrifty in equilibrium, i.e., to possibly reduce the supply of his good in the market to meet his

earning limit under equilibrium prices. This is a natural property in many domains, e.g., when sellers

have revenue targets. Many properties of such markets are not well-understood. Interestingly,

thrifty equilibria in Fisher markets with earning limits also relate closely to fair allocations of
indivisible items. There has been a surge of interest in allocating indivisible items to maximize Nash

social welfare. Very recent work [1, 17, 26] has provided the first constant-factor approximation

algorithms for this important problem. The algorithms first compute and then cleverly round a

thrifty equilibrium of a Fisher market with earning limits. The tools and techniques for computing

market equilibria are a key component in this approach.

In this paper, we consider algorithmic and structural properties of markets with earning limits

and spending-constraint utilities. Spending-constraint utilities are a natural generalization of

linear utilities with many additional applications [20, 39]. We show structural properties of thrifty
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equilibria and provide new and improved polynomial-time algorithms for computation. Moreover,

we show how these algorithms can be used to approximate Nash social welfare in markets where

each item j is provided in sj copies (where sj is a given integer). As a result, we obtain the first

polynomial-time approximation algorithms for multi-unit markets.

The second generalization of the Fisher market model that we consider has buyers with linear

utilities and utility limits. That is, there is a happiness cap ci > 0 for each buyer i , and her utility

function is ui (xi ) = min

{
ci ,

∑
j ∈G ui jxi j

}
, where xi = (xi j )j ∈G is any bundle of goods assigned

to buyer i . Such utility functions with happiness caps are also known as budget-additive utility

functions. They are a simple class of submodular and concave functions and a natural generalization

of the standard and well-understood case of linear utilities. These utility functions arise naturally

in cases where agents have an intrinsic upper bound on their utility. For example, if the goods

are food and the utility of a food item for a particular buyer is its calorie content, calories above

a certain threshold do not increase the utility of the buyer. In addition, there are a variety of

further applications in adword auctions and revenue maximization problems [2, 4, 9, 11]. Recently,

market models where agents have linear utilities with utility limits attracted a significant amount

of research interest, e.g., for the allocation of indivisible goods in offline [2, 4, 11] and online [9, 32]

scenarios, for truthful mechanism design [10], and for the study of Walrasian equilibrium with

quasi-linear utilities [21, 25, 36]. As simple variants of submodular functions, they capture many

of the inherent difficulties of more general domains. Given this amount of interest, it is perhaps

surprising that they are not well-understood within the classic Fisher and exchange markets.

If buyers have utility limits, it is natural to assume that they are modest and thrifty, i.e., do not

ask for bundles whose utility exceeds their utility cap and still spend money in the most economical

way. We show that the thrifty and modest equilibria form a lattice and design two procedures, using

which we can turn any thrifty and modest equilibrium into one with smallest prices (minimum

revenue) and one with largest prices (maximum revenue) respectively. We also give a number of

hardness results for related computational questions. In particular, we prove that it is NP-hard to

compute a (not necessarily thrifty and modest) market equilibrium that maximizes social welfare,

and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation

points for each buyer and each good.

1.1 Contribution and Outline
After formal discussion of the market model, we discuss some preliminaries in Section 1.3, including

a formal condition for the existence of a thrifty equilibrium. In Section 2, we study the structure

of thrifty equilibria in markets with earning limits and thrifty and modest equilibria in markets

with utility limits. In particular, we show that the set of equilibrium price vectors always forms a

lattice. Moreover, in non-degenerate markets (for a formal definition see Section 1.3) the spending

of buyers is unique accross equilibria.

In Section 3 we focus on markets with earning limits and spending-constraint utilities, and

outline a novel algorithm to compute a thrifty equilibrium in time O(n3ℓ log(ℓ + nU )), where
n is the total number of agents, ℓ is the maximum number of segments in the description of

the utility functions that is incident to any buyer or any good, and U is the largest integer in

the representation of utilities, budgets, and earning limits. For linear markets, the running time

simplifies to O(n4 lognU )). Our algorithm uses a scaling technique with decreasing prices and

maintains assignments in which buyers overspend their money. A technical challenge is to maintain

rounded versions of the spending restrictions in the utility functions. The algorithm runs until

the maximum overspending of all buyers becomes tiny and then rounds the outcome to an exact

equilibrium. Given an arbitrary thrifty equilibrium, we show how to find in polynomial time a

thrifty equilibrium with smallest prices, or one with largest prices (if it exists).
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Next, we show in Section 3.3 how to round a thrifty equilibrium in linear markets with earning

limits to an allocation of indivisible goods in a multi-unit market to approximate the Nash social

welfare. In these markets, for each item j there are a number sj of available copies. The direct
application of existing algorithms [1, 17] would require pseudo-polynomial time. Instead, we show

how to adjust the rounding procedure in [17] to run in strongly polynomial time. The resulting

algorithm yields a 2-approximation and runs in time O(n4 log(nU )), which is polynomial in the

input size.

In Section 4, we turn to markets with utility limits. First in Section 4.1, we exploit the lattice

structure of thrifty and modest equilibria and design two procedures, using which we can turn

any thrifty and modest equilibrium into one with smallest prices (minimum revenue) and one with

largest prices (maximum revenue) respectively.

Next, we study two extensions in Section 4.2. When we drop the assumption of thrifty and

modest buyers, then we face multiple market equilibria. A natural goal is to compute an allocation

that maximizes utilitarian social welfare. We prove that this problem is NP-hard, even when social

welfare is measured by ak-norm of the vector of buyer utilities, for any constantk > 0. Moreover, we

consider a variant of linear utilities with a utility limit for each buyer and each good. They constitute
a special class of separable piecewise-linear concave (SPLC) utilities, where each piecewise-linear

component consists of two segments with the second one being constant. We show that even in

this very special case computing any market equilibrium becomes PPAD-hard.

1.2 Related Work
For Fisher markets we focus on some directly related work about computation of market equilibria.

For markets with linear utilities a number of polynomial-time algorithms have been derived [19, 30,

42], including ones that run in strongly polynomial time [35, 41]. For spending-constraint utilities in

exchange markets [20] a polynomial-time algorithm was recently obtained [5]. For Fisher markets

with spending-constraint utilities, the algorithm by Vegh [41] runs in strongly polynomial time.

Linear markets with either earning or utility limits were studied only recently [6, 15]. The

equilibria solve standard convex programs. The Shmyrev program [37] for earning limits also applies

to spending-constraint utilities. For utility limits, the framework of [40] provides an (arbitrary)

equilibrium in timeO(n5 log(nU )). For earning limits, our algorithm runs in timeO(n3ℓ log(ℓ+nU ))
for spending-constraint and O(n4 log(nU )) for linear utilities. It computes an approximate solution

that can be rounded to an exact equilibrium. An approximate solution could also be obtained

with classic algorithms for separable convex optimization [28, 33]. These algorithms have slower

running times – in particular, the algorithm of [33] obtains the required precision only in time

O(n3ℓ2 log(ℓ) log(ℓ + nU )).
An interesting open problem are strongly polynomial-time algorithms for arbitrary earning

limits. A non-trivial challenge in adjusting [35] is the precision of intermediate prices. For the

framework of [41] the challenge lies in generalizing the Error-method to markets with earning

limits.

Approximating optimal allocations of indivisible items that maximize Nash social welfare has

been studied recently for markets with additive [15, 17], separable concave [1], and budget-additive

valuations [26]. Here equilibria of markets with earning limits can be rounded to yield a 2-

approximation. We extend this approach to markets with multi-unit items, where each item j
comes in sj copies (and the input includes sj in standard logarithmic coding). In contrast to the

direct, pseudo-polynomial extensions of previous work, we show how to obtain a 2-approximation

in polynomial time.

Some of the results in this paper have appeared previously in extended abstracts in the proceed-

ings of ESA 2016 [6] and SAGT 2017 [7].
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1.3 Preliminaries
In a Fisher market, there is a set B of buyers and a set G of goods. Every buyer i ∈ B has a budget
mi > 0 of money and a utility function ui . We consider two types of utility functions in this paper.

Linear Utilities. The utility function ui of buyer i from a bundle xi = (xi j )j ∈G of goods is defined

as ui (xi ) =
∑

j ∈G ui jxi j , where ui j is his utility from one unit of good j and xi j is the amount of

good j assigned to this buyer.

Spending-Constraint Utilities. The utility function ui of buyer i is a spending-constraint function
given by non-empty sets of segments Ki j = {(i, j,k) | 1 ≤ k ≤ ℓi j } for each good j ∈ G. Each
segment (i, j,k) ∈ Ki j comes with a utility value ui jk and a spending limit ci jk > 0. We assume that

the utility function is piecewise linear and concave, i.e., ui jk > ui j,k+1 > 0 for all ℓi j − 2 ≥ k ≥ 1.

W.l.o.g. we assume that the last segment has ui jℓi j = 0 and ci jk = ∞. Note that a linear utility

function can be viewed as a special case of spending-constraint function with only one segment

and an unlimited spending limit.

Buyer i can spend atmost an amount of ci jk ofmoney on segment (i, j,k).We use f = (fi jk )(i, j,k )∈Ki j
to denote the spending of money on segments. f is termed money flow. A segment is closed if

fi jk = ci jk , otherwise open. For notational convenience, we let fi j =
∑
(i, j,k )∈Ki j fi jk .

Given a vector p = (pj )j ∈G of strictly positive prices for goods, a money flow results in an

allocation xi j =
∑

k fi jk/pj of good j. The bang-per-buck ratio of segment (i, j,k) is αi jk = ui jk/pj .
To maximize his utility, buyer i spends his budget mi on segments in non-increasing order of

bang-per-buck ratio, while respecting the spending limits. A bundle xi = (xi j )j ∈G that results from

this approach is termed a demand bundle and denoted by x∗i . The corresponding money flow on the

segments is termed demand flow f∗i .
Demand bundles and flows might not be unique, but they differ only on the allocated segments

with smallest bang-per-buck ratio. This smallest ratio is termed maximum bang-per-back (MBB)
ratio and denoted by αi . Note that αi is unique given p. All segments with αi jk ≥ αi are termed

MBB segments. The segments with αi jk = αi are termed active segments. We assume w.l.o.g.

mi ≤
∑

j,k :ui jk>0 ci jk , since no buyer would spend more.

1.3.1 Markets with Earning Limits. We consider a natural condition on seller supplies. Each good

is owned by a different seller, and the seller has a maximum endowment of 1. Seller j comes with

an earning limit dj . He only brings a supply ej ≤ 1 that suffices to reach this earning limit under

the given prices. Intuitively, while each seller has utility min{dj , ejpj }, we also assume that he has

a tiny utility for unsold parts of his good. Hence, he only brings a supply to earn dj . More formally,

the active price of good j is given by paj = min(dj ,pj ). His good is capped if paj = dj and uncapped
otherwise. A thrifty supply is ej = p

a
j /pj , which guarantees ejpj ≤ dj , i.e., the earning limit holds

when market clears.

We consider thrifty equilibria.

Definition 1.1. A pair (x, p) is a thrifty equilibrium if (1) xi is a demand bundle under prices p
for every i ∈ B, and (2)

∑
i xi jpj =

∑
i,k fi jk = p

a
j , for every j ∈ G.

Note that when a set of strictly positive prices is fixed, the money flow f can be used to uniquely

determine the allocation x by xi j = fi j/pj , and vice versa. It turns out that every thrifty equilibrium
has strictly positive prices for all goods. By an abuse of notation, we also call (f , p) a thrifty

equilibrium, if its corresponding allocation x and p satisfy the above conditions.

1.3.2 Markets with Utility Limits. We consider another variation with limits on the buyer’s side.

We consider linear utility functions for buyers and assume that each buyer has a utility limit.

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0. Publication date: June 2019.



0:6 Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn

That is, there is a happiness cap ci > 0 for each buyer i , and the utility function is ui (xi ) =
min

{
ci ,

∑
j ∈G ui jxi j

}
, where xi = (xi j )j ∈G is any bundle of goods assigned to buyer i . Such utility

functions with happiness caps are also know as budget-additive utility functions.

For a given price vector p and buyer i , the MBB ratio is simplified as αi = maxj ui j/pj , where we
make the assumption that 0/0 = 0. Such utilities strictly generalize linear utilities: when all ci ’s are
large enough, they are equivalent to linear utilities. If buyer i is uncapped in a market equilibrium

(x, p), it behaves as in the linear case, spends all its budget, and buys only MBB goods (xi j > 0 only

if ui j/pj = αi ). Otherwise, if buyer i is capped in (x, p), it might buy non-MBB goods and not spend

all of its budget. This implies that unlike the case of linear utilities, market equilibrium prices and

utilities are not unique when buyers have utility limits.

It is easy to see that we can obtain one market equilibrium by simply ignoring the happiness caps

and treating the market as a linear one. However, this equilibrium is often undesirable since it is

not always Pareto-optimal. The main challenges here arise from capped buyers, who may possibly

have multiple choices for the demand bundle. Next let us introduce two convenient restrictions on

the allocation to capped buyers.

• An allocation xi for buyer i is called modest if
∑

j ui jxi j ≤ ci . By definition, for uncapped

buyers every demand bundle is modest. For capped buyers, a modest bundle of goods xi is
such that utility breaks even between the linear part and ci , i.e., ci =

∑
j ui jxi j .

• A demand bundle xi is called thrifty or MBB if it consists of only MBB goods: xi j > 0 only if

ui j/pj = αi . As noted above, for uncapped buyers every demand bundle is thrifty.

Definition 1.2. A pair (x, p) is a thrifty and modest equilibrium if (1) xi is a thrifty and modest
demand bundle under prices p for every buyer i ∈ B, and (2)

∑
i xi jpj = pj for every j ∈ G.

