
Networked Fairness in Cake Cutting∗

Xiaohui Bei,1 Youming Qiao,2 Shengyu Zhang3

1School of Physical and Mathematical Sciences, Nanyang Technological University
2Centre for Quantum Software and Information, University of Technology Sydney

3Department of Computer Science and Engineering, The Chinese University of Hong Kong
1xhbei@ntu.edu.sg, 2Youming.Qiao@uts.edu.au, 3syzhang@cse.cuhk.edu.hk

Abstract

We introduce a graphical framework for fair divi-
sion in cake cutting, where comparisons between
agents are limited by an underlying network struc-
ture. We generalize the classical fairness notions of
envy-freeness and proportionality to this graphical
setting. Given a simple undirected graph G, an al-
location is envy-free on G if no agent envies any of
her neighbor’s share, and is proportional on G if
every agent values her own share no less than the
average among her neighbors, with respect to her
own measure. These generalizations open new re-
search directions in developing simple and efficient
algorithms that can produce fair allocations under
specific graph structures.
On the algorithmic frontier, we first propose a
moving-knife algorithm that outputs an envy-free
allocation on trees. The algorithm is significantly
simpler than the discrete and bounded envy-free al-
gorithm recently designed in [Aziz and Mackenzie,
2016a] for complete graphs. Next, we give a dis-
crete and bounded algorithm for computing a pro-
portional allocation on descendant graphs, a class
of graphs by taking a rooted tree and connecting all
its ancestor-descendant pairs.

1 Introduction
In a nutshell, economics studies how resources are managed
and allocated [Mankiw, 2014], and one of the most funda-
mental targets is to achieve certain fairness in the allocation of
resources. In a standard setting, different people have possi-
bly different preferences on parts of a common resource, and
a fair allocation aims to distribute the resource to the people
so that everyone feels that she is treated “fairly”. When the
resource is divisible, the problem is also known as “cake cut-
ting”, and two of the most prominent fairness notions in this

∗This work was supported by Australian Research Council DE-
CRA DE150100720 and Research Grants Council of the Hong Kong
S.A.R. (Project no. CUHK14239416)

domain are envy-freenss and proportionality. Here an alloca-
tion is envy-free if no agent i envies any other agent j; for-
mally, this requires that for all i, j ∈ [n], vi(Ai) ≥ vi(Aj),
where vk is the valuation function of agent k and Ak is the
part allocated to agent k. It is known that an envy-free al-
locatio always exists [Brams and Taylor, 1996]. However, it
is until recently that a finite-step procedure to find an envy-
free allocation was proposed [Aziz and Mackenzie, 2016a].
A weaker fairness solution concept is called proportionality,
which requires that each agent gets at least the average of the
total utility (with respect to her valuation). Envy-freeness im-
plies proportionality, but not vice versa.

When studying these fairness conditions, almost all pre-
vious works consider all (ordered) pairs of relations among
agents. However, in many practical scenarios, the relations
that need to be considered are restricted. Such restrictions
are motivated from two perspectives: (1) the system often
involves a large number of people with an underlying social
network structure, and most people are not aware of their non-
neighbors’ allocation or even their existence. It is thus inef-
ficient and sometimes meaningless to consider any potential
envy between pairs of people who do not know each other; (2)
institutional policies may introduce priorities among agents,
and envies between agents of different priorities will not be
considered toward unfairness. For example, when allocating
network resources such as bandwidth to users, priorities will
be given to users who paid a higher premium and they are
expected to receive better shares even in a considered “fair”
allocation.

To capture the most salient aspect of the motivations above,
in this paper, we initialize the study of fair cake cutting on
graphs. Formally, we consider a graph G with vertices being
the agents. An allocation is said to be envy-free on graph G
if no agent envies any of her neighbors in the graph. An allo-
cation is proportional on graph G if each agent gets at least
the average of her neighbors’ total allocation (with respect to
her own valuation). By only considering the fairness condi-
tions between connected pairs, the problem could potentially
admit fair allocations with more desired properties such as ef-
ficiency, and lead to simpler and more efficient algorithms to
produce them.

