
An Efficient Auction with Variable Reserve
Prices for Ridesourcing? ??

Chaoli Zhang1, Fan Wu1, and Xiaohui Bei2

1 Shanghai Jiao Tong University, Shanghai, China
{chaoli zhang, fwu}@sjtu.edu.cn

2 Nanyang Technological University, Singapore
xhbei@ntu.edu.sg

Abstract. Ridesourcing refers to the service that matches passengers
who need a car to personal drivers. In this work, we study an auction
model for ridesourcing that sells multiple items to unit-demand single-
parameter agents with variable reserve price constraints. In this model,
there is an externally imposed reserve price set for every item, and the
price is both item- and bidder-dependent. Such auctions can also find
applications in a number of other traditional and online markets, such
as ad auction or online laboring market.
Our main result is a truthful, individually rational, and computation-
ally efficient mechanism that respects the reserve price constraints and
always achieves at least half of the optimal social benefit (i.e., the sum
of the valuations of the winning agents). Furthermore, we show such
efficiency approximation is tight by proving that even without any com-
putational constraints, no truthful and individually rational mechanism
can achieve better than 2-approximation for social benefit maximiza-
tion. Finally, we evaluate the performance of our mechanism based on
real taxi-trace data. The empirical results show that our mechanism out-
performs other benchmark mechanisms in terms of both social benefit
and revenue.

Keywords: Ridesourcing· Reserve Prices Auction.

1 Introduction

Ridesourcing provides a wealth of efficiency and flexibility to urban transporta-
tion and has been injected new vigor in recent years due to the popularization
of smartphones3. More specifically, an online transportation network company
takes ride requests from passengers, and dispatches the available cars in the
nearby location to serve the passengers. There are two fundamental functions of
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such platforms: ride-matching (i.e., assigning the drivers to the passengers) and
pricing [7].

The above ridesourcing scenario can be modeled as a single-parameter auc-
tion design problem: each passenger has a single-parameter valuation for getting
a ride. As one of the classical mechanism design problems, auctions have been
widely studied as a powerful instrument for resource allocation due to their per-
ceived fairness and allocation efficiency. In addition, each potential ride has a
reserve price, usually set by the government as a regulation, so as to guaran-
tee the minimum profit from each ride and to prevent destructive competition,
which is determined mainly by the driver’s cost (i.e., fuel consumption and labor
time, etc) or some other factors of the driver (i.e., different drivers may have dif-
ferent critical values for a ride picking). Hence these reserve prices would depend
on not only the trip length, but the locations of the driver and the passenger,
as the driver needs to pick up the passenger before continuing their ride. It is
reasonable and necessary to set different reserve prices for different passengers
when they are to be allocated to different drivers.

Reserve price has been a salient feature in many single-parameter auctions
and many practical scenarios, such as online auction markets like eBay [3], either
to boost the revenue [16], or to favor a particular group of agents [15]. However,
in most previous works, the reserve price is set by the auctioneer and only simple
and symmetric price rules are considered. That is, either the auctioned item has
a common reserve price for all agents, or in certain cases, though the price can
be set differently for different agents, different units of the same item always
have the same reserve price.

In this paper, we study a simple auction model that captures the most salient
aspect of the ridesourcing problem above. Our goal is to design mechanisms that
is truthful and individually rational, with the objective of maximizing the social
benefit of the allocation, defined as the sum of valuations of all agents who win
an item individually.

1.1 Our Results

Our results in this paper are listed as follows.

– We propose a truthful, individually rational, and 2-approximation mecha-
nism in terms of social benefit for the auctions with variable reserve prices.

– We also exploit limitations of auctions with variable reserve prices, and show
that when restricted to truthful and individually rational mechanisms, the
2-approximation social benefit guarantee of our mechanism is optimal.

– Finally, we demonstrate the performance of our mechanism in a case study
that considers taxi matching using real taxi-trace data. Experiment results
show that our mechanism outperforms other benchmark mechanisms by a
clear margin in terms of both social benefit and revenue.