Note that here the equilibrium definition explicitly gives an allocation x instead of the money

flow f . This is because in markets with utility limits, an equilibrium may have some good j with
price zero. In this case, all money flows fi j are zero, but there might be positive allocation xi j > 0

towards some buyer i . In this case, deriving the allocation from money flow via xi j = fi j/pj would
not be well-defined.

Thrifty and modest equilibria are desirable because they capture the behavioral assumption that

each buyer spends the least amount of money in order to obtain a utility maximizing bundle of

goods. We observe below that these equilibria also have allocations x that are Pareto-optimal.

2 STRUCTURE OF EQUILIBRIA
2.1 Earning Limits
We first look at the structure of thrifty equilibria in spending-constraint Fisher markets with earning

limits. Recall that, by definition, in any thrifty equilibrium uncapped goods are available in full

supply, capped goods in thrifty supply.

Proposition 2.1. Across all thrifty equilibria: (1) the seller incomes are unique, and (2) there is a
unique set of uncapped goods, and their prices are unique.

These uniqueness properties are a direct consequence of the fact that thrifty equilibria are the

solutions of the following convex program [15].
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Max.

∑
i ∈B

∑
j ∈G

∑
(i, j,k )∈Ki j

fi jk logui jk −
∑
j ∈G

(qj logqj − qj )

s.t.

∑
j ∈G

∑
(i, j,k )∈Ki j

fi jk = mi ∀i ∈ B∑
i ∈B

∑
(i, j,k )∈Ki j

fi jk = qj ∀j ∈ G

fi jk ≤ ci jk ∀(i, j,k) ∈ Ki j

qj ≤ dj ∀j ∈ G
fi jk ≥ 0 ∀i ∈ B, j ∈ G, (i, j,k) ∈ Ki j

(1)

The incomes of sellers and, consequently, the sets of capped and uncapped goods are unique in

all thrifty equilibria. The money flow, allocation, and prices of capped goods might not be unique.

Buyers always spend all their budget, but this can be impossible when every seller must not earn

more than its limit
1
. Then a thrifty equilibrium does not exist. This, however, turns out to be the

only obstruction to nonexistence.

Let B̂ ⊆ B be a set of buyers, and N (B̂) = {j ∈ G | ui j1 > 0, i ∈ B̂} be the set of goods such that

there is at least one buyer in B̂ with positive utility on its first segment for the good. The following

money clearing condition states that buyers can spend their money without violating the earning

limits.

Definition 2.1 (Money Clearing). A market is money clearing if for every subset of buyers
B̂ ⊆ B there is a flow f such that

fi j ≤
k+∑
k=1

ci jk , ∀i ∈ B̂,∀j ∈ N (B̂),k+ = max{k | ui jk > 0}∑
i ∈B̂

fi j ≤ dj , ∀j ∈ N (B̂) and
∑

j ∈N (B̂)

fi j ≥ mi , ∀i ∈ B̂ .
(MC)

Money clearing is clearly necessary for the existence of a thrifty equilibrium. It is also sufficient

since, e.g., our algorithm in Section 3 will successfully compute an equilibrium iff money clearing

holds. Alternatively, it can be verified that this is the unique necessary and sufficient feasibility

condition for convex program (1). It is easy to check condition (MC) by a max-flow computation.

We therefore assume that our market instance satisfies it.

Lemma 2.1. A thrifty equilibrium exists iff the market is money clearing.

Let us define some more useful concepts for the analysis. For any pair (f , p) the surplus of buyer i
is given by s(i) =

∑
j ∈G fi j −mi , and the surplus of good j is s(j) = paj −

∑
i ∈B fi j . The active-segment

graph G(p) is a bipartite graph (B ∪G,E) which contains edge (i, j) iff there is some active segment

(i, j,k). Note that there can be at most one active segment (i, j,k) for an (i, j). A market is called

non-degenerate if the active segment graph for any non-zero p is a forest. Non-degeneracy can

always be obtained by a perturbation of the utilities without changing the set of equilibria, as

shown in [22]. This is because the spending of a buyer on non-active MBB segments does not

change with this perturbation, and hence the market on the active segment graph is effectively a

linear market.

1
Consider the example of a linear market with one buyer and one good. The utility is u11 > 0, the buyer has a budget

m1 = 2, the good has an earning limit d1 = 1.
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2.1.1 Lattice Structure – Some Intuition. We start by providing some intuition for the structural

results in the case where all utility functions are linear, i.e., with a single segment in every Ki j .

Consider a thrifty equilibrium (f , p). Call an edge (i, j) p-MBB if ui j/pj = αi . The active-segment

graph here simplifies to an MBB graph G(p).
We will first argue that when a connected componentC ofG(p) contains only capped goods then

it is possible to change the prices of goods in C while maintaining an equilibrium. Then, using this,

we argue that it is possible to merge components to arrive at an equilibrium where each component

of the MBB graph contains at least one uncapped good.

Let C be any connected component of the MBB graph. The buyers in C spend all budget on the

goods in C , and no other buyer spends money on the goods in C . Thus∑
i ∈C∩B

mi =
∑

j ∈C∩G

paj =
∑

j ∈C∩Gu

pj +
∑

j ∈C∩Gc

dj ,

where Gc and Gu are the sets of capped and uncapped goods, resp.

First, assume all goods inC are capped. Let r be a positive real and consider the pair (f , p′), where
p ′j = r · pj if j ∈ C ∩Gc and p

′
j = pj otherwise. Note that the allocations for any good j ∈ C ∩Gc

are scaled by 1/r . The pair (f , p′) is an equilibrium provided that all edges with positive allocation

are also p′-MBB and p ′j ≥ dj for all j ∈ C ∩Gc . This certainly holds for r > 1 and r − 1 sufficiently

small. If pj > dj for all j ∈ C this also holds for r < 1 and 1 − r sufficiently small. Thus, there is

some freedom in choosing the prices in components containing only capped goods even for a fixed

MBB graph. For non-degenerate instances, the money flow is unique (but not the allocation).

Now assume that there is at least one uncapped good in C , and let ju be such an uncapped good.

The price of any other good j in the component is linearly related to the price ju , i.e., pj = γjpju ,
where γj is a rational number whose numerator and denominator is a product of utilities. Thus,∑

i ∈C∩B

mi =
∑

j ∈C∩G

paj =
∑

j ∈C∩Gu

γjpju +
∑

j ∈C∩Gc

dj ,

and the reference price is uniquely determined. All prices in the component are uniquely determined.

For a non-degenerate instance the money flow and allocation are also uniquely determined.

Suppose in a component C containing only capped goods we increase the prices by a common

factor r > 1. We raise r continuously until a new MBB edge arises. If we can raise r indefinitely,
no buyer in the component is interested in any good outside the component. Otherwise, a new

MBB edge arises, and then C is united with some other component. At this moment, the money

flow over the new MBB edge is zero. If the newly formed component contains an uncapped good,

prices in the component are fixed and money flow is exactly as in the moment of joining the

components. Otherwise, we raise all prices in the newly formed component, and so on. If the

market is non-degenerate, then money flow is unique, and money will never flow on the new MBB

edge.

If the component contains only capped goods j with pj > dj , we can decrease prices continuously

by a common factor r < 1 until a new MBB edge arises. If no MBB edge ever arises, no buyer

outside the component is interested in any good in the component, which allows to argue as above.

We have so far described how the prices in a component of the MBB graph of an equilibrium

are determined if at least one good is uncapped, and how the prices can be scaled by a common

factor if all goods are capped. We have also discussed how components are merged and that the

new MBB edge arising in a merge will never carry nonzero flow. Components can also be split if

they contain an edge with zero flow.

Consider an equilibrium (f , p) and assume fi j = 0 for some edge (i, j) of the MBB graph w.r.t. p.
Let C be the component containing (i, j) and let C1 and C2 be the components of C \ {i, j}. Let the
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instance be non-degenerate. Hence, the MBB graph is a forest. If we want to retain all MBB edges

within C1 and C2 and only drop (i, j), we have to either increase all prices in the subcomponent

containing j or decrease all prices in the subcomponent containing i . Both options are infeasible

if both components contain a good with price strictly below its earning limit. The first option is

feasible if the component containing j contains only goods with prices at least their earning limits.

The latter option is feasible if the component containing i contains only goods with prices strictly

larger than their earning limits. The split does not affect the money flow.

If the above described changes allow to change any equilibrium into any other equilibrium, then

money flow should be unique across all equilibria. Moreover, the set of edges carrying flow should

be the same in all equilibria. The MBB graph for an equilibrium contains these edges, and maybe

some more edges that do not carry flow. Next, we prove that this intuition captures the truth, even

for the general case of spending-constraint utility functions.

2.1.2 Lattice Structure – Formal Proofs. We characterize the set of price vectors of thrifty equilibria,

which we denote by

P = {p | ∃f s.t. (f , p) is a thrifty equilibrium}.

For money clearing markets, we establish two results: (1) the set of equilibrium price vectors

forms a lattice, and (2) the money flow is unique in non-degenerate markets. The proof relies

on the following structural properties. Given p and p′, we partition the set of goods into sets

Sr = {j | p
′
j = r · pj }, for r > 0. For a price vector p, let segment (i, j,k) be p-MBB if ui jk/pj ≥ αi ,

and p-active if ui jk/pj = αi . For a set T of goods and an equilibrium (f , p), let

K(T , p) = {(i, j,k) | segment is p-MBB for some j ∈ T },

Ka(T , p) = {(i, j,k) | fi jk > 0 for some j ∈ T and some equilibrium (f , p)},

where the sets denote the set of p-MBB segments for goods in T and the ones on which some good

in T is allocated. Note that Ka(T , p) ⊆ K(T , p).

Lemma 2.2. For any two thrifty equilibria E = (f , p) and E ′ = (f ′, p′):

(1) Ka(Sr , p) = Ka(Sr , p′) for every r > 0, i.e., for each of the two price vectors the union of all
possible equilibrium money flows will use the same set of segments.

(2) Ka(Sr , p) = Ka(Sr , p′) ⊆ K(Sr , p′) ⊆ K(Sr , p) for r > 1. Similarly, Ka(Sr , p′) = Ka(Sr , p) ⊆
K(Sr , p) ⊆ K(Sr , p′) for r < 1.

(3) If fi jk > 0 for (i, j,k) ∈ Ka(Sr , p) with r > 1, then (i, j,k) is p′-MBB. If f ′i jk > 0 for (i, j,k) ∈
Ka(Sr , p′) with r < 1, then (i, j,k) is p-MBB.

Proof. For the analysis we also consider

B(T , p) = {i | ∃(i, j,k) ∈ K(T , p)},
Ba(T , p) = {i | ∃(i, j,k) ∈ Ka(T , p)},

as the sets of buyers corresponding to K(T , p) and Ka(T , p), where Ba(T , p) ⊆ B(T , p).
We first focus on Sr1 with r1 = maxj p

′
j/pj , i.e., the set of goods with largest factor of price increase

from p to p′. For any i ∈ B(Sr1 , p
′), there is some (i, j,k) ∈ K(Sr1 , p

′) such that ui jk/p
′
j ≥ ui j′k ′/p

′
j′

for all p′-active (i, j ′,k ′) with j ′ < Sr1 . Since ui jk/pj = r1ui jk/p
′
j and r1ui j′k ′/p

′
j′ > ui j′k ′/pj′ we

conclude K(Sr1 , p
′) ⊆ K(Sr1 , p).

Next we analyze the total money spent on segments with j ∈ Sr1 by buyers in B(Sr1 , p
′), with

respect to equilibria E and E ′. Since the prices p ′j of goods j ∈ Sr1 decrease by the largest factor, the
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spending on these goods in E can only increase. In fact, we have that∑
(i, j,k)∈K (Sr

1
,p)

fi jk ≥
∑

(i, j,k )∈K (Sr
1
,p)

f ′i jk , for every buyer i ∈ B. (2)

This implies ∑
j ∈Sr

1

paj =
∑

i ∈B(Sr
1
,p)

∑
(i, j,k )∈K (Sr

1
,p)

fi jk

≥
∑

i ∈B(Sr
1
,p′)

∑
(i, j,k )∈K (Sr

1
,p′)

f ′i jk =
∑
j ∈Sr

1

p ′j
a . (3)

However, since p ′j > pj for every j ∈ Sr1 , this can only be fulfilled when the inequalities in (2) and

(3) are equalities. In particular, all goods in Sr1 must exactly reach their earning limit in both E and

E ′ (as already observed in Proposition 2.1 part 2). Moreover, in E, no i ∈ B(Sr1 , p) \ B(Sr1 , p
′) can

ever receive allocation from goods in Sr1 . Hence, Ba(Sr1 , p) = Ba(Sr1 , p
′).

In both E and E ′ each buyer i ∈ Ba(Sr1 , p) spends the same amount of money on Sr1 , which we

denote bymi (Sr1 ). Every buyer spends on segments in non-increasing order of ui jk/pj . This implies

that a segment is p-MBB iff it is p′-MBB. The possible allocations are the solution of a transportation

problem, where each good j ∈ Sr1 receives dj flow, each buyer i ∈ Ba(Sr1 , p) emitsmi (Sr1 ) flow,
routed over the same set of MBB edges in non-increasing order of bang-per-buck ratio. Every such

allocation is a possible spending in both equilibria. This implies Ka(Sr1 , p) = Ka(Sr1 , p
′). Note that

Ka(Sr1 , p
′) ⊂ K(Sr1 , p

′) when there are two p′-active segments (i, j,k), (i, j ′,k ′) ∈ K(Sr1 , p
′) with

fi jk = 0 and fi j′k ′ > 0.

