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ABSTRACT
Selecting a subset of candidates with various attributes under fair-
ness constraints has been attracting considerable attention from the
AI community, with applications ranging from school admissions to
committee selections. The fairness constraints are usually captured
by absolute upper bounds and/or lower bounds on the number of
selected candidates in specific attributes. In many scenarios, how-
ever, the total number of selected candidates is not predetermined.
It is, therefore, more natural to express these fairness constraints
in terms of proportions of the final selection size. In this paper, we
study the proportional candidate selection problem, where the goal
is to select a subset of candidates with maximum cardinality while
meeting certain proportional fairness constraints. We first analyze
the computational complexity of the problem and show strong inap-
proximability results. Next, we investigate the algorithmic aspects
of the problem in two directions. First, by treating the proportional
fairness constraints as soft constraints, we devise two polynomial-
time algorithms that could return (near) optimal solutions with
bounded violations on each fairness constraint. Second, we design
an exact algorithm with a fast running time in practice. Simulations
based on both synthetic and publicly available data confirm the
effectiveness and efficiency of our proposed algorithms.
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1 INTRODUCTION
The problem of selecting a collection of alternatives from a larger
pool has a wide range of applications in the AI realm, ranging from
qualified school admissions [1, 2, 10, 13, 14, 18, 19] to representative
program committee selections [3, 7, 8, 11, 12, 20, 24]. To ensure
sufficient representation of minorities, a number of recent research
turn their attention to the issue of fairness. In the literature, the
fairness constraints are usually defined based on attributes (or types)
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Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

of candidates [7, 8]. Consider forming a program committee for
an AI conference, for example. In order to ensure fairness among
different sub-areas, one may want to diversify the selection and
make sure that at least a certain number of senior members are
selected in each sub-area. Formally speaking, consider a set of
n candidates and a set of m characterization attributes such as
expertise, gender, or region. Each candidate is associated with some
attributes. Then the fairness constraints on the selected candidate
set S require that given non-negative integers lj and uj , S should
contain at least lj and/or at most uj candidates for each attribute
j ∈ [m].

However, in many scenarios, the fairness constraints expressed
using absolute values are inadequate. Take school enrollment as
an example [9]. In 1989, each school in the city of White Plains
(New York) was required to have the same proportions of Blacks,
Hispanics, and “Others” (which includes Whites and Asians). The
plan allowed for a discrepancy among schools of only 5 percent.
Translating this requirement to fairness upper bound constraints
with absolute numbers, it (roughly) means that a school of capacity
1,000 can have at most about 350 students from each racial category.
However, this translation relies on a critical assumption that the
school will always be fully allocated, which is often not the case in
real life. For example, the enrollment has dropped from 426,215 in
2000 to about 350,535 in 2013 observed by Chicago Public Schools,
resulting in almost 50 percent of the schools being half-empty. If
the school of capacity 1,000 ends up only enrolling 500 students,
the absolute-valued fairness constraints may lead to a worst-case
of 0 students enrolled in a specific category! This situation may
render the fairness requirement null and void and lead to a clearly
undesirable situation.

In this paper, we investigate this issue by looking at the pro-
portional candidate selection problem, where the goal is to select a
subset of candidates while satisfying certain proportional fairness
constraints. Specifically, the proportional fairness constraints re-
quire that, for every attribute j ∈ [m], the selected candidate set S
has at least α j fraction and at most βj fraction of candidates that
possess this attribute. Note that the proportional constraints can
be trivially satisfied by selecting an empty set. Instead, we are in-
terested in finding a feasible set of maximum size under an overall
capacity constraint.

1.1 Our Contributions
We present both hardness and algorithmic results for the propor-
tional candidate selection problem in this paper. In Section 3, we
first consider the computational complexity of the problem. Our
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first result is a hardness result on finding even a non-empty feasible
solution.

Theorem 1.1 (NP-hardness of feasibility). It is NP-hard to
check whether there is a nonempty feasible solution of the proportional
candidate selection problem.

Consequently, this leads to the following strong inapproximabil-
ity result of the optimization problem.

Corollary 1.2 (Inapproximability). The proportional candidate
selection problem is NP-hard to approximate within any ratio γ ≥ 1.

Given the intractability of the proportional candidate selection
problem, it naturally leads to two algorithmic questions:
• Can we devise a polynomial time algorithm if we treat the
fairness constraints soft (e.g., each proportional fairness con-
straint can be violated by a small additive/multiplicative
factor)?
• Can we design time-efficient algorithm that runs fast in
practice even though the worst-case running time remains
exponential?

In this paper we answer both questions in the affirmative, and
our proposed algorithms are verified through various experiments
in Section 5.

Algorithms with Soft Constraints. We first give a randomized
rounding algorithm in Section 4.1:

Theorem 1.3 (Informal). Under mild conditions, for some 0 <
ϵ < 1, with positive probability our randomized algorithm produces a
solution with size at least 1−ϵ fraction of the optimum size while each
constraint is violated by at most a multiplicative ratio of (1+ϵ)/(1−ϵ).

The algorithm utilizes randomized rounding of the linear pro-
gramming relaxation, and the approximation is guaranteed by the
concentration property using Chernoff bounds.