With regard to envy-freeness, one can easily see that an

envy-free allocation in the traditional definition is also an
envy-free allocation on any graph. However, the algorithm
to compute such a solution to the former [Aziz and Macken-
zie, 2016a] has extremely high complexity in terms of both
the number of queries and the number of cuts it requires. One
goal of this line of studies is to design simple and easy-to-
implement algorithms for fair allocations on special graphs.
It is easy to observe that (cf. Section 2.2), an envy-free allo-
cation protocol on a connected graph G induces an envy-free
protocol on any of its spanning trees. Therefore, trees form
a first bottleneck to the design of envy-free algorithms for
more sophisticated graph families. The first result we will
show is an efficient moving-knife algorithm to find an envy-
free allocation on an arbitrary tree, removing this bottleneck.
The procedure allocates the cake from the tree root in a top-
down fashion and is significantly simpler than the protocol
proposed by Aziz et al. [2016a].

When the graph is more than a tree, the added edges sig-
nificantly increase the difficulty of producing an envy-free al-
location. However, if we lower the requirements and only
aim at proportionality, then it is possible to go beyond trees.
Note that though a proportional allocation can be produced
for complete graphs by several algorithms, such globally pro-
portional solutions may be no longer proportional on an in-
complete graph. Our second result gives an discrete and ef-
ficient algorithm to find a proportional allocation on descen-
dant graphs, a family of graphs that are generated from rooted
trees by connecting all ancestor-descendant pairs in the tree.
Descendant graphs are interesting from both practical and
theoretical viewpoints (cf. Section 2.2).

1.1 Related Work
Cake cutting has been a central topic in recource allocation
for decades; see, e.g., [Brams and Taylor, 1996; Robertson
and Webb, 1998; Procaccia, 2013]. As mentioned, envy-
freeness and proportionality are two of the most prominent
solution concepts for fairness consideration in this domain.
An envy-free allocation always exists, even if only n− 1 cuts
are allowed [Su, 1999]. The computation of envy-free and
proportional allocations has also received considerable atten-
tion, with a good number of discrete and continuous protocols
designed for different settings [Dubins and Spanier, 1961;
Robertson and Webb, 1998; Brams and Taylor, 1995; Brams
et al., 1997; Barbanel and Brams, 2004; Procaccia, 2009;
2015; Aziz and Mackenzie, 2016b]. It had been a long
standing open question to design a discrete and bounded
envy-free protocol for n agents, until settled very recently
by Aziz and Mackenzie [2016a]. For proportionality, much
simpler algorithms are known that yield proportional alloca-
tions with a reasonable number of cuts. Even and Paz [1984]
gave a divide-and-conquer protocol that could produce a
proportional allocation with O(n log n) cuts. Woeginger
and Sgall [2007] and Edmonds and Pruhs [2006] later also
showed a matching Ω(n log n) lower bound.

The idea of restrictive relations, i.e., people comparing the
allocation only with their peers, have also been considered in
scenarios other than cake cutting. Chevaleyre et al. [2007]
proposed a negotiation framework with a topology structure,
such that agents may only trade indivisible goods with their

neighbors, and the envy also could only happen between con-
nected pairs. Todo et al [2011] generalized the envy-freeness
to allow envies between groups of agents, and discussed
the combinatorial auction mechanisms that satisfy these con-
cepts.

Shortly before our work, [Abebe et al., 2016] proposed
the same notion of fairness on networks. Despite this, the
paper and ours have completely different technical contents.
[Abebe et al, 2017] shows that proportional allocations on
networks do not satisfy any natural containment relations,
characterizes the set of graphs for which a single-cutter pro-
tocol can produce an envy-free allocation, and analyzes the
price of envy-freeness. In this paper, we focus on designing
simple and efficient protocols for fair allocations on special
classes of graphs. The graph families considered in these two
papers are also different.