In this sense, the spending and the way goods are allocated in p remains a feasible assignment

on p′-MBB segments. As such, we can drop the goods from S1 from consideration. Then, we can

apply the analysis in the same way for r2 = maxj<Sr
1

p ′j/pj and Sr2 . Iterative application shows the

properties for all Sr with r > 1; that is, Ka(Sr , p) = Ka(Sr , p′) and Ka(Sr , p) ⊆ K(Sr , p′) ⊆ K(Sr , p).
Reversing the role of E = (f , p) and E ′ = (f ′, p′) we obtain the same claims for sets Sr with

r < 1. That is, Ka(Sr , p′) = Ka(Sr , p), Ka(Sr , p) ⊆ K(Sr , p) ⊆ K(Sr , p′). Finally, since all segments

Ka(Sr , p) = Ka(Sr , p′) and all buyer sets Ba(Sr , p) = Ba(Sr , p′), for every r , 1, this must also hold

for r = 1. This proves parts 1 and 2. Part 3 is a consequence of part 2 – since Ka(Sr , p) = Ka(Sr , p′),
every p-MBB segment with fi jk > 0 is p′-MBB and vice versa. This proves part 3 and concludes

the proof. □

For r = 1 and the goods S1, part 1 of the lemma impliesKa(S1, p) = Ka(S1, p′). Inspecting part 2 of
the lemma, the reader might be tempted to believe that K(S1, p) = K(S1, p′) as well. This, however,
is not necessarily the case.

Example 2.1. Consider a linear market with two buyers and two goods. Buyer 1 has u11 = 15,

u12 = 1; buyer 2 has u21 = 0, u22 = 1. The budgets are m1 = m2 = 1, and the earning limits

d1 = 1, d2 = ∞. Prices p = (15, 1) and p′ = (14, 1) correspond to thrifty equilibria. The flow in

both equilibria is given by f = f ′ with f11 = f22 = 1 and f12 = f21 = 0. Note that S1 = {2}. Now
K(S1, p) = {(1, 2), (2, 2)} and K(S1, p′) = {(2, 2)}. Hence K(S1, p) , K(S1, p′), although we have

Ka(S1, p) = Ka(S1, p′) = {(2, 2)}.

For the main result of this section, we consider the coordinate-wise comparison of price vectors,

i.e., p ≥ p′ iff pj ≥ p ′j ,∀j ∈ G. Moreover, for price vectors p and p′ we consider the supremum p
and the infimum p, i.e., p j = max(pj ,p

′
j ) and p j

= min(pj ,p
′
j ).

Theorem 2.1. The pair (P, ≥) is a lattice.
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Proof. Consider any two thrifty equilibria E = (f , p) and E ′ = (f ′, p′). We show that supremum

p and infimum p are price vectors of thrifty equilibria. This property implies the lattice structure.

We first consider the pair (f , p). Due to Proposition 2.1 part 2, this state is feasible with respect

to earning limits and has thrifty supplies. It remains to show that the allocation is MBB. Compared

to p, p has higher prices for the goods in Sr with r > 1. Hence the allocations to the goods in Sr
with r ≤ 1 are still MBB. Consider any good j ∈ Sr with r > 1. If fi jk > 0, then (i, j,k) is p′-MBB

by part 3 of Lemma 2.2. Thus ui jk/p j = ui jk/p
′
j = α ′j ≥ ui j′k ′/p

′
j′ for all p

′
-active segments (i, j ′,k ′).

Since p ′j′ = p j′ for ℓ ∈ Sr with r > 1 and p ′j′ ≤ pj = p j for j
′ ∈ Sr with r ≤ 1, we observe (i, j,k) is

p-MBB. We conclude that (f , p) is a thrifty equilibrium.

Let us now consider the pair (f , p) with spending f defined as

f
i jk
=

{
fi jk if j ∈ Sr with r > 1

f ′i jk if j ∈ Sr with r ≤ 1.

Again, the new state (f , p) is feasible with respect to earning limits and has thrifty supplies. It

remains to show that the allocation is MBB.

Consider the goods in Sr with r > 1 and a buyer i ∈ Ba(Sr , p). For prices p′, we know by part

3 of Lemma 2.2 that for buyer i every segment (i, j,k) with fi jk > 0 is p′-MBB. Now, to reach p,
we keep prices of Sr with r ≤ 1 as in p′ and decrease the prices of Sr with r > 1 to p. As such, i
does not obtain new MBB segments for goods in Sr with r ≤ 1. For the remaining goods in Sr with
r ≥ 1, however, the allocation for i is MBB, since prices and spending for these goods are as in

equilibrium E.
Similarly, consider the goods in Sr with r < 1 and a buyer i ∈ Ba(Sr , p′). For prices p, we know

by part 3 of Lemma 2.2 that for buyer i every segment (i, j,k) with f ′i jk > 0 is p-MBB. Now, to reach

p, we keep prices of Sr with r ≥ 1 as in p and decrease the prices of Sr with r < 1 to p′. As such,
i does not obtain new MBB segments for goods in Sr with r ≥ 1. For the remaining goods in Sr
with r < 1, however, the allocation for i is MBB, since rices and spending for these goods are as in

equilibrium E ′.
Finally, consider the goods in S1 and a buyer i ∈ Ba(Sr , p′) = Ba(Sr , p). Hence, since for j ∈ S1

we have pj = p
′
j , a segment (i, j,k) is p-MBB iff it is p′-MBB. Repeating the above arguments for

r > 1 and r < 1, we observe that for buyer i no new MBB segments evolve in Sr with r , 1. Hence,

the spending f
i j
is MBB for i .

We conclude that (f , p) is a thrifty equilibrium. □

Corollary 2.1. There exists a thrifty equilibrium with coordinate-wise lowest prices. Among all
thrifty equilibria, it yields the largest supply in the market and the maximum utility for every buyer.

Theorem 2.2. In a non-degenerate market, all thrifty equilibria have the same money flow.

We first observe the following fact about transportation problems on forests.

Lemma 2.3. The solution for a transportation problem on a forest is unique.

Proof. Let e = (x ,y) be any edge of the forest. Removal of e splits the tree containing e into
two sets X and Y with x ∈ X and y ∈ Y . The flow across e in the direction from x to y is∑
u ∈X b(u) = −

∑
v ∈Y b(y). Note that

∑
w ∈X∪Y b(w) = 0.

Alternatively, we may consider any edge (x ,y) incident to a leaf x in the forest. Then the flow

across the edge (x ,y) is equal to b(x). We add b(x) to b(y), remove x , and iterate. □

Proof of Theorem 2.2. Consider the equilibrium E = (f , p) with smallest prices. Suppose there

is another equilibrium E ′ = (f ′, p′) with prices p′ ≥ p. By Lemma 2.3, there are unique money
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flows in f and f ′ in E and E ′, respectively. Every good j ∈ S1 with pj = p ′j has inflow paj in both

equilibria. Every good with p ′j > pj has inflow dj in both equilibria due to Proposition 2.1 part 2.

Every MBB segment (i, j,k) with fi jk > 0 remains MBB under p′ due to Lemma 2.2 part 3. Thus, f
remains a feasible flow for E ′. Since by Lemma 2.3 money flows are unique, we have f = f ′. □

The convex program implies that there is a unique income for each seller. This is consistent with

our observation that a good can have different prices in two equilibria only when income equals its

earning limit.

While existence of an equilibrium with smallest prices is guaranteed, we might or might not have

an equilibrium with coordinate-wise largest prices (e.g., when all goods are capped in equilibrium,

prices can be raised indefinitely).

Consider a linear market with two buyers and two goods. Letu11 = u22 = 1,u21 = 1/2 andu12 = 0.

Letm1 = m2 = 1 and d2 = 1. Then x11 = x22 = 1, x21 = 0, p1 = p2 = 1 is a thrifty equilibrium

with largest buyer utility. All thrifty equilibria have the same allocation, all have price p1 = 1, and

p2 ∈ [1, 2]. Hence, in this market (p1,p2) = (1, 2) yield largest prices and smallest buyer utility in

any thrifty equilibrium.

Now consider a linear market with a single buyer and a single good. Let u11 = 1,m1 = 1 and

d1 = 1. Then x11 = 1, p1 = 1 is a thrifty equilibrium with largest buyer utility. There are infinitely

many other equilibria x11 = 1, p1 ≥ 1, and there is no equilibrium with largest prices.

2.2 Utility Limits
Consider the following Eisenberg-Gale-type program (4), which allows us to find a modest and

Pareto-optimal allocation.

Max.

∑
i ∈B

mi log
∑
j ∈G

ui jxi j

s.t.

∑
j ∈G

ui jxi j ≤ ci i ∈ B∑
i ∈B

xi j ≤ 1 j ∈ G

xi j ≥ 0 i ∈ B, j ∈ G

(4)

By standard arguments, we consider the dual for (4) using dual variables γi and pj for the first two
constraints, resp., and the KKT conditions read:

(1) pj/ui j ≥ mi/ui − γi
(2) xi j > 0 ⇒ pj/ui j =mi/ui − γi

(3) pj ≥ 0 and pj > 0 ⇒
∑

i ∈B xi j = 1

(4) γi ≥ 0 and γi > 0 ⇒ ui = ci

Observe that the Lagrange multiplier γi indicates if the cap ci represents a tight constraint in
the optimum solution. The dual variables pj can be interpreted as prices. Note that conditions 1

and 2 imply that xi j > 0 if and only if j ∈ argminj′ pj′/ui j′ = argmaxj′ ui j′/pj′ , i.e., all agents
purchase goods with maximum bang-per-buck. Hence, similarly as for linear markets [38], the

KKT conditions imply that an optimal solution to the EG program (4) and corresponding dual

prices constitute a market equilibrium, in which every agent buys goods that have maximum

bang-per-buck. The KKT conditions postulate this also for agents whose utility reaches the cap.

Thus, the optimal solution to this program is a thrifty and modest equilibrium. Furthermore, we

obtain the following favorable analytical properties.

Proposition 2.2. The optimal solutions to (4) are exactly the thrifty and modest equilibria. The
utility vector is unique across all such equilibria and each such equilibrium is Pareto-optimal. In
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particular, there is a unique set of capped buyers. Non-capped buyers spend all their money. Capped
buyers do not overspend.

Proof. We observe first that there is an interior feasible solution to (4). Simply set xi j = ϵ > 0

for all i and j, where ϵ is small enough such all constraints in (4) are satisfied with inequality. The

existence of an interior feasible solution guarantees that the KKT conditions are necessary and

sufficient for an optimal solution to (4).

Let x and x′ be two optimal solutions to (4) and assume that uh(x) , uh(x′) for some buyer h.
Consider the allocation x′′ = (x + x′)/2. It is clearly feasible. Also,∑

i ∈B

mi logui (x′′) >

(∑
i ∈B

mi logui (x) +
∑
i ∈B

mi logui (x′)

)
/2 ,

a contradiction to the optimality of the allocation. The inequality follows from the concavity of the

log-function. We have now shown that the utilities of the buyers are unique among all optimal

solutions of (4). Thus, every optimal solution to (4) is thrifty, modest, and Pareto-optimal.

Conversely, let (x, p) be a thrifty and modest equilibrium. We show that x is an optimal solution

to (4). x is feasible since it is modest and does not overallocate any good. Since xi is a thrifty demand

bundle for buyer i , we have ui j/pj = αi = maxℓ uiℓ/pℓ whenever xi j > 0. Thus

mi ≥
∑
j

pjxi j =
∑
j

ui j

αi
xi j =

ui (x)
αi

,

and hencemi/ui (x) ≥ 1/αi . Let γi =mi/ui − 1/αi . Then γi ≥ 0. We show that the KKT conditions

hold. For any j, we have pj/ui j ≥ 1/αi = mi/ui − γi . If xi j > 0, then pj/ui j = 1/αi = mi/ui − γi .
Prices are non-negative by definition and pj > 0 implies that good j is completely allocated by

Walras’s law. Finally, assume γi > 0. Thenmi/ui (x) > 1/αi and hence

mi >
ui (x)
αi
=

∑
j ui jxi j

αi
=

∑
j

pjxi j ,

where the first equality follows from the fact that the allocation is modest. Let δ = mi/
∑

j pjxi j .
Then buyer i could afford the bundle δxi . Since xi is a demand bundle for buyer i , we must have

ci ≤
∑

j ui jxi j . Since the allocation is modest, we have equality. □

While utilities are unique, allocation and prices of thrifty and modest equilibria might not be

unique. Consider a market with two identical buyers and two goods, where u11 = u12 = u21 =
u22 = 1, c1 = c2 = 1, and m1 = m2 = 5. The unique equilibrium utility of both buyers is

u1 = u2 = 1, which can be obtained for any p1 = p2 = p, where p ∈ [0, 5] and allocation x satisfying

x11 + x12 = 1; x21 + x22 = 1; x11 + x21 = 1; x12 + x22 = 1.

2.2.1 Lattice Structure. Our proofs roughly proceed along the lines of Section 2.1, however, with

several notable differences. We characterize the set of price vectors of thrifty and modest equilibria,

for which we again use the notation

P = {p | ∃x s.t. (x, p) is a thrifty and modest equilibrium }.

For markets with utility limits, we establish three results, which in part mirror the results for

earning limits above: (1) For utility limits, the market decomposes into the market for the goodsG0

that have price zero in every equilibrium and the market for the remaining goods. (2) The set of

equilibrium price vectors forms a lattice. (3) The allocation of the goods in G \G0 is unique in all

nondegenerate markets.
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Theorem 2.3. Let G0 be the goods that have price zero in every equilibrium and let B0 be the set of
buyers that have positive utility for some good in G0. Then

P(B,G) = P(B\B0,G\G0) × P(B0,G0).

Proof. Let (x, p) be an equilibrium for the market with buyers B \ B0 and goods G \ G0 and

(x′, 0) be an equilibrium for the market with buyers B0 and goods G0. Then ((x, x′), (p, 0)) is an
equilibrium for the market with buyers B and goodsG. We only have to show that all allocations

are along MBB-edges. This is true for the goods in G0 as the price of these goods is zero. This is

also true for the goods in G \G0 as the buyers in B \ B0 have utility zero for the goods in G0.