Then, in Section 4.2 we give another polynomial time algorithm
that returns a solution with bounded additive violations on all
fairness constraints. More specifically, we have the following:

Theorem 1.4 (Informal). Our deterministic algorithm produces a
solution with size at least the optimum solution while each constraint
is violated by at most an additive error of 2∆ + 1, where ∆ is the
maximum number of attributes that a candidate can have.

The algorithm makes use of the iterative method (see [21]) de-
veloped for solving many combinatorial optimization problems.

Exact Solution. In the second direction, we focus on exact al-
gorithms to the proportional candidate selection problem in Sec-
tion 4.3. A commonly used method in practice is to formulate the
NP-hard problem as an Integer Linear Programming (ILP) and di-
rectly apply an ILP solver to solve it. While in our algorithm, we
first enumerate the possible value of the optimum solution, and
solve a “constant” version of the problem for each of our guess. Intu-
itively, this straightforward decomposition can reduce the number
of nonzero coefficients in the ILP, which leads to faster implemen-
tation in practice. Moreover, we propose an iterative framework
that guesses the optimum solution in a more efficient way, leading
to fewer iterations of solving the “constant” versions.

1.2 Related Works
There is a growing literature in computational social choice on
the fairness (or distributional) issue. In particular, some previous
works considered the assignment andmatchingmechanisms subject
to either lower- or upper-bound constraints on different types of
objects [1, 2, 4–6, 10, 13, 14, 18, 19, 22, 23]. Most of these works
made use of absolute values in their lower- and/or upper-bound
covariants, which have distinct difference with our model where
proportional fairness constraints are imposed. The only exception
is the work by Nguyen and Vohra [22] where their model only deals
with the special case that each candidate only has one attribute. Our
model is more general in the sense that we allow each candidate to
possess multiple attributes.

Another related line of research on fairness (or diversity) con-
straints is on the multiwinner voting problem [3, 7, 8, 20]. In the
standard setting of the multiwinner voting problem, the winning
sets are required to have exactly a fixed number of k candidates.
Thus it is natural to use absolute values, instead of proportions,
to capture the fairness constraints. Some researchers also noticed
that the number of winners could be variable in some real-world
scenarios [12, 16, 24]. However, none of these works addressed the
proportional fairness constraints.

2 PRELIMINARIES
Consider a set C of n candidates and a set P of m properties (or
attributes) where each candidate i possesses a set of properties
Pi ⊆ P . Moreover, let ∆ be the maximum number of properties that
a candidate can possess, i.e., ∆ = maxi ∈C |Pi |. We use “attributes”
and “properties” interchangeably in this paper.

We first define the proportional fairness constraints. Denote
®α = {α1, . . . ,αm } and ®β = {β1, . . . , βm } where 0 ≤ α j ≤ βj ≤ 1
for all j ∈ [m].

Definition 2.1. Given candidate set C and ®α , ®β , a subset C ′ ⊆ C
of candidates is said to satisfy the proportional fairness constraints
with ®α and ®β if for each property j ∈ P , the number of candidates
in C ′ that have property j is at least α j |C ′ | and at most βj |C ′ |, i.e.,

α j |C
′ | ≤ |{i ∈ C ′ | j ∈ Pi }| ≤ βj |C

′ |.

Now we are ready to define our main problem.

Definition 2.2. Given fairness parameters ®α , ®β and cardinality
threshold k , the Proportional Candidate Selection Problem aims to
find a subset of candidates C ′ of maximum size, such that |C ′ | ≤ k
and C ′ satisfies all proportional fairness constraints. We denote
|C ′ | ≤ k as the cardinality constraint.

Integer Linear Programming formulation. Let pi j = 1 if candidate
i has attribute j and pi j = 0 otherwise. The proportional candidate
selection problem can be easily formulated as the following ILP:

max.
∑
i ∈C

xi (1)

s. t. α j
∑
i ∈C

xi ≤
∑
i ∈C

pi jxi ≤ βj
∑
i ∈C

xi ∀j ∈ P , (2)∑
i ∈C

xi ≤ k (3)

xi ∈ {0, 1} ∀i ∈ C . (4)
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Here xi is a binary variable that represents whether or not candidate
i is selected in the solution. The natural linear relaxation of ILP
(1-4), which is denoted by LP (1-4), is to replace xi = {0, 1} with
xi ∈ [0, 1] for each element i ∈ C in Constraint (4). We also denote
OPT1−4 and LP1−4 as optimum values of ILP (1-4) and LP (1-4),
respectively. It is clear that LP1−4 ≥ OPT1−4. Similar notations can
be defined analogously for other ILPs.

3 HARDNESS RESULTS
We investigate the computational complexity of the proportional
candidate selection problem and show hardness results in this sec-
tion.

Given the NP-hardness of the general candidate selection prob-
lem with absolute-valued constraints, it is not surprising that the
proportional candidate selection problem is also NP-hard. In the
following we show an even stronger claim: We prove that it is
NP-hard even to decide whether there exists a nonempty feasible
solution.

Theorem 1.1. It is NP-hard to check whether there is a nonempty
feasible solution of the proportional candidate selection problem.

Our proof idea is as follows.Wewill construct a problem instance,
in which all the feasible solutions are restricted to have value either
0 or a specific nonzero number (say, k ′). Then we will show that,
even knowing the value of k ′, it is NP-hard to decide whether there
exists a feasible solution with value k ′ for this instance.