2 Our Framework
In a cake cutting instance, there are n agents to share a cake,
which is represented by the interval [0, 1]. Each agent i has
an integrable, non-negative density function vi : [0, 1] 7→ R.
A piece S of the cake is the union of finitely many disjoint
intervals of [0, 1]. The valuation of agent i for a piece S is
Vi(S) =

∫
S
vi(x)dx.

An allocation of the cake is a partition of [0, 1] into n
disjoint pieces, denoted by A = (A1, . . . , An), such that
agent i receives piece Ai, where all pieces are disjoint and⋃
iAi = [0, 1].

2.1 Fairness Notions on Graphs
First we review two classic fairness notions in resource allo-
cation.

Envy-Freeness. An allocation A is called envy-free if for all
i 6= j, vi(Ai) ≥ vi(Aj).
Proportionality. An allocationA is called proportional if for
all i, vi(Ai) ≥ 1

nvi([0, 1]).

To account for a graphical topology, we generalize the
above definitions by assuming a network structure over all
agents. That is, we assume an undirected simple graph
G = (V,E) in which each vertex i represents an agent. Let
N(i) be the set of neighbors of agent i in G.

Definition 1 (Envy-free on networks). An allocation A is
called envy-free on a network G = (V,E) if for all i and
all j ∈ N(i), vi(Ai) ≥ vi(Aj).

Definition 2 (Proportional on networks). An allocation A is
called proportional on a network G if for all i, vi(Ai) ≥

1
|N(i)|

∑
j∈N(i) vi(Aj).

Both definitions can be viewed as generalizations of the
original fairness concepts, which correspond to the case of G
being the complete graph.

For envy-freeness, we have the following properties.

Fact 1. Any allocation that is envy-free on a graph G is also
envy-free on any subgraph G′ ⊆ G.

Corollary 1. An envy-free allocation is also envy-free on any
graph G.

The corollary implies that the envy-free protocol recently
proposed by Aziz and Mackenzie [2016a] would also give an
envy-free allocation on any graph. However, the protocol is
highly involved and requires a large number of queries and
cuts, which naturally raises the question of designing simpler
protocols for graphs with special properties.

Goal 1: Design simple protocols that could produce
envy-free allocations on certain types of graphs.

While envy-freeness is closed under the operation of edge
removal, proportionality is not, as removing edges changes
the set of neighbors and thus also the average of neighbors’
values. Therefore, although a number of proportional proto-
cols are known, they do not readily translate to proportional
allocations on subgraphs in any straightforward way.

At a first glance, even the existence of a proportional al-
location on all graphs is not obvious. Interestingly, the ex-
istence can be guaranteed from that of an envy-free alloca-
tion, since any envy-free allocation is also proportional on
the same network. Therefore an envy-free protocol for com-
plete graphs would also produce a proportional allocation on
any graph. In light of this, we turn to the quests for simpler
proportional protocols on interesting graph families as in the
envy-free case.

Goal 2: Design simple protocols that could produce pro-
portional allocations on certain types of graphs.

2.2 Motivations for the Two Graph Families

In this paper we focus on two graph families, trees and de-
scendant graphs. Note that for both envy-freeness and propor-
tionality, we only need to consider connected graphs (since
otherwise we can focus on the easiest connected component).
Without an envy-free algorithm for trees, there would be no
chance to design envy-free protocols for more complicated
graph families (see Fact 1).