Conversely, let (x, (p, 0)) be an equilibrium for the market with buyers B and goodsG. We need

to show that no good in G \G0 is allocated to a buyer in B0. Assume otherwise, say xi j > 0 for

i ∈ B0 and j ∈ G \G0. Let (x′, p′) be an equilibrium for a price vector in which the good of price j
is positive. In the equilibrium ((x + x′)/2, (p + p′)/2), j is partially allocated to i , j has a positive
price, and the goods in G0 have price zero. This contradicts the fact that i has nonzero utility for

some good in G0. □

For the other results, we again show a structural lemma. Given p and p′, we here rely on a partition
of the set of goods into three sets: S= = {j | pj = p

′
j }, S< = {j | pj < p ′j } and S> = {j | pj > p ′j }. For

a price vector p, call (i, j) p-MBB if ui j/pj = αi . For a set T of goods and an equilibrium (x, p), we
again a notation similar as in the proof of Lemma 2.2. More concretely, we use

B(T , p) = {i | (i, j) is p-MBB for some j ∈ T },

Ba(T , x) = {i | xi j > 0 for some j ∈ T },

Ba(T , p) = {i | xi j > 0 for some j ∈ T and some equilibrium (x, p)}

denote the set of buyers who are connected to T through an p-MBB edge, who are allocated some

good in T , and who are some good in T in some equilibrium (x, p). Clearly Ba(T , x) ⊆ Ba(T , p) ⊆
B(T , p).

Lemma 2.4. Given any two thrifty and modest equilibria E = (x, p) and E ′ = (x′, p′), we have

(1) Ba(S=, p) = Ba(S=, p′), Ba(S<, p) = Ba(S<, p′), and Ba(S>, p) = Ba(S>p′), i.e., the goods are
allocated to the same set of buyers in both equilibria.

(2) Ba(S=, p),Ba(S<, p) and Ba(S>, p) as well as Ba(S=, p′),Ba(S<, p′) and Ba(S>, p′) are mutually
disjoint.

(3) Ba(S<, x) = Ba(S<, x′) = Ba(S<, p′) = Ba(S<, p) = B(S<, p′) ⊆ B(S<, p) and Ba(S>, x) =
Ba(S>, x′) = Ba(S>, p′) = Ba(S>, p) = B(S>, p) ⊆ B(S>, p′)

(4) All buyers in Ba(S<, p) and Ba(S>, p) are capped buyers in both equilibria.
(5) If xi j > 0 for i ∈ Ba(S<, p), then (i, j) is p′-MBB. If x ′i j > 0 for i ∈ Ba(S>, p′), then (i, j) is

p-MBB.

Proof. We first focus on S< , the set of goods whose prices strictly increase from p to p′. For any
i ∈ Γ(S<, p′), there is some j ∈ S< such that ui j/p

′
j ≥ uiℓ/p

′
ℓ
for all ℓ < S< . Since ui j/pj > ui j/p

′
j

and uiℓ/p
′
ℓ
≥ ui j/pℓ we conclude

(a) No edge (i, j) is p-MBB for i ∈ B(S<, p′) and j < S< , and
(b) B(S<, p′) ⊆ Ba(S<, x). Indeed, for every buyer i ∈ B(S<, p′) all incident p-MBB edges connect

it to a good in S< by part (a) and every buyer has at least one incident edge with positive

allocation.
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Next we analyze the total money spent on goods in set S< by buyers in B(S<, p′), with respect to

equilibria E and E ′. Due to fact (a), buyers in B(S<, p′) buy only goods in the set S< in E. Thus∑
i ∈B(S<,p′)

ma
i =

∑
i ∈B(S<,p′)

∑
j ∈S<

xi jpj ,

wherema
i is the money spent by buyer i in E. Letma

i
′
be the money spent by buyer i in E ′. Consider

any buyer i ∈ B(S<, p′). If i is uncapped in E, clearlyma
i
′ ≤ mi =m

a
i . If i is capped in E, he spends∑

j ∈S< xi jpj and obtains utility ci . In E ′, the cost of this bundle is
∑

j ∈S< xi jp
′
j and hence i spends at

most this amount. Hence, the total increase of spending of buyers in B(S<, p′) from p to p′ will be
no more than ∑

i ∈B(S<,p′)

(ma
i
′
−ma

i ) ≤
∑

i∈B(S<,p′)
i is capped in E

(ma
i
′
−ma

i )

≤
∑

i∈B(S<,p′)
i is capped in E

∑
j ∈S<

(xi jp
′
j − xi jpj ).

Further, due to the definition of B(S<, p′) and the fact that (x′, p′) is a market equilibrium, we have∑
j ∈S<

p ′j ≤
∑

i ∈B(S<,p′)

ma
i
′ .

Combining these inequalities, we obtain∑
j ∈S<

p ′j ≤
∑

i ∈B(S<,p′)

ma
i
′

(5)

=
∑

i ∈B(S<,p′)

ma
i +

∑
i∈B(S<,p′)

i is uncapped in E

(ma
i
′
−ma

i ) +
∑

i∈B(S<,p′)
i is capped in E

(ma
i
′
−ma

i )

≤
∑

i ∈B(S<,p′)

∑
j ∈S<

xi jpj +
∑

i∈B(S<,p′)
i is capped in E

∑
j ∈S<

(xi jp
′
j − xi jpj ) (6)

=
∑
j ∈S<

©«
∑

i∈B(S<,p′)
i is capped in E

xi j

ª®®®¬p
′
j +

∑
j ∈S<

©«
∑

i∈B(S<,p′)
i is uncapped in E

xi j

ª®®®¬
(
p ′j + (pj − p

′
j )

)

=
∑
j ∈S<

∑
i ∈B(S<,p′)

xi jp
′
j −

©«
∑

i∈B(S<,p′)
i is uncapped in E

xi j

ª®®®¬ (p
′
j − pj )

≤
∑
j ∈S<

p ′j . (7)

We must have equality throughout. Equality (5) implies that the buyers in B(S<, p′) spend all

their money on goods in S< in equilibrium E ′. Thus any good outside S< allocated to a buyer in

B(S<, p′) would have to have price zero in p′. Since it is impossible that a buyer has MBB-edges to

a good of price zero and a good of positive price, it follows that goods outside S< are completely

allocated to buyers outside B(S<, p′). Hence Ba(S<, p′) = B(S<, p′) and B(S<, p′) is disjoint from
Ba(S=, p′) ∪ Ba(S>, p′). Equality (6) implies that buyers in B(S<, p′) that are uncapped in E are also
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uncapped in E ′ and those that are capped in E spend

∑
j ∈S< xi jp

′
j in E ′ and hence can afford a

bundle of utility ci ; thus they are also capped in E ′. Equality (7) implies∑
i ∈B(S<,p′)

xi j = 1 and

∑
i∈B(S<,p′)

i is uncapped in E

xi j = 0 (8)

for all j ∈ S< , i.e., in equilibrium E the goods in S< are completely allocated to capped buyers

in B(S<, p′). Thus Ba(S<, p) ⊆ B(S<, p′) and all buyers in Ba(S<, p) are capped in E, and, by the

above, also in E ′. Combining the inclusions between Ba(S<, p), B(S<, p), Ba(S<, p′) and B(S<, p′)
we obtain Ba(S<, p) = Ba(S<, p′) = B(S<, p′) ⊆ B(S<, p). The latter inclusion may be proper as

Example 2.3 shows.

Since the buyers in Ba(S<, p) are capped in E and they achieve their cap by the allocation of

goods in S< , these buyers are not assigned any goods from S= ∪ S> . Thus Ba(S<, p) is disjoint from
Ba(S=, p) ∪ Ba(S>, p).
We next exploit thatma

i
′ =

∑
j ∈S< xi jp

′
j for i ∈ B(S<, p′) and that these buyers are capped in

E ′. Let α ′i be the MBB-ratio for i in E ′. Then α ′i = ci/m
a
i
′ ≥ ui j/p

′
j for all j and hence (note that

ma
i
′ > 0 and therefore 0 < α ′i < ∞)

ci = α ′im
a
i
′
= α ′i

∑
j ∈S<

xi jp
′
j ≤ α ′i

∑
j ∈S<

xi jui j/α
′
i = ci .

The inequality is thus an equality and we conclude that xi j > 0 implies that (i, j) is p′-MBB for

i ∈ Γ(S<, p′).
Reversing the role of (x, p) and (x′, p′) we obtain the same claims for set S> . That is, Ba(S>, p) =

Ba(S>, p′), Ba(S>, p) has no overlap with Ba(S=, p) ∪ Ba(S<, p), B1(S>, p′) has no overlap with

Ba(S=, p′) ∪ Ba(S>, p′), all buyers in Ba(S>, p) are capped buyers in both equilibria, and x ′i j > 0

implies that (i, j) is p-MBB for i ∈ B(S>, p).
By the above, the setsBa(S<, p),Ba(S=, p),Ba(S>, p) aswell as the setsB1(S<, p′),Ba(S=, p′),Ba(S>, p′)

are disjoint and hence are partitions of the set of buyers. Since the first and the last set in both

partitions is the same, the middle set is also the same.

Clearly, Ba(S<, x) ⊆ Ba(S<, p), Ba(S>, x) ⊆ B1(S>, p) and Ba(S=, x) ⊆ Ba , (S=, p). Since the sets
on the right are disjoint and the union of the sets on the left is equal to the set of buyers, we must

have equality. The same argument holds true for the primed vectors.

This concludes the proof. □

The lattice structure applies again with respect to the coordinate-wise comparison, i.e., p ≥ p′ iff
pj ≥ p ′j for all j ∈ G.

Theorem 2.4. The pair (P, ≥) is a lattice.

Proof. Consider any two thrifty and modest equilibria (x, p) and (x′, p′). We again consider the

supremum p and the infimum p for the price vectors, i.e., p j = max(pj ,p
′
j ) and p j

= min(pj ,p
′
j ). We

show that p and p are price vectors of thrifty and modest equilibria.

We first show that (x, p) is a thrifty and modest equilibrium. We only need to show that all

allocations are MBB. Compared to p, p has higher prices for the goods in S< . Hence the allocations
to the goods in S= ∪ S> are still MBB. Consider any good j ∈ S< . If xi j > 0, then (i, j) is p′-MBB

by part 4 of Lemma 2.4. Thus ui j/p j = ui j/p
′
j = α ′j ≥ uiℓ/p

′
ℓ
for all ℓ. Since p ′

ℓ
= pℓ for ℓ ∈ S< and

p ′
ℓ
≤ pℓ = pℓ for ℓ ∈ S= ∪ S> , we conclude that (i, j) is p-MBB.
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We next show that (x, p) is a thrifty and modest equilibrium, where x is defined as

x i j =

{
xi j if j ∈ S<

x ′i j if j ∈ S= ∪ S> .

Goods are allocated as in one of the equilibria and hence no good is overallocated and goods with

positive price are completely allocated. We only need to show that the allocation is MBB. Consider

any edge (i, j) with x i j > 0. We need to show (*) ui j/p j
≥ uiℓ/p

ℓ
for all ℓ.

Assume first that j ∈ S< and hence i ∈ Ba(S<, p) = Ba(S<, p′), where the equality is by part 1

of Lemma 2.4. This means we have x i j = xi j > 0 and there exists some j ′ ∈ S< such that x ′i j′ > 0.

Since xi j > 0 we have ui j/pj ≥ uiℓ/pℓ for all ℓ. This establishes (*) for ℓ ∈ S< ∪ S=. For ℓ ∈ S> , we
have ui j/p j

= ui j/pj ≥ maxk ∈S< {uik/pk } ≥ maxk ∈S< {uik/p
′
k } = ui j′/p

′
j′ ≥ uiℓ/p

′
ℓ
= uiℓ/p

ℓ
.

Assume next that j ∈ S> and hence i ∈ Ba(S>, p′) = Ba(S>, p′). We use the same argument as

above. We have p
j
= p ′j , x i j = x ′i j > 0, and there exists some j ′ ∈ S> such that xi j′ > 0. Since

x ′i j > 0 we have ui j/p
′
j ≥ uiℓ/p

′
ℓ
for all ℓ. This establishes (*) for ℓ ∈ S> ∪ S=. For ℓ ∈ S< , we have

ui j/p j
= ui j/p

′
j = maxk ∈S> {uik/p

′
k } ≥ maxk ∈S> uik/pk = ui j′/pj′ ≥ uiℓ/pℓ = uiℓ/p

ℓ
.

Finally, for j ∈ S= and hence i ∈ Ba(S=, p′) = Ba(S=, p). Then p
j
= pj = p ′j ,x i j = x ′i j > 0,

and there exists some j ′ ∈ S= such that xi j′ > 0. Since x ′i j > 0 we have ui j/p
′
j ≥ uiℓ/p

′
ℓ
for all ℓ.

This establishes (*) for ℓ ∈ S> ∪ S=. For ℓ ∈ S< , we have ui j/p j
= ui j/p

′
j = maxk ∈S= {uik/p

′
k } =

maxk ∈S= uik/pk = ui j′/pj′ ≥ uiℓ/pℓ = uiℓ/p
ℓ
.

We conclude that (x, p) is a thrifty and modest equilibrium.

□

Corollary 2.2. There exists a thrifty and modest equilibrium with coordinate-wise highest (resp.
lowest) prices. It yields the maximum (resp. minimum) revenue for the seller among all thrifty and
modest equilibria.

Example 2.2. Consider the following market with two buyers and two goods. Let u11 = u12 =
u22 = 1 and u21 = 0. Letm1 = m2 = 1 and c1 = 1. Then x11 = x22 = 1, x12 = 0, p1 = p2 = 1 is a

thrifty and modest equilibrium with maximum revenue. A thrifty and modest equilibrium with

minimum revenue has the same allocation and p1 = 0 and p2 = 1.

Example 2.3. Consider the following market with two buyers and two goods. Let u11 = u21 =
1,u22 = 2 and u12 = 0. Letm1 =m2 = 1 and c1 = c2 = 1. Then x11 = 1, x22 = 1/2, x21 = 0, p′ = (1, 0)
is a thrifty and modest equilibrium with maximum revenue. A thrifty and modest equilibrium with

minimum revenue has the same allocation and p = (0, 0). Then S< = {1}, Γ(S<, p′) = {1}, and
Γ(S<, p) = {1, 2}.