We are ready to prove Theorem 1.1:

Proof of Theorem 1.1. We reduce the NP-hard problem of Ex-
act Cover by 3-Sets (X3C) [15] to our proportional candidate selec-
tion problem. Given a set F of 3k1 elements and a collection T of
k2 triples (i.e., three-element subsets of F ), the X3C problem asks
whether there exists a sub-collection T ′ of T with size k1 such that
every element in F appears in exactly one triple in T ′.

Given an X3C instance, we construct our proportional candidate
selection problem instance as follows. For each element and each
triple in the X3C problem, we have a corresponding property j in P
and a corresponding candidate i that has exactly 3 properties in C .
We additionally have a special candidate i∗ and a special property
j∗ where i∗ only has a single property j∗ and j∗ is only possessed by
a single candidate i∗. Thus we have |P | = 3k1 + 1 and |C | = k2 + 1.
Let α j = βj = 1/(k1 + 1) for all j ∈ P . This implies that we require
each property is contained in exactly 1/(k1 + 1) fraction of the size
of selected candidates (i.e., the inequalities in Constraint (2) become
equalities for all properties).

Given the construction, we show that every nonempty solution
to the proportional candidate selection problem must

(1) contain the candidate i∗ with property j∗; and
(2) have value of k1 + 1.

The reason is as follows. Let C ′ be a feasible solution of size k ′ > 0.
The correctness of part (1) can be easily seen as candidate i∗ is the
only candidate with property j∗ and α j∗ = 1/(k1 + 1) > 0.

Next we prove part (2) using the counting argument. We focus on
the properties in P \ {j∗}. Since each candidate except i∗ has exactly
3 properties by construction and i∗ ∈ C ′ by part (1), all candidates
in C ′ \ {i∗} will have 3(|C ′ | − 1) = 3(k ′ − 1) properties (counting
multiplicity) in total. On the other hand, since α j = βj = 1/(k1 + 1)

for all j ∈ P , every property in P \ {j∗} must be possessed by exactly
k ′/(k1 + 1) candidates in C ′ \ {i∗}. Therefore the total number of
properties (counting multiplicity) possessed by all candidates in
C ′ \ {i∗} is (|P | − 1) · k ′/(k1 + 1) = 3k1 · k ′/(k1 + 1). Thus we have
3(k ′ − 1) = 3k1 · k ′/(k1 + 1), which implies that k ′ = k1 + 1.

Since each property in this feasible solution is possessed by
exactly k ′/(k1 + 1) = 1 candidate in C ′. A nonempty solution C ′ to
the proportional candidate selection problem thus implies an exact
cover C ′ \ {i∗} of X3C.

On the other hand, given an exact cover T ′ for an instance of
X3C, it is easy to see that T ′ ∪ {i∗} is a feasible solution to the
corresponding instance of the proportional candidate selection
problem. This concludes the reduction and the proof of this theorem.

□

Furthermore, we have the following inapproximability result for
proportional candidate selection problem, which can be directly
derived from Theorem 1.1.

Corollary 1.2 (Inapproximability). The proportional candidate
selection problem is NP-hard to approximate within any ratio γ ≥ 1.

Proof. Suppose that we have a γ -approximate algorithm A for
some γ ≥ 1. It is easy to see that we can utilize A to distinguish
whether there exists a nonempty feasible solution for any instance:
Report ‘yes’ if A returns a nonempty solution and ‘no’ otherwise.
This contradicts Theorem 1.1 and completes our proof. □

FPT-Algorithm with respect to m. We remark that the number
of propertiesm is a variable in the hardness proof of Theorem 1.1.
When m is fixed, the proportional candidate selection problem
admits a fixed-parameter tractable (FPT) algorithm with respect to
m. Specifically, given a problem instance, we can guess the optimum
value from n to 0, and with each guess transform the problem into
another problem with constant fairness constraints, i.e., lower- and
upper-bound covariants that correspond to fairness constraints
are absolute numbers. For this “constant” version of the problem,
Bredereck et al. [7] (Theorem 10 in their work) showed an FPT-
algorithmwith respect tom via solving a mixed ILP with 2m integer
variables. However, the algorithm hasm as the exponent in its time
complexity. Withm as large as 6 in our experiments in Section 5, the
algorithm cannot terminate in reasonable time for most instances.
Thus we do not find such an FPT-algorithm applicable in real-world
scenarios and view it more of theoretical interest.

4 ALGORITHMS
In this section we present our algorithmic results. We devise two
polynomial time approximation algorithms in Sections 4.1 and 4.2,
at the expense of having bounded multiplicative and additive viola-
tions on proportional fairness constraints respectively. Then Sec-
tion 4.3 gives an algorithm based on the “guess-and-verify” strategy
to solve the problem exactly.

4.1 Randomized Algorithm
Our randomized algorithm RandRounding follows the classic
methodology of randomized rounding. In particular, the algorithm
consists of two major steps. In the first step, RandRounding solves
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LP (1-4) and obtains an optimal fractional solution x∗ with opti-
mum value LP1−4. The second step applies standard randomized
rounding to round x∗ to an integral solution x̂ , i.e., for each i , we
set x̂i = 1 with probability x∗i ; 0 with probability 1 − x∗i . Let the
size of x̂ be ALG. For convenience, we use LP and OPT to denote
LP1−4 and OPT1−4 in this subsection, respectively.