For descendant graphs, recall that a descendant graph is ob-
tained by connecting all ancestor-descendant pairs of a rooted
tree (cf. Section 4 for a formal definition). Descendant graphs
can be used to model the relations among members in an ex-
tended family, where each edge connects a pair of ancestor
and descendant. It can also model the management hierar-
chy in a company, where each edge connects a superior and
a subordinate. From a theoretical viewpoint, we note that for
any undirected graph G, if we run a depth-first search, then
all edges in G are either edges on the DFS tree T or a back
edge of T . Thus G is a subgraph of the upward closure Tuc
of T , where Tuc is obtained from T by connecting all (ances-
tor, descendant) pairs. Note that Tuc is a descendant graph.
Therefore, if there is an envy-free allocation protocol for the
family of descendant graphs, then there is an envy-free alloca-
tion protocol for any graph. This indicates that envy-freeness
for descendant graphs may be hard. Interestingly, if we re-
lax to proportionality, we do get a protocol on this family, as
shown in Section 4.

3 Envy-Freeness on Trees
We first present an algorithm that produces an envy-free al-
location on trees. The algorithm makes use of the Austin
moving-knife procedure [Austin, 1982] as a subroutine.
Given a rooted tree T , let |T | denote the number of vertices.
For any vertex i in T , denote by T (i) the subtree rooted at
vertex i.
Definition 3 ([Austin, 1982]). An Austin moving-knife pro-
cedure AUSTINCUT (i, j, n, S) takes two agents i, j, an inte-
ger n > 0 and a subset S of cake as input parameters, and
outputs a partition of S into n parts, such that both agents
value these n pieces as all equal, each of value exactly 1/n
fraction of the value of S. An Austin procedure needs 2n cuts.

It should be noted that this is a continuous procedure, and it
is not known that whether it can be implemented by a discrete
algorithm. With that being said, to the best of our knowledge,
it is not known whether Austin’s moving knife procedure can
help to obtain an algorithm achieving envy-freeness (on com-
plete graphs) that is simpler than the algorithm in [Aziz and
Mackenzie, 2016a].

Now we are ready to present our allocation algorithm in
Algorithm ALLOCATIONTREE, which calls a sub-procedure
given in Algorithm ALGTREE.

Algorithm 1 ALGTREE (T, r, (A1, . . . , An))

Require: Tree T with root vertex r, size of tree n, an alloca-
tion A = (A1, . . . , An).

1: for each immediate child i of root r do
2: Among all remaining pieces of A1, . . . , An, pick

|T (i)| pieces that agent i values the highest.
3: Let Si denote the union of these |T (i)| pieces.
4: end for
5: Allocate the remaining one piece to r.
6: for each child i of root r do
7: Apply AUSTINCUT (i, r, |T (i)|, Si) to divide Si into

|T (i)| equal parts X1, . . . , X|T (i)| for i and r.
8: Run ALGTREE (T (i), i, (X1, . . . , X|T (i)|)).
9: end for

Algorithm 2 ALLOCATIONTREE (T, r)

Require: Tree T with root vertex r.
1: Let r cut the cake into n = |T | equal parts (A1, . . . , An)

with respect to her valuation.
2: Run ALGTREE (T, r, (A1, . . . , An)).

Theorem 2. For any n-node tree T with root r, Algorithm
ALLOCATIONTREE (T, r) outputs an allocation that is envy-
free on T with O(n2) cuts.

Proof. We will prove this by induction on the height of the
tree. The base case is when the tree has only one vertex, the
root r. In this case n = 1 and the algorithm simply gives the
whole set A1 to r, and the envy-free property holds trivially.
Now we assume that the theorem holds for trees of height d
and will prove it for any tree T of height d+ 1. First, the root

r receives exactly 1/n as she cuts the cake into n equal pieces
(in Algorithm ALLOCATIONTREE) and gets one of them (in
line 5 of Algorithm ALGTREE). In addition, in r’s valuation,
each child i (of r) gets |T (i)|/n fraction of the total utility
(the first for loop in Algorithm ALGTREE), and cuts it into
|T (i)| equal pieces (with respect to r’s valuation, in line 7
in Algorithm ALGTREE) and finally gets one of them. So r
thinks that child i’s share is also worth 1/n utility, same as
hers. Thus r does not envy any of her children.