To show our uniqueness result, we again need Lemma 2.3 on unique solutions for a transportation

problem in a forest.

Theorem 2.5. LetG0 be the goods that have prize zero in all equilibria and assume that the instance
is non-degenerate. The allocation of the goods in G \G0 is unique.

Proof. Let B0 be the buyers that have positive utility for some good in G0. By Theorem 2.3, the

goods in G0 are allocated to the buyers in B0 and the goods in G \G0 are allocated to the buyers in

B \ B0. We may therefore assume that G0 is empty. We use induction on the number of goods.

Due to Theorem 2.4, there is an equilibrium vector of maximum prices. We here denote it by p.
For each equilibrium price vector q , p, we consider the set S = {j | qj < pj }. We denote the set of
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these sets by

S = {S | S , ∅ and there is an equilibrium price vector q with qj < pj iff j ∈ S}.

Assume first that S is empty. Then either the market is empty, i.e., no goods and no buyers, or

all prices and all budgets are fixed. Thus the money flow is unique by Lemma 2.3 and hence the

allocation is fixed.

Assume next that S is nonempty. Let S be a minimal element (under set inclusion) of S. Then

S ⊆ S ′ or S ∩ S ′ = ∅ for all S ′ ∈ S. Assume otherwise, so there is S ′ in S such that ∅ , S ∩ S ′

and S ∩ S ′ is a proper subset of S . Let q and q′ be price vectors defining S and S ′. Observe that
max(q, q′) is an equilibrium price vector; it defines S ∩ S ′. This represents a contradiction to the

minimality of S .
We apply Lemma 2.4 to p and p′ = q. Then S< = ∅ and S> is the set of goods j with qj < pj . Let

x and x′ be allocations compatible to p and p′, respectively.

Claim 2.1. There is a real β < 1 such that p ′j/pj = β for all j ∈ S> .

Proof. Assume otherwise and consider the price vector r defined as

r j =

{
pj if j < S>

γp ′j if j ∈ S> ,

where γ > 1 is such that r ≤ p. We show that (x′, r) is a thrifty and modest equilibrium. We only

need to show that all allocations are MBB. Consider any pair (i, j) with x ′i j > 0. If j < S> , the

allocation is MBB since r j = p
′
j and r ≥ p′. If j ∈ S> , (i, j) is p-MBB by Part 5 of Lemma 2.4. Thus

ui j/pj ≥ uiℓ/pℓ for all ℓ and hence ui j/r j ≥ ui j/pj ≥ uiℓ/pℓ = uiℓ/rℓ for ℓ < S> . For ℓ ∈ S> , we
have ui j/(γp

′
j ) = (1/γ )ui j/p

′
j ≥ (1/γ )uiℓ/p

′
ℓ
.

Consider now the minimal γ for which γp ′j = pj for some j. Then the price vector r implies that

a proper non-empty subset of S belongs to S, a contradiction. □

Since Ba(S>, x′) = B(S>,p) for every equilibrium (x′, r) by Part 3 of Lemma 2.4, the sum of the

prices of the goods in S> must be equal to the budgets of the buyers in B(S>, p) for every γ . The
prices of the goods in S> and the budgets of the buyers in B(S>, p) scale with γ . For every fixed

γ , the money flow is unique by Lemma 2.3. Moreover, it scales with γ . Thus the allocation of the

goods in S> to the buyers in B(S>, p) is unique for all price vectors r.
We have now shown that the allocation of the goods in S = S> is unique for all price vectors

where only the prices of the goods in S are decreased. Consider now a price vector q′ where the
prices of the goods in S and some other goods are decreased. As above, let q be a price vector where

only the prices of the goods in S are decreased. We may assume q′j ≤ qj for all j ∈ S> , because we
already showed that with respect to q, the prices of the goods in S> can be scaled up. Let x and x′

be allocations compatible with q and q′. In the proof that P is an upper lattice, we showed that

(x′,max(q, q′)) = (x′, q) is an equilibrium. Since with respect to q, the allocation of the goods in

S> is unique, x ′i j = xi j for all j ∈ S> . We have now shown that the allocation of the goods in S> is

unique across all equilibria.

We remove the goods in S> and the buyers in B(S>, p) from the market. Note that the allocation

of the goods in S> to the buyers in B(S>, p) satiates the buyers and they need no further allocation.

By induction hypothesis, the allocation in the market (B \ B(S>, p),G \ S>) is unique. Thus the
overall allocation is unique. □
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3 ALGORITHMS FOR MARKETS WITH EARNING LIMITS
3.1 Scaling Algorithm to Compute a Thrifty Equilibrium
In this section, we propose and discuss a polynomial-time scaling algorithm to compute a thrifty

equilibrium. We begin with defining some useful tools and concepts. The active-segment network
N (p) = ({s, t} ∪ B ∪G,E) contains a node for each buyer and each good, along with two additional

nodes s and t . It contains every edge (s, i) for i ∈ B with capacitymi−c
c
i , where c

c
i =

∑
(i, j,k ) closed ci jk .

Also, it contains every (j, t) for j ∈ G with capacity paj − c
c
j , where c

c
j =

∑
(i, j,k ) closed ci jk . It contains

edge (i, j) with infinite capacity iff there is some active segment (i, j,k). Finally, the active-residual
network Gr (f , p) contains a node for each buyer and each good. It contains forward edge (i, j) iff
there is some active segment (i, j,k) with fi jk < ci jk and contains backward edge (j, i) iff there is

some active segment (i, j,k) with fi jk > 0. Moreover, Gr (f , p, i) is the subgraph of Gr (f , p) induced
by the set of all buyers i ′ ∈ Gr (f , p) such that there is an augmenting path from i ′ to i .
Our algorithm uses ∆-discrete capacities ĉi jk = ⌈ci jk/∆⌉ · ∆ for all i ∈ B, j ∈ G and (i, j,k) ∈ Ki j ,

where we iteratively decrease ∆. Initially, the algorithm overestimates the budget of buyer i , where
it assumes the buyer has r∆ money and every segment has ∆-discrete capacities. Then fi is a
(∆, r )-discrete demand for buyer i iff it is a demand flow for buyer i under these conditions.
We also adjust the definitions of MBB ratio, active segments, active-segment graph, network,

and residual network to the case of ∆-discrete capacities. We denote these adjusted versions by α̂ ,
ˆG(p), N̂ (p), ˆGr (f , p) and ˆGr (f , p, j) resp.
Finally, we make a number of assumptions to simplify the stated bound on the running time. We

assume w.l.o.g. that |B | = |G | (by adding dummy buyers and/or goods) and define n = |B | + |G |.
Moreover, we let Ki =

⋃
j ∈G Ki j and Kj =

⋃
i ∈B Ki j and assume w.l.o.g. that ℓ = |Ki | = |Kj | ≥ n for

every buyer i and every good j (by adding dummy segments with 0 utility).

Algorithm 1 computes a thrifty equilibrium in polynomial time. We call a run of the outer

while-loop a ∆-phase. The precision parameter ∆ is halved in each phase until it is decreased to

exponentially small size. Then a final rounding procedure PostProcessing rounds the solution to an

exact equilibrium. In each ∆-phase, the surplus of all buyers is decreased to at most ∆ by decreasing

prices and rerouting flow.

For the analysis, we use the following notion of ∆-feasible solution.

Definition 3.1. Given a value ∆ > 0, a pair (f , p) of flow and prices with p ≥ 0 and f ≥ 0 is a
∆-feasible solution if
• ℓ∆ ≤ s(i) ≤ (ℓ + 1)∆,∀i ∈ B.
• ∀j ∈ G: If pj < p0j , then 0 ≤ s(j) ≤ ∆. If pj = p0j , then −∞ < s(j) ≤ ∆.
• f is ∆-integral, and fi jk > 0 only if (i, j,k) is a closed or open MBB segment w.r.t. ∆-discretized
capacities.

For the running time, note that prices are non-increasing. Once a capped good becomes uncapped,

it remains uncapped. We refer to an execution of the repeat loop in Algorithm 1 as an iteration.

After the initialization, there may be goods j for which dj is smaller than the initial value of ∆ and

which receive flow from some buyer. As long as their surplus is negative, these goods keep their

initial price. The following observations are useful to prove a bound on the running time. We also

observe that the precision of prices and flow values is always bounded.

Lemma 3.1. Once the surplus of a good is non-negative, it stays non-negative. If the surplus of a
good is negative, its price is the initial price.

Proof. The surplus of a good can only decrease if its price decreases or if additional money flow

is pushed into it – in particular, observe that the adjustment of the flow to ∆-discrete capacities
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Algorithm 1. Scaling Algorithm for Markets with Earning Limits

Input :Fisher marketM with spending constraint utilities and earning limits

Budgetmi , earning limits dj , and parameters ui jk , ci jk
Output :Thrifty equilibrium (f , p)

1 ∆← U n+1 ∑
i ∈Bmi ; p

0

j ← n(ℓ + 1)∆,∀j ∈ G; p← p0

2 fi ← (∆, ℓ + 1)-discrete demand for buyer i

3 while ∆ > 1/(2ℓ(2nU )4n) do
4 ∆← ∆/2;

5 for each closed segment (i, j,k) do fi jk ← ⌈ci jk/∆⌉ · ∆

6 for each i ∈ B with s(i) > (ℓ + 1)∆ do
7 Pick any active segment (i, j,k) with fi jk > 0 and set fi jk ← fi jk − ∆

8 while there is a good j ′ with s(j ′) > ∆ do // ∆-phase
9 repeat // iteration

10 (B̂, Ĝ) ← Set of (buyers, goods) in
ˆGr (f , p, j ′)

11 x ← 1; Define pj ← xpj ,∀j ∈ Ĝ // active prices & surpluses change,

too

12 Decrease x continuously down from 1 until one of the following events occurs

13 Event 1: s(j ′) = ∆

14 Event 2: s(j) ≤ 0 for a j ∈ Ĝ

15 P ← path from j to j ′ in ˆGr (f , p, j ′) // ∆-augmentation

16 Update f : fi jk =


fi jk + ∆ if (i, j) is a forward arc in P
fi jk − ∆ if (i, j) is a backward arc in P
fi jk otherwise

17 Event 3: A capped good becomes uncapped

18 Event 4: New active segment (i, j,k) with i < B̂, j ∈ Ĝ, fi jk < ĉi jk
19 until Event 1 or 2 occurs

20 (f , p) ← PostProcessing(f , p)

only increases the surplus of each good. If additional money flow is pushed into a good, its surplus

before the push is at least ∆. Hence, it is non-negative after the push. Price decreases stop once

there is a good with a non-positive surplus, so a non-negative surplus cannot become negative. □

Lemma 3.2. The first run of the outer while-loop in Algorithm 1 takesO(n3ℓ) time, every subsequent
one takes O(n2ℓ) time. At the end of each ∆-phase, the pair (f , p) is a ∆-feasible solution.

Proof. After initialization, all buyers have surplus ℓ∆ ≤ s(i) ≤ (ℓ + 1)∆ and all goods have

surplus s(j) ≤ n(ℓ+1)∆. In the beginning of the outer while-loop, we reduce ∆ to half and adjust the

flow to ∆-discrete capacities. Due to reduction of ∆, all buyers have surplus 2ℓ∆ ≤ s(i) ≤ 2(ℓ + 1)∆
and all goods have surplus s(j) ≤ 2n(ℓ + 1)∆. Due to adjustment of the flow to ∆-discrete capacities,
s(i) decreases by at most ℓ∆, and s(j) increases by at most ℓ∆, for every i ∈ B, j ∈ G . This results in
ℓ∆ ≤ s(i) ≤ 2(ℓ + 1)∆ and s(j) ≤ 2n(ℓ + 1)∆+ ℓ∆. In the following loop, we reduce the surplus of all

buyers to ℓ∆ ≤ s(i) ≤ (ℓ+1)∆, which takes at most n(ℓ+1) iterations. This implies that every buyer

surplus satisfies the conditions of a ∆-feasible solution. Every buyer surplus stays unchanged in the

∆-phase. In the subsequent ∆-phase, we reduce the surplus of every good to at most ∆. All prices
are non-increasing, hence without flow adjustment all surpluses of goods are non-increasing. In a
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Algorithm 2. PostProcessing(f , p)
Input :ε-feasible solution (f , p) for ε = 1/(2ℓ(2nU )4n)
Output :Market equilibrium (f ′, p′)

1 ˆG(p) = (B ∪G,E) ← active-segment graph at p w.r.t. ∆-discrete capacities ĉi jk
2 while ∃ a component C in ˆG(p) s.t. all goods are capped do
3 x ← 1; Define prices as pj ← xpj ,∀j ∈ C ∩G
4 Decrease x continuously down from 1 until one of the following events occurs

5 Event 1: A capped good becomes uncapped

6 Event 2: A new segment (i, j,k) becomes active // components merge

7 Recompute active-segment graph
ˆG(p) and let C be the set of its components

8 Let Kc
be the set of closed segments in (f , p) w.r.t. ∆-discrete capacities

9 ĉcj ←
∑
(i, j,k )∈Kc ĉi jk for every j ∈ G

10 ĉci ←
∑
(i, j,k )∈Kc ĉi jk for every i ∈ B

11 for each component C ∈ C do
12 Set prices p as solution of the following system of equations

13 (1) ui jkpj′ = ui j′k ′pj (for active segments from a buyer i to goods j and j ′)

14 (2)

∑
j ∈C∩G (p

a
j − ĉ

c
j ) −

∑
i ∈C∩B (mi − ĉ

c
i ) =

∑
u ∈C s(u) (sum of surpluses)

// −n(ℓ + 1)∆ ≤ s(u) ≤ (ℓ + 1)∆

15 Let Ap = b be the matrix form of the above system

16 Let Ap′ = b′ be the system where b′ is obtained from b after substituting s(u) = 0 and using

ccu based on original ci jk , for all u ∈ B ∪G

17 f ′← maximum s-t-flow in network N (p′)
18 return (f ′, p′)

flow adjustment along path P , we keep every surplus of intermediate goods the same. We reduce

the surplus of good j ′ and increase the surplus of good j by ∆. Since good j has non-positive surplus,
this never increases the surplus beyond ∆. Since good j ′ has surplus more than ∆, this never makes

the surplus of good j ′ negative. Hence, in the first ∆-phase there can be at most n iterations that

terminate with Event 1, and at most 2n2(ℓ + 1)+nℓ that terminate with Event 2. Furthermore, since

prices are decreasing, Event 3 happens at most n times overall. Moreover, since the residual network

Gr expands at most n times by including a new buyer, Event 4 happens at most n times in each

iteration. Overall, the first ∆-phase takes time at most n(ℓ + 1)+n(n + 2n2(ℓ + 1)+nℓ)+n = O(n3ℓ).
Note that at the end of the ∆-phase, we have a ∆-feasible solution. The conditions for the surplus

of all buyers hold, since they were unchanged during the ∆-phase. By Lemma 3.1, we have negative

surplus only for goods whose price has not been touched in the process. By termination of the

∆-phase, it follows that every good surplus satisfies the conditions of ∆-feasible solution.
Hence, in every subsequent run of the outer while-loop, we start with s(j) ≤ ∆ for all goods.