In the following we show that the rounded integral solution x̂
is close to the actual optimal solution with high probability. We
restate the result of Theorem 1.3 in a formal way:

Theorem 4.1. For any
√
3 ln(2m + 3)/minj α jOPT ≤ ϵ < 1, with

positive probability, the output of Algorithm RandRounding satisfies
(1) ALG ≥ (1 − ϵ)OPT,
(2) the cardinality constraint |C ′ | ≤ k is violated by a multiplica-

tive ratio of no more than (1 + ϵ), and
(3) each proportional fairness constraint is violated by a multi-

plicative ratio of no more than (1+ϵ)/(1−ϵ), i.e., α j 1−ϵ1+ϵ ALG ≤∑
i pi j x̂i ≤ βj

1+ϵ
1−ϵ ALG for all j ∈ P .

Theorem 4.1 can be easily proved by applying Chernoff bounds
where the details are omitted due to the page limit.

We note that in real-world applications, the violation factor ϵ is
usually rather small, since there are usually very few number of
properties to consider, i.e.m is usually a very small number, and
the the number of candidates (and potentially the value of OPT) is
often relatively large.

4.2 Iterative Algorithm
We now present another algorithm, denoted by Iterative, with
soft constraints which returns a solution with bounded additive
violations on each fairness constraints. We restate the result of
Theorem 1.4 in a formal way:

Theorem 4.2. Algorithm Iterative returns a solution with value
ALG for the proportional candidate selection problem such that

(1) ALG ≥ OPT1−4, and
(2) each proportional fairness constraint is violated by an additive

factor of no more than 2∆ + 1.

The general idea of our approach is as follows. We first transform
ILP (1-4) to another ILP formulation and show that a “good” solution
to the new formulation is also a “good” one to ILP (1-4). Then we
solve the new ILP formulation using the iterative method [17, 21].

Step 1: Transformation. Let x∗ be a solution that corresponds to
LP1−4. We also let fj = ⌊α j

∑
i ∈C x∗i ⌋ and дj = ⌈βj

∑
i ∈C x∗i ⌉ for

each j ∈ P , and let f0 = ⌊
∑
i ∈C x∗i ⌋ and д0 = ⌈

∑
i ∈C x∗i ⌉.

max.
∑
i ∈C

xi (5)

s. t. fj ≤
∑
i ∈C

pi jxi ≤ дj ∀j ∈ P , (6)

f0 ≤
∑
i ∈C

xi ≤ д0 (7)

xi ∈ {0, 1} ∀i ∈ C . (8)

Note that in this transformed ILP, we replace the cardinality con-
straint, i.e., Constraint (3), in ILP (1-4) with Constraint (12) which
will be useful for our analysis later.

We next show a relation between ILP (1-4) and ILP (10-13).

Lemma 4.3. Suppose we have an algorithm A that returns an
integral solution y for ILP (10-13) such that:
•
∑
i ∈C yi ≥ LP10−13,

• f0 ≤
∑
i ∈C yi ≤ д0, and

• there is an additive violation of at most s on the fairness con-
straints (Constraint (11)), i.e.,

fj − s ≤
∑
i ∈C

pi jyi ≤ дj + s ∀j ∈ P .

Then the integral solution y produced by A is a solution to ILP
(1-4) satisfying:

(1)
∑
i ∈C yi ≥ OPT1−4,

(2) ⌊
∑
i ∈C x∗i ⌋ ≤

∑
i ∈C yi ≤ ⌈

∑
i ∈C x∗i ⌉ ≤ k , and

(3) there is an additive violation of at most s + 2 on the fairness
constraints (Constraint (2)), i.e.,

α j
∑
i ∈C

yi − s − 2 ≤
∑
i ∈C

pi jyi ≤ βj
∑
i ∈C

yi + s + 2 ∀j ∈ P .

Proof. Part 1 is straightforward since it is obvious to see that
x∗ (an optimal solution to LP1−4) is a feasible solution for LP10−13.
Part 2 is a direct consequence of the property of solution x∗ and
Algorithm A.

We focus on proving Part 3. Fix a property j ∈ P . By Algorithm
A, we have∑

i ∈C
pi jyi ≤ ⌈βj

∑
i ∈C

x∗i ⌉ + s ≤ βj
∑
i ∈C

x∗i + s + 1

≤ βj (⌊
∑
i ∈C

x∗i ⌋ + 1) + s + 1 ≤ βj ⌊
∑
i ∈C

x∗i ⌋ + s + 2

≤ βj
∑
i ∈C

yi + s + 2,

where the fourth inequality follows as βj ≤ 1 and the last inequality
is due to the property of Algorithm A. Similarly, we also have∑
i ∈C pi jyi ≥ α j

∑
i ∈C yi − s − 2, which completes the proof of

Lemma 4.3. □

Step 2: Iterative Method. Guided by the relation explored in
Lemma 4.3, we now focus on solving ILP (10-13). Before show-
ing the algorithm, we first give a characterization of extreme point
solutions of LP (10-13). We next present an important lemma which
is the core of the iterative method [21]:

Lemma 4.4 (Rank Lemma [21]). Let P = {x | Ax ≥ b,x ≥ 0}
and let x be an extreme point solution of P such that xi > 0 for each i .
Then any maximal number of linearly independent tight constraints
of the form Aix = bi for some row i of A equals the number of
variables.