The rest of the paper is organized as follows. In Section 2, we review related
works. In Section 3, we show the preliminaries for our work. In Section 4, we
give our truthful approximation mechanism and show that the 2-approximation
achieved by our mechanism is actually tight. In Section 5, we report the evalu-
ation results. We make a conclusion in Section 6.
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2 Related Work

Many works have been done for ridesourcing (sometimes also called ridesharing)
in recent years [12, 11, 1, 10, 20, 5, 17, 13, 21, 6, 9]. Due to the complexity of the
ridesourcing problem, they focused on many different issues, scheduling, pricing,
market analysis and so on.

Some of them which are based on market-based mechanisms design are most
related with our work. [13] modified the VCG payment scheme proposed in [17]
to adapt it to the dynamic requirements of the open-world ridesourcing problem.
[21] showed that the deficit generated by the VCG mechanism can be arbitrarily
large and proposed less efficient alternatives based on fixed prices and two-sided
reserve prices that have deficit control. [6] proposed a coalition game for rides-
ourcing problem. [9] focused on sharing the resulting cost among passengers
which is also different from the pricing problem in ridesourcing.

A majority of the literature on auction design have restricted their study
to the single-parameter framework. Such a framework includes many practical
scenarios, such as single-item auctions [4], digital goods auctions [8], multicast
auctions [19], to name a few.

In many single-parameter auctions, reserve price are set to boost the rev-
enue [16], or to favor a particular group of agents [15]. Although the reserve
price constraints are widely used and play an important role to achieve certain
design goal, they also bring challenges to the mechanism design field, as the
reserve price constraints restrict the space of the possible allocations. Different
from many existing works, variable reserve prices are considered in this paper.

We combine the classical greedy weighted maximum matching design tech-
nique [18] with the Myerson’s Lemma [16, 2] in a creative way to design the
novel truthful and individually rational mechanism for social benefit maximiza-
tion with the variable reserve prices constraints and the approximation ratio
achieved by the mechanism we design is actually tight in theory.

3 Preliminary

We present the ridesharing problem model in a general auction framework. Con-
sider a multi-unit auction with m items and n unit-demand, single-parameter
agents. Each agent i has a private value vi for getting an item. The auction
collects agent bids (b1, ..., bn), and outputs an allocation A of the items to the
agents as well as payment pi for each agent i. We assume agents have quasi-linear
utilities defined as ui = vi − pi if i wins an item, and ui = 0 otherwise. Further,
there is an externally imposed reserve price p̄ij for agent i to buy item j. That
is, when item j is assigned to agent i, the payment pi of agent i should not be
less than p̄ij . We assume that reserve prices p̄ij are public information, but the
valuation vi is private information to agent i.

We aim to design auctions with the following properties.

– Truthfulness (also known as incentive compatibility or strategy-proofness):
for every agent i and fixed bids of other agents b−i, agent i can always
maximize her utility by reporting bi = vi.

– Individual Rationality : for each agent i whose value is vi, assume that she
is charged pi (pi = 0 if she loses the auction) when bidding vi, then vi − pi

must be non-negative.
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– Computational Efficiency : the allocation and payments can be computed in
polynomial time.

Objectives. We study the following objectives in this paper. Let W(A) be the
set of agents who are individually assigned to an item in allocation A.

– The social benefit of an allocation A is defined as the sum of valuations of
all winning agents SB(A) =

∑
i∈W(A) vi.

– The revenue of the mechanism is defined as REV (A) =
∑

i∈W(A) pi. In this
paper we focus mainly on the social benefit objective.

Due to the reserve price constraints, the notion of “optimal social benefit”
needs to be defined carefully. Because an allocation that simply maximizes the
social benefit may assign a certain item to an agent whose valuation is smaller
than its corresponding reserve price. Such an allocation is unfavored because it
does not admit any pricing scheme that satisfies both reserve price constraints
and individual rationality. Thus, in this paper we define the optimal social benefit
as

SBOPT = max{SB(A) | vi(j) ≥ p̄ij if A assigns item j to i}.

A mechanism is said to have c-approximation if it always outputs an alloca-
tion with social benefit no less than SBOPT

c .