Also note that all children of r pick pieces before r does,
so each child i values her part Si at least |T (i)| times of what
r gets. Then the second for loop in Algorithm ALGTREE
cuts this part into |T (i)| equal pieces (with respect to child
i’s valuation, in line 7 in Algorithm ALGTREE). Since child
i gets one of these pieces (in line 5 of the recursive call of
Algorithm ALGTREE) she views this piece at least 1

|T (i)| ·
|T (i)| = 1 times what r gets. Namely, child i does not envy
root r.

Among vertices inside each subtree rooted at child i of r,
no envy occurs by the inductive hypothesis. Putting every-
thing together, we can see that there is no envy between any
pair of connected vertices.

Finally we analyze the number of cuts of the algorithm.
Recall that AUSTINCUT (i, j, n, S) makes at most 2n cuts.
When each vertex u is being processed in ALGTREE, it
makes at most

∑
i:child of u 2|Ti| ≤ 2n cuts. Thus in total the

algorithm requires O(n2) cuts.

4 Proportionality on Descendant Graphs
We first define descendant graphs formally.

Definition 4. An undirected graphG = (V,E) is called a de-
scendant graph on a rooted tree T , if T is a spanning tree ofG,
and there exists a vertex r such that for any two vertices i and
j, (i, j) ∈ E if and only if (i, j) is an ancestor-descendant
pair on tree T rooted at r.

In other words, a descendant graphG of a rooted tree T can
be obtained from T by connecting all of ancestor-descendant
pairs.

(a) a tree T with the top-
most node being its root

(b) the descendant graph
on T

Figure 1: A 7-node tree and its descendant graph

We now present an algorithm that produces a proportional
allocation on descendant graphs. The idea of the algorithm
can be described as a process of collecting and distributing:

We start with the root vertex holding the whole cake, and pro-
cess the tree in top-down fashion. Each vertex v, when being
processed, applies a three-step procedure. (1) Collect phase:
agent v collects all cake pieces that she has received (from her
ancestors); (2) Cut phase: agent v cuts these cakes into f(v)
equal pieces according to her own evaluation, for some func-
tion f(v) to be defined later; (3) Distribute phase: let each
descendant of v pick certain number of these pieces that they
value the highest.

To formally describe the algorithm, we shall need the fol-
lowing notation. For a vertex v ∈ T , let d(v) denote the depth
of vertex v in tree T (i.e. the number of edges on the unique
path from v to the root), d = maxv d(v) denote the depth of
T .

We then define a function f : T → N as

f(v) =

(
d(v) + |T (v)|
d(v) + 1

)
· d!. (1)

We first make some easy observations from this definition.

• When d(v) ≥ 1, d(v) divides f(v). This guarantees that
in the algorithm described below, each distribute step re-
allocates an integral number of slices.

• f(r) = |T | · d! for root r of the tree.

• f(v) = d! for every leaf v of the tree.

Proposition 3. Function f(v) satisfies

f(v) = d! +
∑

u∈T (v)
u6=v

f(u)

d(u)
(2)

Proof. Define g(v) = f(v)
d! . Thus g(v) = d(v)+|T (v)|

d(v)+1 .
For each vertex v, we have

∑
u∈T (v)
u 6=v

g(u)

d(u)
=

∑
u∈T (v)
u6=v

1

d(u)

(
d(u) + |T (u)|
d(u) + 1

)

=
∑

u∈T (v)
u 6=v

(
1

d(u) + 1
+

|T (u)|
d(u)(d(u) + 1)

)

=
∑

u∈T (v)
u 6=v

(
1

d(u) + 1
+

∑
u′∈T (u) 1

d(u)(d(u) + 1)

)

=
∑

u∈T (v)
u 6=v

1

d(u) + 1
+

∑
u∈T (v)
u 6=v

∑
u′∈T (u)

1

d(u)(d(u) + 1)

=
∑

u∈T (v)
u 6=v

1

d(u) + 1
+

∑
u′∈T (v)
u′ 6=v

∑
u∈T (v)
u6=v

u′∈T (u)

1

d(u)(d(u) + 1)

︸ ︷︷ ︸
X

.