Let j∀ be a special property such that all candidates have this
property j∀, where the corresponding constraint is shown as Con-
straint (12). The following lemma is then a direct application of
the Rank Lemma (Lemma 4.4) which gives the characterization of
extreme point solutions of LP (10-13):

Lemma 4.5. For any extreme point solution x to LP (10-13) with
0 < xi < 1 for each i ∈ C , there existsW ⊆ P ∪ {j∀} such that

(1) each constraint that corresponds toW is tight, i.e.,
• if j ∈W ∩ P ,

∑
i ∈C pi jxi equals either fj or дj ;

• otherwise, i.e., j = j∀, ∑i ∈C xi equals either f0 or д0.
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Algorithm 1 Iterative
1: Initialize yi ← 0 for all i .
2: while the current LP (10-13) is not empty do
3: Find an extreme point optimal solution x for LP (10-13).
4: For each candidate i with xi = 0, delete i from C . Update LP

(10-13).
5: For each candidate i with xi = 1, delete i fromC , set yi ← 1,

and decrease f0, д0, and fj and дj for each property j ∈ Pi
by 1, respectively. Update LP (10-13).

6: For each property j, delete j from P if the current number
of candidates that have property j is at most 2∆ − 1, i.e.,
|{i ∈ C | j ∈ Pi }| ≤ 2∆ − 1. Update LP (10-13).

7: return y

(2) The constraints corresponding toW are linearly independent.
(3) |W | = |C |.

Now we are ready to present Iterative (Algorithm 1) where the
corresponding result is shown in Theorem 4.6.

Theorem 4.6. Algorithm Iterative returns a solution y for ILP
(10-13) such that:
•
∑
i ∈C yi ≥ LP10−13,

• ⌊
∑
i ∈C x∗i ⌋ ≤

∑
i ∈C yi ≤ ⌈

∑
i ∈C x∗i ⌉, and

• there is an additive violation of at most 2∆ − 1 on the fairness
constraints (Constraint (11)), i.e., ∀j ∈ p,
⌊α j

∑
i ∈C

x∗i ⌋ − 2∆ + 1 ≤
∑
i ∈C

pi jyi ≤ ⌈βj
∑
i ∈C

x∗i ⌉ + 2∆ − 1.

Proof. Algorithm Iterative processes in iterations where we
get a (strictly) smaller LP after each iteration. In the following we
will show that in each iteration, either we can set some variables to
0 or 1 in the original LP, or at least one constraint can be removed.

First we show that this theorem holds if Iterative terminates
successfully. First, observe that we update the linear program in
Steps 4-5 according to whether xi = 0 or 1 such that the residual
linear programming solution (current LP solution restricted to those
xi ’s with value in the range of (0, 1)) remains a feasible solution for
the modified linear program in the next iteration. This implies that
the size of the current solution y plus the size of the LP solution,
i.e.,

∑
i ∈C yi + xi is always feasible with respect to f0 and д0 in the

original LP during the algorithm. Also, in Step 6 when we remove
a fairness constraint, the current LP solution remains a feasible
solution. Therefore the size of the current solution y, i.e.,

∑
i ∈C yi

plus the size of the LP solution does not decrease in any iteration,
so at the final step the size of y is at least the cost of the first LP
solution, which is at least LP10−13. Moreover, since we only remove
a fairness constraint of a property when it is possessed by at most
2∆ − 1 candidates, the fairness constraints are violated by at most
2∆ − 1.

Thus it remains to show that Algorithm 1 always terminates
successfully. That is, it can always either find a candidate i with
xi = 0 in Step 4 or xi = 1 in Step 5, or finds a property j such that
there are at most 2∆ − 1 candidates with property j in the current
candidate set, i.e., |{i ∈ C | j ∈ Pi }| ≤ 2∆ − 1, in Step 6.

Suppose by contradiction that none of the above conditions holds.
Then we have 0 < xi < 1 for each i ∈ C and |{i ∈ C | j ∈ Pi }| ≥ 2∆

for each j ∈ P . We show the contradiction via a counting argument.
We assign 2∆ tokens to each candidate i ∈ C for a total of 2∆|C |
tokens. For each candidate i , we redistribute one token to each
property j ∈ Pi , and ∆ tokens to property j∀. This can be done
because each candidate has at most ∆ properties. Next, we will
show that the constraints inW can collect 2∆|W | tokens in total
while there are still some tokens left. This would imply |C | > |W |
which contradicts to Lemma 4.5.

For each constraint j ∈W ∩ P , it collects at least 2∆ tokens since
|{i ∈ C | j ∈ Pi }| ≥ 2∆. On the other hand, property j∀ collects
∆|C | tokens. We then consider two cases:
Case (1).W ⊆ P . In this case, we know thatW collects at least
2∆|W | tokens and property j∀ collects ∆|C | tokens. Since we have
at most 2∆|C | tokens in total, this contradicts Part 3 of Lemma 4.5.
Case (2). |W ∩ P | = |W | − 1. We know thatW ∩ P collects at least
2∆|W ∩ P | = 2∆(|W | − 1) tokens and property j∀ collects ∆|C |
tokens.