After adjustment of ∆ and the flow to ∆-discrete capacities, we have s(j) ≤ (ℓ + 2)∆ for every j ∈ G
and ℓ∆ ≤ s(i) ≤ 2(ℓ + 1)∆ for every i ∈ B. The next for-loop then guarantees s(i) ≤ (ℓ + 1)∆ for all

buyers. By repeating the arguments above, the following ∆-phase takes time O(n2ℓ). □

In addition to the running time, we also show that the precision of intermediate prices and flow

values is bounded.
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Lemma 3.3. If all budgets, earning limits and utility values are integers bounded byU , then all flow
values and prices at the end of each iteration are rational numbers whose denominators are at most
poly(1/∆,n,U n).

Proof. Note that the flow values are always ∆-integral, hence they are rational numbers with

the desired size. Also, the starting prices are rational numbers of the desired size. At the end of each

iteration, one of the four events occurs. In all cases, we show that the prices remain polynomially

bounded if they are so at the beginning of the iteration. This will complete the proof.

In case of Event 3, a capped good j becomes uncapped, so pj = dj and the ratio of any other price

in the active component and pj can be written as the ratio of products of at most n utility values.

Hence, they are polynomially bounded. The other prices are not touched, so they remain same.

In case of Event 4, a new active segment arises, and therefore we can again write any price

in the active component in terms of a price variable which has not been touched. All prices are

polynomially bounded.

Event 1 can happen only if pak = pk . In that case, pk is ∆-integral and all other prices in the active

component can be expressed in terms of pk using the MBB relation. Hence, all prices are of the

desired size.

In case of Event 2, if s(j) < 0, then this implies that pj has not been decreased since the beginning,

so all prices are again fine. For the other case, s(j) = 0 and that implies pj is ∆-integral. Therefore,
all prices are polynomially bounded. □

Finally, for correctness of the algorithm, it maintains the following condition resulting from (MC)
for active prices.

Lemma 3.4. Let B̂ ⊆ B be a set of buyers and let N (B̂) be the goods having positive utility for some
buyer in B̂. At all times

∑
j ∈N (B̂) p

a
j −

∑
i ∈B̂mi ≥ 0 .

Proof. Consider the connected components of the bipartite graph (B ∪G,E), where E = {(i, j) ∈
B ×G | fi j > 0}. We show the claim for each connected componentC separately. If there is a good j
with negative surplus, then pj = p

0

j . This implies that ph ≥ dh and pah = dh for all goods h ∈ C ∩G.

Hence the claim follows from (MC). If all goods have non-negative surplus,∑
j ∈N (B̂)

paj −
∑
i ∈B̂

mi =
∑

j ∈N (B̂)

©«paj −
∑
i ∈B̂

fi j
ª®¬ +

∑
i ∈B̂

©«
∑

j ∈N (B̂)

fi j −mi
ª®¬

≥
∑

j ∈N (B̂)

(
paj −

∑
i ∈B

fi j

)
+

∑
i ∈B̂

©«
∑

j ∈N (B̂)

fi j −mi
ª®¬

=
∑

u ∈B̂∪N (B̂)

s(u) ≥ 0 .

□

Lemma 3.5. Let (f , p) be the flow and price vector computed by the outer while-loop in Algorithm 1.
The pair is ∆-feasible for ∆ = 1/(2ℓ(2nU )4n) and −n(ℓ + 1)∆ ≤ s(j) ≤ ∆ for all j ∈ G.

Proof. The first claim follows from Lemma 3.2. Thus, s(j) ≤ ∆ for every good j. By Lemma 3.4

0 ≤
∑
j ∈G

paj −
∑
i ∈B

mi =
∑

u ∈B∪G

s(u) ≤ n(ℓ + 1)∆ −
∑

u ; s(u)<0

∥s(u)∥ ,

and hence s(j) ≥ −n(ℓ + 1)∆ for every good j. □
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Note that by Lemma 3.5 we call PostProcessing with a pair (f , p) that is ∆-feasible for ∆ =
1/(2ℓ(2nU )4n). Also −n(ℓ + 1)∆ ≤ s(u) ≤ (ℓ + 1)∆ for every u ∈ B ∪G.

The while-loop in PostProcessing ensures that all components of the active-segment graph
ˆG(p)

contain an uncapped good. For each component C of
ˆG(p), the algorithm sets up a system of linear

equations in price variables of the form Ap = b, and we show that after perturbing b slightly, we
get an equilibrium. Since we apply the same procedure on each component separately, we assume

without loss of generality that there is exactly one component C of
ˆG(p).

All goods in C are connected with each other through a set of active MBB edges. Whenever

there are two active segments (i, j,k) and (i, j ′,k ′) for a buyer i and two goods j, j ′, we have the
following relation between pj and pj′ :

ui jkpj′ = ui j′k ′pj (9)

It is easy to check that there are |C ∩G | − 1 of these MBB relations, which are linearly independent,

and there is essentially one free price variable. Additionally, we have a condition for C on the sum

of surpluses: ∑
j ∈C∩G

(paj − ĉ
c
j ) −

∑
i ∈C∩B

(mi − ĉ
c
i ) =

∑
u ∈C

s(u) . (10)

Since there is at least one uncapped good, the set of active prices paj can be divided into a set for

capped goods and a set for uncapped goods; paj = pj for each uncapped j, and paj = dj for each

capped j. We can rewrite (10) as:∑
j ∈C∩G uncapped

pj =
∑
u ∈C

s(u) −
∑

j ∈C∩G capped

dj +
∑

i ∈C∩B

mi +
∑

j ∈C∩G

ĉcj −
∑

i ∈C∩B

ĉci . (11)

We can write the system of equations (9) and (11) in matrix form as Ap = b. All entries of A are

integers due to our assumption on the input parameters, and b has exactly one non-zero entry

resulting from (11). Now consider another system Ap′ = b′ for a price vector p′, where b′ is
obtained after setting s(u) = 0 and using ccu that sums the original capacities of closed segments.

Next we show that p′ gives an equilibrium. For this we show that there is a feasible flow in the

active-segment network N (p′) with min-cuts (s,B ∪G ∪ t) and (s ∪ B ∪G, t). The proof is based on
an adaption of a similar result in [23].

Note that all entries of A are integers in [−U ,U ]. For b′ all entries are integers in [−2nℓU , 2nℓU ].
By Cramer’s rule, the solution ofAp′ = b′ is a vector of rational numbers with common denominator

D ≤ (nU )n . That is, all p ′j are of form qj/D, where both qj andD are integers. Let ε = n(ℓ+1)∆+nℓ∆.

Since | |b|−|b′ | | < ε , we have |pj−p
′
j | ≤ εD,∀j . Let ε ′ = εD2

, then |Dpj−qj | = |D(pj−p
′
j )| ≤ εD2 = ε ′.

Lemma 3.6. Every MBB segment with respect to p is also an MBB segment with respect to p′.
Furthermore, the set of capped and uncapped goods with respect to p and p′ are the same.

Proof. Suppose for two segments (i, j,k) and (i, j ′,k ′) we have ui jkpj′ ≤ ui j′k ′pj , then

ui jkqj′ ≤ ui jkDpj′ ≤ Dui j′k ′pj ≤ Dui j′k ′(p
′
j + εD) ≤ ui j′k ′qj + ε

′ui j′k ′ < ui j′k ′qj + 1.

Since both ui jkqj′ and ui j′k ′qj are integers, we have ui jkqj′ ≤ ui j′k ′qj . This implies that all bang-

per-buck relations for segments in the market are preserved. In particular, a segment is MBB w.r.t.

p iff it is MBB w.r.t. p′. The capped goods w.r.t. p remain capped w.r.t. p′. Suppose pj ≥ dj , then
qj ≥ Dpj − ε

′ > Ddj − 1. Since qj and dj are integers, we have that qj ≥ Ddj and p
′
j ≥ dj . Similarly,

if pj ≤ dj , then qj ≤ Dpj + ε
′ < Ddj + 1. Again, qj ≤ Ddj and p

′
j ≤ dj . □

Note that after the rounding, all (active) prices p′ are rational numbers with common denominator

D. We assign to all closed segments the full amount ci jk . For the active segments, consider the
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Algorithm 3. MinPrices for Earning Limits

Input :Market parameters and any thrifty equilibrium (f , p)
Output :Thrifty equilibrium with smallest prices

1 E(f) ← {(i, j,k) | fi jk > 0}

2 Gc ← Set of capped goods at (f , p)
3 Solve an LP in qj and λi :

min

∑
i λi

qj ≤ ui jkλi , for segment (i, j,k) ∈ E(f)
qj = pj , ∀j ∈ G \Gc
qj ≥ dj , ∀j ∈ Gc
λi ,qj ≥ 0 ∀i ∈ B, j ∈ G

4 return (f , q)

network N (p′), and let c be the capacity of cut (s,B ∪G ∪ t) in N (p′). Suppose there is a min-cut in

N (p′) with value less than c . Then that value is at most c − 1/D. This same cut in N̂ (p) will have
value at most c − 1/D + εD |G | + ε |B |. Also the capacity of the cut (s,B ∪G ∪ t) in N̂ (p) is at least
c − ε |B |. Therefore the total surplus in N̂ (p) is at least

c − ε |B | − (c − 1/D + εD |G | + ε |B |) ≥ 1/D − nεD > ε,

which is a contradiction. Hence (s,B ∪ G ∪ t) is a min-cut in N (p′). Hence, after removing the

money allocated to closed segments from buyer budgets and prices of goods, the remaining money

on the active segments allows an allocation that clears the market. This shows that PostProcessing

works correctly. Hence, we know the algorithm is correct, requires only bounded precision and

runs in polynomial time.

The following theorem is the main result of this section.

Theorem 3.1. Algorithm 1 computes a thrifty equilibrium for money-clearing markets with earning
limits in O(n3ℓ log (ℓ + nU )) time.

Proof. At the beginning, ∆ ≤ U n+1
and ∆ is reduced to ∆/2 until ∆ < 1/(2ℓ(2nU )4n). Therefore,

since ℓ ≥ n, the total number of ∆-phases is O(n log(ℓ + nU )). While the first phase takes time

O(n3ℓ), each subsequent phase takes time O(n2ℓ). Further, PostProcessing takes O(n4 log (nU ))
time [23]. The total running time of Algorithm 1 is O(n3ℓ log (ℓ + nU )). □

3.2 Equilibria with Extremal Prices
In this section, we provide algorithms to refine arbitrary thrifty equilibria to ones with smallest or

largest prices in polynomial time. Given an arbitrary thrifty equilibrium, Algorithm 3 computes a

thrifty equilibrium with smallest prices. Algorithm 4 computes a thrifty equilibrium with largest

prices if it exists. Otherwise, it yields a set S of goods for which prices can be raised indefinitely.

Theorem 3.2. Algorithm 3 computes a thrifty equilibrium with smallest prices.

Proof. By Lemma 2.2 part 3, we know that if fi jk > 0, then (i, j,k) is an MBB segment in every

thrifty equilibrium. Let E(f) = {(i, j,k) | fi jk > 0}, and let Gc and Gu be the (unique) sets of

capped and uncapped goods in thrifty equilibria, respectively. Note that a vector q of pointwise

smallest prices implies a pointwise largest MBB ratio αi for all buyers i ∈ B. Using λi = 1/αi > 0,

Algorithm 3 optimizes the LP to find the minimal λi with prices q that preserve the MBB segments.

The prices q then determine all active segments, and they determine the flow on all segments that
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Algorithm 4. MaxPrices for Earning Limits

Input :Market parameters and any thrifty equilibrium (f , p)
Output :Thrifty equilibrium with largest prices

1 Initialize active price paj ← min{dj ,pj } for every good j ∈ G

2 S ← {j | pj > 0 and j is not connected to any uncapped good in G(p)}

3 while S , ∅ do
4 x ← 1

5 Set prices pj ← xpj , ∀j ∈ S
6 Increase x continuously from 1 until a new active segment appears

7 Recompute S

8 return (f , p)

are non-active and MBB (and, thus, closed). For the active ones, the feasible flows are exactly the

solutions to a straightforward transportation problem. In particular, the original flow f stays an
equilibrium flow, since all edges that carry flow in f stay MBB, the outflow of every buyer i ismi ,

the inflow of every good j is paj . Moreover, f saturates non-active MBB segments under prices q,
which is directly implied by the proof of Lemma 2.2, part 2. □

Theorem 3.3. Algorithm 4 computes a thrifty equilibrium with largest prices if it exists.