Now let us take a closer look at term X . Note that it is
summed over all vertices u at the path between v(exclusive)

and u′(inclusive). These vertices have depth d(v) + 1, d(v) +
2, . . . , d(u′) in tree T , respectively. Thus we have

X =

d(u′)∑
k=d(v)+1

1

k(k + 1)
=

d(u′)∑
k=d(v)+1

(
1

k
− 1

k + 1

)
=

1

d(v) + 1
− 1

d(u′) + 1
.

Plugging this back to the previous formula gives∑
u∈T (v)
u6=v

1

d(u) + 1
+

∑
u′∈T (v)
u′ 6=v

(
1

d(v) + 1
− 1

d(u′) + 1

)

=
∑

u∈T (v)
u6=v

1

d(v) + 1
=
|T (v)| − 1

d(v) + 1
.

Therefore,

1 +
∑

u∈T (v)
u 6=v

g(u)

d(u)
=
d(v) + |T (v)|
d(v) + 1

= g(v).

To summarize, we just showed

g(v) = 1 +
∑

u∈T (v)
u6=v

g(u)

d(u)
.

Multiplying both sides by d! completes the proof.

The proportional allocation algorithm is formally pre-
sented as below.

Algorithm 3 ALGDESCENDANTGRAPH (G)

Require: Descendant graph G of tree T and root vertex r,
size of tree n, depth of tree d

1: for u ∈ T in increasing order of d(u) do
// collect and cut phase:

2: Let Xu be the union of all cake pieces that vertex u
possesses

3: SliceXu into f(u) equal piecesXu
1 , . . . X

u
f(u) accord-

ing to u’s evaluation function
// distribute phase:

4: for v ∈ T (u)− {u} in increasing order of d(v) do
5: Among all the remaining pieces of Xu

1 , . . . , X
u
f(u),

agent v takes f(v)/d(v) pieces that she values the
highest.

6: end for
7: end for

Figure 2 illustrates the f values and the execution of the
algorithm on a simple 5-node tree.

From the algorithm description and equations (1) and (2),
it is easy to observe the following properties on the number
of cake slices during the algorithm.

Properties:
(1) Every agent v, except the root of the tree, received f(v)

pieces of the cake in total from her ancestors.
(2) Every agent will have exactly d! slices of cake in her

possession after the algorithm terminates.

Theorem 4. For any n-node descendant graph G of a tree,
ALGDESCENDANTGRAPH (G) outputs an allocation that is
proportional on G with at most n2 · d! cuts.

Proof. First note that the root r cuts the cake into |T | · d!
equal pieces and finally gets d! of them, so its value is 1/|T |
fraction of that of the whole cake. As the root connects to
all nodes in the graph, it achieves exactly the average of its
neighbors.

Now we consider an arbitrary node v of depth at least 1.
Let N(v) be the set of v’s neighbors. Furthermore, let Na(v)
be the set of v’s ancestors in T , and Nd(v) the set of v’s de-
scendants in T . It is clear that N(v) = Na(v) ∪Nd(v). Also
note that, as G is a descendant graph, Nd(v) = T (v) \ {v}.

Let Av be the final allocation of agent v at the end of the
algorithm. We are interested in S =

⋃
i∈N(v)Ai, the union

of all pieces of cake belonging to agents in N(v). Note that
S consists of the following two components:
• Those held by v’s ancestors: Each Au for u ∈ Na(v)

contains d! slices from {Xu
i }i=1,...,f(u). These are the

leftover slices after the distribute phase of agent u.
• Those held by v’s descendants:

⋃
w∈Nd(v)

Aw consists
of two parts:

1. The slices from {Xu
i } distributed by agent u ∈

Na(v) in their distribute phase to agents in Nd(v).
For each u ∈ Na(v), each agent w ∈ Nd(v) picks
f(w)
d(w) slices from {Xu

i }. In total, agent u distributes∑
w∈Nd(v)

f(w)
d(w) slices of cake to agents in Nd(v).