• If |C | > 2, this contradicts to Part 3 of Lemma 4.5.
• If |C | < 2, we note that |C | , 0 since the current LP (10-13)
is not empty as in line 2. Hence |C | = 1. By assumption we
have 0 < xi < 1 for each i ∈ C , and f0,д0 are integers, this
contradicts Part 1 of Lemma 4.5 where

∑
i ∈C xi should be

equal to either f0 or д0.
• If |C | = 2, this means that each candidate in C has exactly ∆
properties since otherwise we already have the contradiction
to Part 3 of Lemma 4.5. Then it is easy to see that for each i ,
we have

∑
j ∈W ∩P pi j = ∆ ·1which shows linear dependence

to Constraint (12). Hence, we have the desired contradiction
to Part 2 of Lemma 4.5.

□

By Theorem 4.6 and Lemma 4.3, we complete the proof of Theo-
rem 4.2.

Note that both RandRounding and Iterative consider soft
constraints and may select more candidates than the cardinality
constraint. This is a feasible assumption in many applications, e.g.,
the school admission, which could tolerate a small violation on the
total number of selected candidates. When the application requires
hard cardinality constraint, we can randomly remove a few candi-
dates from the selected set to meet the requirement. Because the
violation is guaranteed to be small, these removals will not affect
other constraints significantly.

4.3 Exact Solution
Besides algorithmswith soft constraints, we also investigate exponential-
time exact algorithms that run fast in practice.

We first consider an equivalent ILP formulation (see ILP (14-18))
with only upper-bound fairness constraints. The transformation is
shown as follows. For each property j , we introduce a corresponding
property j ′ that is possessed by those candidates that do not have j
(i.e., j ′ ∈ Pi if and only if j < Pi for each i ∈ C). We collect these new
property j ′’s as P ′ and set βj′ = 1 − α j . For example, a requirement
that “at least 40 percent of selected candidates are female” can be
translated to “at most 60 percent of students are non-female”, where
non-female is a new attribute introduced. It is easy to check that
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Algorithm 2 GuessAndVerify
Input: an instance of proportional candidate selection

Output: a solution of value ALG
1: Set s1 ← ⌊LP⌋ be an initial upper bound on OPT.
2: Set p ← 1.
3: while true do
4: Solve the ILP (19-23) with s = sp , and denote the optimum

value and solution by yp and xp .
5: if yp ≥ sp then
6: return xp

7: else
8: Set sp+1 ← yp .
9: Set p ← p + 1.

ILP (14-18) with only upper-bound constraints is equivalent to the
original one (ILP (1-4)).

max.
∑
i ∈C

xi (9)

s. t.
∑
i ∈C

pi jxi ≤ βj
∑
i ∈C

xi ∀j ∈ P , (10)∑
i ∈C

pi jxi ≤ (1 − α j )
∑
i ∈C

xi ∀j ∈ P , (11)∑
i ∈C

xi ≤ k (12)

xi ∈ {0, 1} ∀i ∈ C . (13)

Here pi j = 1 if candidate i does not have attribute j, i.e., pi j = 0,
and pi j = 0 otherwise.

For our exact algorithm, we make use of a “guess-and-verify”
strategy, in which the following ILP is solved for different values
of guess s:

max.
∑
i ∈C

xi (14)

s. t.
∑
i ∈C

pi jxi ≤ βj · s ∀j ∈ P , (15)∑
i ∈C

pi jxi ≤ (1 − α j ) · s ∀j ∈ P , (16)∑
i ∈C

xi ≤ k (17)

xi ∈ {0, 1} ∀i ∈ C . (18)

For convenience, we use LP andOPT to denote LP1−4 andOPT1−4
below, respectively. The algorithm goes in iterations (lines 3-9) as
follows. For the p-th iteration, we first guess an upper bound sp on
OPT. To guarantee s1 is an initial upper bound, we set s1 ← ⌊LP⌋
in line 1 since we know ⌊LP⌋ ≥ OPT. Then we issue an ILP (19-23)
with s = sp to obtain the optimum solution yp (line 4). We next
consider the value of yp . If yp ≥ sp in lines 5-6, we immediately re-
turn xp as the optimum solution ALG. Otherwise, i.e., 0 ≤ yp < sp ,
in lines 7-9 we derive another guess sp+1 ← yp for the (p + 1)-st
iteration. Note that the case of yp ≥ sp in line 5 coincides with case
one of yp = sp , i.e., the case of yp > sp will not happen.

We note that one cannot simply adopt a binary search approach
for findingOPT, because the solution space is not monotone. That is,
a feasible solution with value s does not imply there exists feasible
solution with value s ′ < s .

We now claim the while loop of Algorithm 2 is processed in
finite number of iterations:

Lemma 4.7. The while loop (lines 3-9 of Algorithm 2) will terminate
in O(n) iterations.

Proof. Suppose that the while loop terminates after the t-th
iteration, i.e., ALG = yt . In other words, t is the first iteration that
satisfies yt ≥ st in lines 5-6. For all 1 < p < t , we will prove that
sp−1 > sp .