Proof. It is easy to check that throughout the algorithm, (f , p) always remains a thrifty equilib-

rium. Assume by contradiction that at the end of the algorithm, (f , p) is not an equilibrium with

largest prices. Let E ′ = (f ′, p′) be an equilibrium with largest prices, and define S1 = {j | p
′
j > pj }.

By Proposition 2.1 part 2, all goods in S1 are capped goods. Moreover, by Lemma 2.2 part 3 every

segment with fi jk > 0 for jŁ ∈ S1 is also an MBB segment in E ′. Because prices of goods in S1
strictly decrease from p′ to p, every buyer i with active edges in S1 in the active segment graph

with prices p′ will have active edges only to S1 with prices p. Therefore, set S is nonempty for the

While loop, and the algorithm should not terminate. □

3.3 Nash Social Welfare in Additive Multi-Unit Markets
Using our algorithm to compute a thrifty equilibrium in linear markets with earning limits, we

can approximate the optimal Nash social welfare for additive valuations, indivisible items, and

multiple copies for each item. Here there are n agents andm items. For item j, there are sj ∈ N
copies. The valuation of agent i for an assignment x of goods isvi (x) =

∑
j vi jxi j , where xi j denotes

the number of copies of item j that agent i receives. The goal is to find an assignment such that the

Nash social welfare (
∏

i vi (x))
1/n

is maximized.

Suppose for each item there is only a single copy. In this case the algorithm of [17] provides a

2-approximation [15]. It finds an equilibrium for a linear market, where each agent i is a buyer
with a budgetmi = 1, and each item j is a good with earning limit dj = 1. The allocation of the

equilibrium gets rounded to an integral assignment.

The direct adjustment of this approach to handle sj ≥ 1 copies is to represent each copy of item j
by a separate auxiliary item with unit supply (all valued exactly the same way as item j). Then run

the algorithm from [17] using a linear Fisher market with an earning limit of 1 for each copy. The

number of copies corresponds directly to the total earning limit of (all auxiliary items of) the good.

A similar approach is used by [1] to provide a 2-approximation for separable concave utilities.

This, however, yields a running time polynomial in maxj sj , which is only pseudo-polynomial for

ACM Transactions on Economics and Computation, Vol. 0, No. 0, Article 0. Publication date: June 2019.



0:26 Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn

multi-unit markets (due to standard logarithmic coding of sj ’s). We here outline a way to make the

algorithm efficient.

Proposition 3.1. There is a polynomial-time 2-approximation algorithm for maximizing Nash
social welfare in multi-unit markets with additive valuations.

Proof. First, we replace each item with sj ≤ 2n by sj auxiliary items with supply 1 as in the

direct adjustment. Each of these gets an auxiliary good with earning limit 1 in the market. For each

item with sj > 2n, we introduce an uncapped good in the market. For every auxiliary good, we

assume that every buyer i has utility ui j = vi j . For every uncapped good, we assume every buyer i
has utility ui j = vi jsj . Then we use our algorithm above to compute a thrifty equilibrium for this

market in time O((nm)4 log((nm) ·maxi, j vi jsj )). Let (x, p) be this equilibrium.

The subsequent rounding of the equilibrium allocation follows ideas laid out in [17]. Consider the

spending graph, i.e., the subgraph of the MBB graph where buyers spend their money. Because of

non-degeneracy of the MBB graph [17, 35], the spending graph is a forest. To handle the uncapped

goods, we first present an inefficient approach and then observe how to implement it implicitly in

polynomial time.

Given an uncapped good j, let us expand the spending graph in the following way: Introduce

sj many copies, each with price p ′j = pj/sj . The valuation of buyer i for each copy is vi j . Since

good j is uncapped, we know pj ≤
∑

imi = n. Moreover, since sj > 2n, this implies p ′j < 1/2.

Let fi j = xi jpj be the money that agent i spends on good j. The parent agent i0 in the spending

graph becomes direct parent of ⌈fi0, j/p
′
j ⌉ many copies. If fi0, j/p

′
j is not integer, the parent pays p

′
j

to ⌊ fi0, j/p
′
j ⌋ many copies, and the rest to one additional copy. The first child i1 of good j is assigned

to contribute the missing money for this additional copy (until it is fully paid for) and becomes its

child. Then, if i1 still has remaining money, it contributes this money to purchase further copies,

for which it becomes the parent. Also, it remains parent of any other goods j ′ , j for which it is a

parent in the spending graph. Naturally, if i0 exactly pays an integer number of copies, i1 becomes

the root of a new tree component and purchases additional copies of good j in the same way.

More formally, i1 becomes parent of

max

(
0,

⌈(
fi1, j −

(
p ′j · ⌈fi0, j/p

′
j ⌉ − fi0, j

))
/p ′j

⌉)
further copies of good j. We continue this expansion process, in which child agent ik of good j

becomes parent of

max

(
0,

⌈(
fik , j −

(
p ′j ·

⌈
k−1∑
ℓ=0

fiℓ, j/p
′
j

⌉
−

k−1∑
ℓ=0

fiℓ, j

))
/p ′j

⌉)
. (12)

many copies of good j . Since prices and utilities are both scaled by sj , it is easy to verify that this

represents an equilibrium assignment for the market where we introduce sj auxiliary goods for

good j, each with earning limit 1.

Now, since p ′j < 1/2, the rounding procedure in [17] applied to this expanded spending graph will

assign all copies of item j to the parent agent of the corresponding good and remove them from the

graph. Thus, the rounding procedure simply removes good j from the spending graph and assigns

the number of copies given by (12) to parent buyer i0 and children iℓ , for ℓ = 1, 2, . . .. Obviously,
this can be done directly for each uncapped good j in O(n) time without explicit expansion of the

spending graph. Consequently, our adjusted algorithm achieves a running time of O(n4 lognU )
– our algorithm to compute an equilibrium takes O(n4 lognU ) time and the rounding procedure

takes O(n4) time. □
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Algorithm 5. MinPrices for Utility Limits

Input :Market parameters and thrifty and modest equilibrium (x, p)
Output :Thrifty and modest equilibrium with smallest prices

1 Initialize active budgetma
i ← min{mi ,minj cipj/ui j } for every buyer i ∈ B

2 S ← {j | pj > 0 and j does not have incident equality edges to any uncapped buyer}

3 B′← Set of buyers who have incident equality edges to S

4 while S , ∅ do
5 γ ← 1

6 Define prices and active budgets as follows:

7 pj ← γ · pj , ∀j ∈ S ;ma
i ← γ ·ma

i , ∀i ∈ B′
8 Decrease γ continuously down from 1 until one of the following events occurs:

9 Event 1: γ becomes zero

10 Event 2: A new equality edge appears

11 Recompute S and B′

12 return (x, p) // x remains same as in the input

4 ALGORITHMS FOR MARKETS WITH UTILITY LIMITS
4.1 Equilibria with Extremal Prices
As mentioned above, in markets with utility limits, the framework of [40] provides an (arbitrary)

equilibrium in time O(n5 log(nU )). In this section, we show how to transform in polynomial time

any thrifty and modest equilibrium into one with minimum and maximum revenue using the

postprocessing procedures Algorithm 5 and Algorithm 6, respectively.

Theorem 4.1. Algorithm 5 computes a thrifty and modest equilibrium with smallest prices.

Proof. It is easy to check that throughout the algorithm, (x, p) always remains a thrifty and

modest equilibrium. Assume by contradiction that at the end of the algorithm, (x, p) is not an
equilibrium with smallest prices. Let (x′, p′) be an equilibrium with smallest prices, and define

S1 = {j | pj > p ′j }. By Lemma 2.4 property (3), all buyers in Γ(S1, p) are capped buyers. Because

prices of goods in set S1 decrease from p to p′, every buyer i incident to S1 in the equality graph with
prices pwill only have equality edges to S1 with prices p′. Therefore we have i ∈ Γ(S1, p′) = Γ(S1, p)
(the equality is again by Lemma 2.4). This implies Γ(S1, p) is also the set of buyers who have incident
equality edges to S1 with prices p. Hence, set S is nonempty for the while-loop, and the algorithm

should not terminate. □

Theorem 4.2. Algorithm 6 computes a thrifty and modest equilibrium with largest prices.

Proof. Algorithm 6 takes a thrifty and modest equilibrium (x, p) and outputs an equilibrium

with largest prices. We first process the zero priced goods. Let G0 be the set of goods whose prices

are zero at p, B0 be the set of buyers who derive positive utility from a good inG0, and E0 be the set
of tuples (i, j) in (B0 ×G0) such that buyer i derives positive utility from good j . We next construct

a bipartite graph ((B0,G0),E0) formed by the set of nodes B0 and G0 and edges in E0.
We do the following for each connected component C of the bipartite graph. Let BC and GC

denote the set of buyers and goods inC respectively. Note that all buyers in BC are capped. We solve

the linear program LP1 to determine whether it is possible to achieve utility limits for all buyers

in BC without consuming all of GC . If the answer is yes, i.e., opt1 is positive, then we claim that

goods of GC are priced zero in all equilibria. For a contradiction, suppose there is an equilibrium
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Algorithm 6. MaxPrices for Utility Limits

Input :Market parameters and thrifty and modest equilibrium (x, p)
Output :Thrifty and modest equilibrium with largest prices

1 /* First, process zero priced goods.*/

2 G0 ← {j ∈ G | pj = 0}

3 B0 ← {i ∈ B | ui j > 0, j ∈ G0}

4 E0 ← {(i, j) ∈ (B0 ×G0) | ui j > 0}

5 foreach connected component C of bipartite graph ((B0,G0),E0) do
6 BC ← Set of buyers in C

7 GC ← Set of goods in C

8 Let opt1 be the optimal value of the following LP in variables yi js:

max |GC | −
∑

i ∈BC , j ∈GC
yi j∑

j ∈GC
ui jyi j = ci ∀i ∈ BC∑

i ∈BC yi j ≤ 1 ∀j ∈ GC
yi j ≥ 0 ∀i ∈ B, j ∈ G

9 if opt1 = 0 then
10 EC ← {(i, j) ∈ (BC ×GC ) | xi j > 0}

11 (pj )j ∈GC ← Optimal solution of LP2 in Figure 1

12 E ← {(i, j) ∈ (B \ B0 ×G \G0) | xi j > 0}

13 (C1, . . . ,Ck ) ← connected components of (B \ B0,G \G0,E) where all buyers are capped

14 C ← C1 ∪ · · · ∪Ck

15 BC ← Set of buyers in C

16 GC ← Set of goods in C

17 EC ← {(i, j) ∈ (BC ×GC ) | xi j > 0}

18 (pj )j ∈GC ← Optimal solution of LP2 in Figure 1

19 return (x, p) // x remains same as in the input

(x̃, p̃) where prices of goods in GC are positive. At p̃, letma
i be the active budget of buyer i in BC .

Note that active budget of a buyer is the least amount of budget needed to achieve its utility limit,

and the total prices are equal to total active budget. Let x′ be an allocation where each buyer in BC
achieves its utility limit and goods of GC are not fully-consumed. If we use x′ at prices p̃, then the

total money spent by each buyer i is at leastma
i , which implies that the total incoming money to

goods inGC at x′ is at least the total prices ofGC . However, the goods ofGC are not fully consumed,

which is a contradiction.

If opt1 is zero, then we find the maximum possible prices of goods in GC using another linear

program LP2, given in Figure 1, while maintaining x to be on MBB edges. For that, we first find

the set of edges (i, j) ∈ (BC ×GC ) with positive allocation. The variables in LP2 are λi ’s, pj ’s, and
fi j ’s, where λi denote the minimum budget buyer i needs for a unit utility at prices p assuming

that the edges in EC remain MBB at p. This is captured in the first two constraints. The fi j denote
the money spent by buyer i on good j. The money balance is captured in the third and fourth

constraints. The third and fifth constraints together capture that each buyer i in BC achieves its

utility limit. We claim that the output of LP2 gives the largest possible prices for goods in GC .
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max

∑
j ∈GC

pj

λi = pj/ui j , ∀(i, j) ∈ EC
λi ≤ pj/ui j , ∀i ∈ BC ,∀j ∈ G∑

j ∈GC
fi j = ciλi , ∀i ∈ BC∑

i ∈BC fi j = pj , ∀j ∈ GC
fi j = 0, ∀(i, j) < EC
pj ≥ 0, fi j ≥ 0, ∀i ∈ BC ,∀j ∈ GC

Fig. 1. Linear program LP2 for Algorithm 6

Let p′ be the prices obtained from the solution of LP2. Suppose there is an equilibrium (x̃, p̃)
where goods in GC give more revenue than the revenue obtained from them at p′. Note that the
total active budget of buyers in BC with respect to prices p̃ is same as total prices of goods in GC
at p̃. Further, observe that p′ are the maximum prices given the constraint that x remains MBB

for goods in GC . Hence, there is a tuple (i, j) such that xi j > 0 and (i, j) is not an MBB edge with

respect to prices p̃. Each buyer in BC achieves its utility limit at both x and x̃. These together imply

that the total budget spent by buyers in BC at x with respect to prices p̃ is strictly more than the

total prices at p̃, which is a contradiction. Thus, p′ is the vector of largest prices that goods in GC
can achieve in any equilibrium.