From Eq (2), this number equals to f(v)− d!.
2. The f(v)−d! slices from {Xv

i } distributed by agent
v in her distribute phase to her descendants. Note
that Xv comes from all ancestors u.

Note that each ancestor u of v has her collection Xu dis-
tributed first to v, then to v’s descendants, and finally to u
herself. Denote these parts by Suv , Sud and Suu , respectively.
Agent v later distributes exactly f(v)−d!

f(v) fraction of Suv to its
descents, and keeps d!

f(v) fraction of Suv to herself. Let us de-
note these two parts by Suvd and Suvv , respectively. To avoid
potential confusion of notation, we use αv to denote the val-
uation function of agent v. We will show the following in-
equality.

αv(S
u
vv) ≥

αv(S
u
u) + αv(S

u
d) + αv(S

u
vd)

d(v) + T (v)− 1
. (3)

Once this is shown for all ancestors u of v, we can sum these
inequalities over all ancestors u and obtain

αv(Av) ≥
αv(Sa) + αv(Sd) + αv(Svd)

d(v) + T (v)− 1
, (4)

10

2 4

2 2

(a) f values

10

2 4

1

1 ⇒

2

2 4

1 1

1 1

⇒

2

2 2

2 2

(b) execution

Figure 2: f values of and execution of Algorithm 3 on a simple 5-node tree.

where we used the facts that
• Av =]uSuvv is what v finally has, where the notation
]u stands for the disjoint union over all ancestors u of
v.
• Sa =]uSuu is the part of cake that v’s ancestors collec-

tively have,
• Sd =]uSud is the set of pieces that v’s ancestors give to
v’s descendants, and
• Svd =]uSuvd is the set of pieces that v gives to its de-

scendants.
Note that the numerator in the right hand side of Eq. (4) is ex-
actly the total value of N(v), and the denominator is exactly
the size of N(v). Thus the inequality is actually

αv(Av) ≥ αv(N(v))/|N(v)|,
as the proportionality requires.

So it remains to prove Eq. (3). We will examine the four
sets involved in this inequality one by one, and represent or
bound them all in terms of αv(Suv).
• αv(Suvv) = αv(S

u
v) · d!/f(v), as v divides Suv into f(v)

equal pieces and takes d! of them.

• αv(S
u
u)

d! ≤ αv(S
u
v)

f(v)/d(v) , as v takes f(v)/d(v) pieces of
{Xu

i : i ∈ [f(u)]} before u is left with d! pieces.

• αv(S
u
d)

f(v)−d! ≤
αv(S

u
v)

f(v)/d(v) , as v takes f(v)/d(v) pieces of
{Xu

i : i ∈ [f(u)]} before its descendants collectively
take (f(v)− d!) pieces.

• αv(Suvd) = αv(S
u
v) · (f(v) − d!)/f(v) as v divides Suv

into f(v) equal pieces and pass (f(v) − d!) of them to
descendants.

Putting these four (in)equalities and the definition of f(v) in
Eq. (1) together, one can easily verify Eq. (3). This completes
the proof of the proportionality.

For the number of cuts, each agent v, when being pro-
cessed, makes f(v) cuts in the cut phase. In total the algo-
rithm requires

∑
v f(v) ≤ n · f(r) ≤ n2 · d! cuts.

Note that though the number of cuts required here is expo-
nential, this singly exponential bound is much better than the
one for the general protocol in [Aziz and Mackenzie, 2016a].

5 Conclusion
This paper introduces a graphical framework for fair alloca-
tion of divisible good, defines envy-freeness and proportion-
ality on a graph, and proposes an envy-free allocation algo-
rithm on trees and a proportional allocation algorithm on de-
scendant graphs. The framework opens new research direc-
tions in developing simple and efficient algorithms that pro-
duce fair allocations under important special graph structures.