Consider a fixed iteration p such that 1 < p < t . Assume, to
the contrary, that sp−1 ≤ sp . We have sp = yp−1 by line 8 of
Algorithm GuessAndVerify. Thus sp−1 ≤ yp−1, which means that
the algorithm should terminate in the (p − 1)-st iteration due to
lines 5-6, a contradiction. Thus we know the sequence of {si } is
strictly decreasing.

We also know that there exists a trivial solution with value
0 of ILP (14-18). Suppose the q-th guess is sq = 0, then we have
yq = sq = 0which implies st ≥ 0. This also means that Algorithm 2
can always return a feasible solution. Moreover, we have s1 = k ,
wherek = O(n), as shown in line 1. Thuswe complete our proof. □

We next prove the correctness of Algorithm GuessAndVerify.

Lemma 4.8. Algorithm GuessAndVerify solves the proportional
candidate selection problem correctly.

Proof. Let st be the first guess such that st = yt . In other words,
Algorithm 2 returns yt as the optimum solution ALG in line 6. We
will show yt = OPT in the following.

Suppose that yt > OPT. Since st = yt , we know that yt corre-
sponds to a feasible solution for the problem which contradicts the
optimality of OPT.

Suppose that yt < OPT. Note that this case cannot happen with
OPT = 0 since yt ≥ 0. From the proof of Lemma 4.7, we have
s1 > s2 > · · · > st−1 > st ≥ 0. Thus there must exist a guess sj
such that sj ≥ OPT > sj+1 ≥ st where 1 ≤ j ≤ t − 1. We observe
that a larger guess implies a larger optimum value for ILP (19-23),
i.e., sa ≥ sb implies ya ≥ yb . Since sj ≥ OPT, we have yj ≥ y′opt
where y′opt is the optimum value of ILP (19-23) with guess OPT.
Then we conclude that y′opt ≥ OPT since, otherwise, it would
violate the fact that OPT is a feasible (and optimum) solution to the
proportional candidate selection problem. Moreover, according to
our algorithm, we have sj+1 = yj . Thus, sj+1 = yj ≥ y′opt ≥ OPT
which contradicts the assumption that OPT > sj+1. The lemma
follows. □

We remark that this framework is capable of solving the pro-
portional candidate selection problem as long as we have an exact
solution, either in polynomial or exponential time, to solve ILP
(19-23) at hand.

5 EXPERIMENTS
In this section we conduct empirical evaluations of our proposed al-
gorithms. Our experiments are partitioned into two parts based on
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Figure 1: Running time and output size (%) with different
number of attributes, respectively.
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Figure 2: Output size (%) with different gapγ and ℓ1 distances
respectively.
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Figure 3: Violation with different number of attributes and
gap γ respectively.

the data generation settings: the first one aims to test the sensitivi-
ties of our algorithms under different parameter settings through
the randomly generated data, and the other evaluates the perfor-
mance of our algorithms via a case study based on the real-world
data.
Experiment setups. We compare RandRounding (Section 4.1),
Iterative (Section 4.2), and GuessAndVerify (Section 4.3) with
the baseline method ILP-Generic, i.e., the ILP (1-4) is solved by a
standard ILP solver directly. All experiments ran on a computer with
Intel Xeon E5-2630v4 @2.2 GHz CPU and 64 GB RAM. Programs
were coded in Python 3.7, and all the ILPs and LPs were solved by
the Gurobi Optimizer (version 8.1.0). For all the tests, we perform
100 repeated runs per experiment and show the averages.

5.1 Sensitivity Analysis over Synthetic Data
First we evaluate the above four algorithms using the synthetic data.
In this experiment, for each attribute j, we first randomly generate
a probability pj and assign each candidate with this attribute with

probability pj independently. Then for the proportional constraints,
for each attribute j we randomly generate a pair of parameters α j
and βj such that their gap γ = α j − βj is fixed. The cardinality
threshold is set as the total number of candidates. That is, we do
not consider the cardinality constraint in these experiments. This
is because: (1) it simplifies the experiments as we already have
several dimensions of the parameters to consider; (2) according
to our previous study, determining a suitable value of cardinality
threshold k is dataset-specific: when k is too small, the number of
selected candidates always reaches k ; when k is too large, imposing
the cardinality constraint does not affect the current result.

We test our algorithms on a number of different problem in-
stances generated by varying the number of candidates, the num-
ber of attributes, as well as the gap γ between α j and βj for each
attribute j.
Experiment results. Figure 1 shows the running times and output
sizes in percentage (i.e., the output size over the problem size) of
different algorithms when the number of attributes varies from 3 to
7. One can see clear trends that when the number of attributes in-
creases, the running time increases while the output size decreases.
This is because the problem becomes harder to solve if we have
more attributes to deal with.

The left part of Figure 2 shows how the output size in percentage
(i.e., the output size over the problem size) of the algorithm changes
with regard to the gap γ . When γ increases, the fairness constraints
become easier to satisfy, which is reflected by the larger output size
of all algorithms.

We also plot the output size of our algorithms with regard to the
ℓ1-distance between pj and center of [α j , βj ], shown in the right
part of Figure 2. One can see that when this distance grows larger,
all algorithms can only select a significantly smaller fraction of the
candidates into the solution set.