Finally, we process positive priced goods. For that, let E denote the set of tuples (i, j) in the

remaining set of buyers and goods such that there is a positive flow from buyer i to good j at x.
Now consider the bipartite graph between buyers B \ B0 and goods G \G0 with edges in E. Recall
that Lemma 2.4 shows that if there is an uncapped buyer in a connected component C of bipartite

graph ((B \ B0,G \G0),E), then the prices of goods in C are unique in all equilibria. Using this, we

only need to process the components where all buyers are capped. Let C1, . . . ,Ck be the connected

components where all buyers are capped. Let C be the union of all these components, and BC and

GC be the set of buyers and goods in C , respectively. Further, let EC be the restriction of E on BC
and GC . We now solve LP2 for the goods in C to find the maximum prices such that the allocation

x remains on the MBB goods. Using a similar argument as in the last paragraph above, we can

conclude that this gives the largest possible prices for goods in GC . □

4.2 Extensions
All thrifty and modest equilibria have a Pareto-optimal allocation. Note, however, that the standard

definition of market equilibrium requires that buyers obtain a demand bundle with maximum

utility and market clears. Whenever a capped buyer achieves the utility cap, he buys a demand

bundle, even if he does so in a non-thrifty way by spending his money on non-MBB goods. If

we allow non-thrifty spending, we obtain market equilibria outside the set of thrifty and modest

equilibria, for which utilities are not uniquely determined. In fact, we show that market equilibria

with maximum social welfare might not be thrifty and modest equilibria, and computing such

optimal equilibria becomes NP-hard. As a corollary, we note that the proof can also be used to

show NP-hardness for optimizing any constant norm of utility values.

Theorem 4.3. It is NP-hard to compute a market equilibrium that maximizes social welfare.

Proof. We reduce from 3-Dimensional Matching. Consider an instance I composed of three

disjoint sets A, B, C of elements and a set T ⊆ A × B ×C of triples. Let n = |A| = |B | = |C | be the
number of elements in each set andm = |T | the number of triples. W.l.o.g. assumem ≥ n. Now we

construct a Fisher market based on I as follows. For each element i ∈ A ∪ B ∪C we introduce an
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element agent i with budget 1. For each triple j ∈ T we introduce a good j and an auxiliary agent i j
with budget 1. All these agents have linear utility functions. In addition, there is a single decision
agent id with a budget-additive utility function and a budget of 4m2(m − n).
For the utility values, for each agent i ∈ A ∪ B ∪C we assume ui j = 1 if triple j contains i and

0 otherwise. For auxiliary agent i j the utility is ui j j = 1/m3
and 0 for all other goods. Finally, the

decision agent id has utilityuid j = 1/m3
for every good j and a cap of cid = (m−n)/(m(m

2+1)). Our

claim is that a market equilibrium with social welfare ofW = 3n · (1/4) + n · (1/4m3) + (m − n)/m3

exists if and only if the instance I has a solution.
First, suppose I has a solution S ⊆ T . Then we set the prices to be pj = 4 for every j ∈ S and

pj =m
2 + 1 for every j < S . As for the allocation, each agent i spends its entire budget of 1 on the

good j ∈ S that includes him. Each auxiliary agent spends its budget on the corresponding good.

Finally, the decision agent id spends a budget ofm2
on each of them − n goods j < S . Observe

that all goods are allocated, and (since w.l.o.g. we can assume m > 2) every agent with linear

utility function spends its entire budget on an MBB good. The decision agent has optimal utility

(m − n) · (1/m3) ·m2/(m2 + 1) = cid . As such, we obtain a market equilibrium. Straightforward

inspection reveals that the social welfare in this state is indeedW .

On the other hand, assume that a market equilibrium achieves a social welfare of at leastW .

Note that for each good j, the auxiliary agent can at most obtain a utility of 1/m3
by getting all of

good j. Similarly, the decision agent can obtain at mostm goods and get a utility of cid for all of

them. Thus, by giving all goods to auxiliary and decision agents, together they can contribute at

most 1/m2
to the social welfare.

We first observe that in every market equilibrium the decision agent obtains a utility of cid .
Consider any good j and let us broadly overestimate the price in equilibrium by assuming that

the auxiliary agent and all three element agents spend a total budget of 4 on j. This is clearly an

upper bound on the money that is spent by the element and auxiliary agents on good j. To derive

an upper bound, assume this happens on every good j. Even in this case, the decision agent can

contribute a budget of 4m2
to any set ofm −n goods. Since in a market equilibrium, the goods must

be shared in proportion to the money spent, the decision agent would thereby be able to obtain a

share of 4m2/(4m2 + 4) =m2/(m2 + 1) from each good it contributes to. In total this yields a utility

of (m − n) · (m2/(m2 + 1)) · (1/m3) = cid . Hence, in every market equilibrium the decision agent

obtains at least a total share of (m − n) ·m2/(m2 + 1) of all the goods. Thus, the total remaining

supply of goods that can be allocated to the remaining agents is at most n + (m − n)/(m2 + 1).

Let us now discuss how to distribute this remaining supply optimally among the agents. For

every good j, any equilibrium allocation must be proportional to the incoming money. We remove

the fraction obtained by the decision agent, denote the remaining supply by sj , and note sj ≥ 0

and

∑
j sj ≤ n + (m − n)/(m2 + 1). The auxiliary agent always spends its budget of 1 on j . Let yj be

the money spent by element agents on good j, so 3 ≥ yj ≥ 0 and

∑
j yj = 3n. The welfare obtained

from good j by auxiliary and element agents in any equilibrium is

sj

(
yj

yj + 1
+

1

yj + 1
·

1

4m3

)
.
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Hence, the social welfare obtained by element and auxiliary agents in any market equilibrium is

upper bounded by the optimum solution to the following optimization problem:

Max.

∑
j ∈[m]

sj
yj + 1/(4m

3)

yj + 1

s.t.

∑
j ∈[m]

sj = n +
m−n
m2+1∑

j ∈[m]

yj = 3n

yj ≤ 3 ∀j ∈ [m]
sj ≤ 1 ∀j ∈ [m]

(13)

The objective function is linear in the sj and convace in the yj , the constraints are concave, the
equality constraints are affine and their gradients are linearly independent. The feasible solution

yj = 3/m and sj = (n+ (m−n)/(m
2+1))/m satisfies the inequality constraints with strict inequality.

Hence, the KKT-conditions characterize the unique optimal solution. We use dual variables α and

β for the equality constraints, λj and µ j for the inequality constraints. The optimal solution must

satisfy

−
yj + 1/(4m

3)

yj + 1
+ α + µ j = 0

−sj
1 − 1/(4m3)

(yj + 1)2
+ β + λj = 0

λj (yj − 3) = 0 and λj ≥ 0 for all j

µ j (sj − 1) = 0 and µ j ≥ 0 for all j

Thus, α ≤ (yj + 1/(4m3))/(yj + 1) for all j. Note that α < (yj + 1/(4m3))(yj + 1) implies µ j > 0

and sj = 1. Also βj ≤ sj (1 − 1/(4m
3))/(yj + 1)

2
for all j. Similarly, βj < sj (1 − 1/(4m

3))/(yj + 1)
2

implies λj > 0 and yj = 3. We number the y’s such that y1 ≥ y2 ≥ . . . ≥ ym . Let ℓ be such that

y1 ≥ . . . ≥ yℓ > yℓ+1 = . . . = ym . Then sj = 1 for 1 ≤ j ≤ ℓ and hence ℓ ≤ n. Let k ≤ ℓ be such
that y1 = . . . = yk > yk+1. Then yj = 3 for 1 ≤ j ≤ k . If k < ℓ, yk+2 > 0 since

∑
j yj = 3n, and

we increase the objective by increasing yk+1. Thus k = ℓ. If ℓ < n, sℓ+2 > 0 and we increase the

objective by increasing sℓ+1 and yℓ+1. Thus ℓ = n, and the unique optimum is y1 = . . . = yn = 3,

yn+1 = . . . = ym = 0, s1 = . . . = sn = 1.

This proves that in the optimum there aren goods to which the decision player does not contribute
(sj = 1) and for which there are exactly three element players that can contribute all their budget to

this good (yj = 3). Thus, the upper bound on the social welfare is attained only when the decision

player contributes to exactlym−n goods such that the remaining n goods correspond to a partition

of the 3n agents into n disjoint triples. By straightforward inspection, we see that the upper bound

on the social welfare amounts to exactlyW . A market equilibrium of social welfareW can exist

only if there is a solution to the underlying instance I . This concludes the proof. □

Corollary 4.1. It is NP-hard to compute a market equilibrium (x, p) that maximizes
∑

i (ui (x))ρ ,
for every constant ρ > 0.

Proof. For ρ > 1, we can use exactly the same reduction. The optimum coincides with the

optimum for social welfare, since we still want to maximize the share of goods assigned to the
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element agents. For constant 0 < ρ < 1 and sufficiently largem, the common factor 1/(4m3) is

strong enough to keep the incentive of maximizing the share of the element agents. □

There are several ways of introducing satiation points into the utility function. Instead of a global

cap, let us assume there is a cap ci j for the utility buyer i can obtain from good j. A good-based
budget-additive utility of buyer i is then ui (xi ) =

∑
j min(ci j ,ui jxi j ). This variant turns out to be an

elementary special case of separable piecewise-linear concave (SPLC) utilities, in which every piece

consists of a linear segment followed by a constant segment. We show that even finding a single

market equilibrium here becomes PPAD-hard. The proof adjusts a construction put forward in [12].

Theorem 4.4. It is PPAD-hard to compute a market equilibrium in Fisher markets with good-based
budget-additive utilities.

Proof. We adapt the construction of Chen and Teng [12] to prove the theorem. They show

PPAD-completeness of computing an approximate equilibrium in Fisher markets under SPLC

utilities where each PLC function has at most two segments. Here, the second segment can have

positive rate of utility, i.e., non-zero slope, hence PPAD-hardness for Fisher markets under good-

based budget-additive utilities where the second segment has zero slope, i.e., no utility, requires

adjustment in their construction.

Chen and Teng [12] reduce the PPAD-hard problem of computing an approximate Nash equi-

librium in a two-player game to the problem of computing an approximate equilibrium in Fisher

markets under SPLC utilities. Their main idea is to construct a family of price-regulating markets

Mn for each n ≥ 1, which has n buyers and 2n goods. InMn , each buyer has budget of 3 units

and each good has supply of 1 unit, and every approximate equilibrium price vector p satisfies the

following price-regulation property:

1

2

≤
p2k−1
p2k

≤ 2 and p2k−1 + p2k ≈ 3 for every 1 ≤ k ≤ n. (14)

Next for a given two-player game, additional buyers are inserted in the price-regulating market

and game parameters are embedded into their budget and utility functions. These new buyers are

given very small budget so that the price-regulation property is still satisfied.

First, we modify the family of price-regulating marketsMn for each n ≥ 1 so that each PLC

function is either linear or linear with a threshold. In the construction of [12], each buyer k derives

non-zero utility only from goods 2k − 1 and 2k . Its utility function for good 2k − 1 is linear with
slope 2 (utility per unit amount), and for good 2k it is linear with slope 4 till unit amount and then

linear with slope 1. Since the slope of the second segment is 1, it is not good-based budget-additive

utility function. Simply decreasing the slope of the second segment from 1 to 0 does not work. We

get only one inequality:

1

2

≤
p2k−1
p2k
.

To construct a correct reduction, we use two buyers, say (k, 1) and (k, 2), instead of one buyer k .
We set the supply of each good to 2 units instead of 1. Both buyers (k, 1) and (k, 2) have budget of
3 units each, and both derive non-zero utility only from goods 2k − 1 and 2k . We set the utility

function of buyer (k, 1) as follows: For good 2k − 1, it is linear with slope 2, and for good 2k , it is
linear with slope 4 till unit amount and then linear with zero slope. Similarly, the utility function

of buyer (k, 2) is set as follows: For good 2k , it is linear with slope 2, and for good 2k − 1, it is

linear with slope 4 till unit amount and then linear with zero slope. We claim that this enforces the

price-regulation property (14) on every equilibrium price vector p.
Suppose p2k−1/p2k > 2 then buyer (k, 2) demands only good 2k . This results in more demand

of good 2k and less demand of good 2k − 1, hence does not give an equilibrium. Similarly, we get
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contradiction for the case p2k−1/p2k < 1/2. When
1

2
≤

p
2k−1
p
2k
≤ 2, then buyer (k, 1) demands one

unit of good 2k − 1 and one unit of good 2k , and the same for buyer 2k . This yields an equilibrium.

Next, for the additional buyers who embed the game parameters, we simply change the slope

of the second segment from positive to zero for each utility function. We claim that this works

because these buyers do not buy any good on the second segment in the original construction

of [12]. Hence, it has no effect on equilibrium when the slope of the second segment is decreased.

This concludes the proof. □

5 CONCLUSION
In this paper, we analyze Fisher markets with linear utilities and either earning limits or utility

limits. We concentrate on the structure, computation and complexity of thrifty equilibria for earning

limits and thrifty and modest equilibria for utility limits. In both market models, these equilibria

can be described as optimal solutions to a convex program. They have a number of desirable

properties, e.g., unique seller incomes (with earning limits) or buyer utilities (with utility limits) as

well as lattice structure of price vectors. Moreover, in both market models we provide algorithms

to compute a thrifty or thrifty and modest equilibrium with smallest or largest prices.

For markets with earning limits, we prove our results even in the much more general domain

with spending-constraint utilities. For these markets we also present a new and improved scaling

algorithm to compute a thrifty equilibrium. Moreover, we apply our results to approximating the

Nash social welfare with indivisible items in multi-unit markets. For markets with utility limits, we

show that closely related variants of the problem suffer from computational hardness results.

There are a number of intriguing open problems for market models with satiated utilities. Recent

work [15] shows existence of equilibria with utility limits even for more general CES functions via an

Eisenberg-Gale convex program similar to (4). It would be interesting to see if we can compute these

equilibria faster than by applying standard algorithms to solve the convex program. In addition, for

markets with CES functions and earning limits or for markets with spending-constraint utilities

and utility limits there is nothing known about existence, structure or computation.

Equilibria in linear markets with both earning and utility limits are known to have intriguing

non-convex structure [26]. Moreover, they can be rounded to a constant-factor approximation of

Nash social welfare in markets with indivisible goods and budget-additive utilities. It would be

interesting to see if Fisher markets with earning or utility limits can yield good approximation

algorithms for this problem even beyond (rather direct generalizations of) linear utilities, for which

this has been a successful approach over the past several years [1, 15, 17, 26].
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