Acknowledgments
We thank Ariel Procaccia and Nisarg Shah for pointing
out [Chevaleyre et al., 2007; Todo et al., 2011], and an anony-
mous reviewer for pointing out [Abebe et al., 2016] to us.

References
[Abebe et al., 2016] Rediet Abebe, Jon Kleinberg, and

David Parkes. Fair division via social comparison. arXiv,
(1611.06589), 2016.

[Austin, 1982] AK Austin. Sharing a cake. The Mathemati-
cal Gazette, 66(437):212–215, 1982.

[Aziz and Mackenzie, 2016a] Haris Aziz and Simon
Mackenzie. A discrete and bounded envy-free cake
cutting protocol for any number of agents. FOCS, 2016.

[Aziz and Mackenzie, 2016b] Haris Aziz and Simon
Mackenzie. A discrete and bounded envy-free cake
cutting protocol for four agents. STOC, 2016.

[Barbanel and Brams, 2004] Julius B Barbanel and Steven J
Brams. Cake division with minimal cuts: envy-free proce-
dures for three persons, four persons, and beyond. Mathe-
matical Social Sciences, 48(3):251–269, 2004.

[Brams and Taylor, 1995] Steven J Brams and Alan D Tay-
lor. An envy-free cake division protocol. American Math-
ematical Monthly, 102(1):9–18, 1995.

[Brams and Taylor, 1996] Steven J Brams and Alan D Tay-
lor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[Brams et al., 1997] Steven J Brams, Alan D Taylor, and
William Zwicker. A moving-knife solution to the four-
person envy-free cake-division problem. Proceedings
of the american mathematical society, 125(2):547–554,
1997.

[Chevaleyre et al., 2007] Yann Chevaleyre, Ulle Endriss,
Nicolas Maudet, et al. Allocating goods on a graph to
eliminate envy. Institute for Logic, Language and Compu-
tation (ILLC), University of Amsterdam, 2007.

[Dubins and Spanier, 1961] Lester E Dubins and Edwin H.
Spanier. How to cut a cake fairly. American Mathematical
Monthly, 68:1–17, 1961.

[Edmonds and Pruhs, 2006] Jeff Edmonds and Kirk Pruhs.
Cake cutting really is not a piece of cake. In Proceed-
ings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 271–278. Society for Industrial
and Applied Mathematics, 2006.

[Even and Paz, 1984] Shimon Even and Azaria Paz. A note
on cake cutting. Discrete Applied Mathematics, 7(3):285–
296, 1984.

[Mankiw, 2014] N. Gregory Mankiw. Principles of Microe-
conomics. Cengage Learning, 2014.

[Procaccia, 2009] Ariel D Procaccia. Thou shalt covet thy
neighbor’s cake. In IJCAI, volume 9, pages 239–244,
2009.

[Procaccia, 2013] Ariel D Procaccia. Cake cutting: Not just
child’s play. Communications of the ACM, 2013.

[Procaccia, 2015] Ariel D Procaccia. Cake cutting algo-
rithms. In Handbook of Computational Social Choice,
chapter 13. Citeseer, 2015.

[Robertson and Webb, 1998] Jack Robertson and William
Webb. Cake-Cutting Algorithms: Be Fair if You Can. Pe-
ters/CRC Press, 1998.

[Su, 1999] Francis Edward Su. Rental harmony: Sperner’s
lemma in fair division. American Mathematical Monthly,
pages 930–942, 1999.

[Todo et al., 2011] Taiki Todo, Runcong Li, Xuemei Hu,
Takayuki Mouri, Atsushi Iwasaki, and Makoto Yokoo.
Generalizing envy-freeness toward group of agents. In IJ-
CAI Proceedings-International Joint Conference on Artifi-
cial Intelligence, volume 22, page 386, 2011.

[Woeginger and Sgall, 2007] Gerhard J Woeginger and Jiřı́
Sgall. On the complexity of cake cutting. Discrete Op-
timization, 4(2):213–220, 2007.