Note that in Figures 1 and 2, the (average) output size of ILP-
Generic is smaller than that of GuessAndVerify. It is because in
the synthetic dataset, there exist “hard” instances for which ILP-
Generic does not return any (non-trivial) feasible solution within
the cut-off time (set as 30 seconds in our experiments). In such
situation, we simply use 0 (which is a trivial feasible solution) as
the size of the selected set, which clearly makes the average output
size smaller. On the other hand, our GuessAndVerify can finish
all instances within the cut-off time of 30 seconds.

Finally, because RandRounding and Iterative are approxima-
tion algorithms, their outputs may have violations over the fairness
constraints. We also summarize the average violation size of each
constraint of both algorithms in Figure 3. One can see that with
synthetic data, RandRounding actually has a smaller average vio-
lation than Iterative. But more importantly, both algorithms are
able to find solutions with very small violations compared to the
problem size. For example, with as many as 10,000 candidates, the
largest violation of a single constraint for both algorithms is only 5.

5.2 Case Study on University Enrollment Data
We provide a case study about student enrollment at UC Berkeley.
Background. Many universities consider fairness (or diversity)
as a priority issue in their enrollment process. For example, as
stated by UC Berkeley’s Strategic Plan for Equity, Inclusion, and
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Categories Attributes Proportions (%) α j (%) βj (%)

Gender Female 50 48 52
Male 50 48 52

Major

Col. Letters and Science 60 59 60
Col. Engineering 21 20 21

Col. Natural Resources 6 5 6
Col. Chemistry 4 4 5

Col. Environmental Design 4 4 5
Sch. Business 5 4 5

Region

Africa 2 2 100
East Asia and the Pacific 61 50 60

Europe and Eurasia 13 10 13
Near East 2 2 100

South and Central Asia 11 10 11
Western Hemisphere 11 10 11

Type
Undergraduate 51 50 51

Graduate 41 40 41
Transfer 8 7 8

Table 1: Dataset characterization and parameter setting.

Diversity, 1 a goal is to “create a critical mass of talented students
[...] that will fully represent California’s excellence and diversity.”
At present, UC Berkeley does not represent the diversity of the
state. Part of the work of the Division of Equity and Inclusion is to
help redress this lack of representation at UC Berkeley.
Data collection. We collect data based on the international stu-
dent enrollment report (2018) from UC Berkeley. 2 Each student is
characterized by four categories: Gender, Major, Region, and Type.
In our experiment, for each student, we randomly assign him/her
an attribute in each category using the attribute distribution of that
category. For proportional fairness constraints, we set each fairness
parameter α j , βj that is similar to the percentage of this attribute in
the corresponding category. We also omit the fairness constraints
for attributes that have small percentages in the dataset and relax
the lower-bounds in fairness constraints for some attribute that
has large proportion in its category. The cardinality threshold in
this experiment is simply set as the total number of candidates. See
Table 1 for the data statistics and fairness parameter setting.
Experiment results. Figure 4 shows the running times of different
algorithms with number of students ranging from 6,000 to 20,000.
One can see that all other three algorithms outperform the bench-
mark ILP-Generic algorithm by a clear margin. Both being exact
algorithms, and with 20,000 students, GuessAndVerify is 3-times
faster than the generic ILP-Generic algorithm. At the expense of
violating some fairness constraints, both RandRounding and It-
erative run very fast in practice. From the figure, one can also
observe an inconsistency of the running times for ILP-Generic
with different problem sizes. The reason to this phenomenon is
that the running time of “hard” problem instances, i.e., the one
that make ILP-Generic run out of time (we set 300s for the ILP
solver as the cut-off time), dominate the average running time of
ILP-Generic. For each problem size, ILP-Generic timeouts for at
least 29 and at most 46 (out of 100) instances. On the other hand,
the other three algorithms can finish every problem instance within
the cut-off time of 300s.
1https://diversity.berkeley.edu/reports-data/diversity-data-dashboard
2https://internationaloffice.berkeley.edu/sites/default/files/student-stats2018.pdf
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Figure 4: Running time with different problem size.

We also look at the maximum violations of RandRounding and
Iterative of each fairness constraint. With 20,000 students, the
maximum violations of Iterative and RandRounding are 5 and
3 respectively, both of which are rather small compared to the
theoretical bounds we derived in the paper.

6 CONCLUSIONS
In this paper, we study the proportional candidate selection problem
in which the fairness constraints are captured by the proportions
in terms of the final selection size. We provide both hardness and
algorithmic results for this problem. We also conduct experiments
over synthetic and real-world data to evaluate the performances of
our proposed algorithms.

A natural generalization of this problem considers the weighted
case where each candidate has a weight and one wants to maximize
the total weights of selected candidates. We remark that both Ran-
dRounding and Iterative can be easily modified to address this
variation while we leave the design of efficient exact algorithms
for the weighted case as an future work. Another interesting fu-
ture direction is to consider the incentives of the candidates to
reveal their true attributes in order to increase their chances to be
selected. In addition, a standard scenario of our problem setting
is the enrollment for a single school. In future research, it would
be interesting to look at assignment problems with proportional
fairness constraints for multiple schools.
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