3.1 Discussion on VCG-type Mechanisms

The Vickrey-Clarke-Groves (VCG) mechanism is a cornerstone method in mech-
anism design when it comes to the optimization of global objective. It is a truth-
ful mechanism that achieves optimal global objective and can be applied to a
variety of domains. However, it does not take reserve prices into consideration,
hence the resulting payments might violate these constraints.

One might also be tempted to consider variants of the VCG mechanism. One
possibility is to restrict the domain of feasible allocations to the ones in which
every winning agent has valuation not less than the corresponding reserve price.
The reserve price constraints can then be satisfied. Such change, however, might
break the truthfulness of the mechanism.
Example 1. Consider two agents {1, 2} and two items {a, b}, with variable reserve
prices p̄1a = p̄2a = 1, p̄1b = ∞, p̄2b = 2 and v1 = 1, v2 = 2. When reporting
truthfully, the VCG-type mechanism will assign item a to agent 1 and item b to
agent 2, and charge them 1 and 2 respectively. However, agent 2 can get item a
with price 1 if she misreports her valuation as 1.5.

Another variant is to view the reserve price as the “cost” of allocating an
item to an agent, and use the allocation that maximizes the total valuation minus
the allocation costs as the resulting allocation. Such mechanism could preserve
truthfulness. However, it no longer provides any social benefit guarantee.
Example 2. Consider two agents {1, 2} and one item a, which reserve prices
p̄1a = 0, p̄2a = 1 and valuations v1 = ε, v2 = 1. The mechanism that maximizes
the sum of valuation minus the reserve prices would allocate the item to agent
1 because ε− 0 > 1− 1. While the optimal social benefit, when defined as only
the sum of valuations, is obviously 1.
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3.2 Interpretation in Ridesourcing

The above model describes a general framework that can be applied to many ap-
plications. Below we demonstrate its interpretation in the ridesourcing scenario.

In the basic online ridesourcing problem [7], passengers requiring rides are
the agents and available drivers offering rides can be considered as the items.
Passenger i reports her request θi = {loi , ldi , bi} to the platform where loi and ldi
are the origin and destination of her required ride respectively, bi is agent i’s
valuation for the ride.

The platform collects the location information lj of each driver j through
GPS, and calculates the cost of assigning driver j to passenger i as the reserve
price p̄ij . For instance, one way to define p̄ij is to let p̄ij = pu ∗ (dis(lj , loi ) +
dis(loi , l

d
i )), where dis(m,n) denotes the distance between two points m and n,

and pu denotes the specific fuel consumption of the car. Then the platform needs
to produce an assignment of the drivers to the passengers and the corresponding
payment that each passenger pays to her driver.

The goal of the platform is to design a mechanism that motivates passengers
to report their true valuations, and ensures that the payment of each passenger
always covers the corresponding reserve price, and simultaneously maximizing
the social benefit or revenue of the allocation.

4 A Truthful Approximation Mechanism
In this section, we present and analyze a truthful, individually rational and 2-
approximation mechanism for social benefit maximization in the variable reserve
price setting.

In the following, we consider a weighted bipartite graph G = (VA, VI , E),
where VA is a subset of the agents, VI is a subset of the items. Every edge
(i, j) ∈ E is associated with the corresponding reserve price p̄ij . We will add or
remove vertices and edges of G during the process of the mechanism.

We define a left-perfect matching in G as follows.

Definition 1. A matching M with size |VA| in G is called a left-perfect match-
ing in G.

Clearly, a left-perfect matching is also a maximum matching in G.
The intuition behind our mechanism is that, at any moment, we only consider

the agents with bids higher than p̄ and edges with reserve prices below or equal
p̄, for some threshold value p̄. We continuously decrease the value of p̄. Such
process will add agents to the graph while removing edges. We will maintain the
following invariants throughout the mechanism.
Invariants:

1. Graph G always has a left-perfect matching.
2. There exists a threshold value p̄, such that every agent in G has valuation

not less than p̄, and every edge in G has reserve price below or equal p̄.

Each agent added to the graph will pay the smallest threshold value of p̄ with
which the graph still has a left-perfect matching.

The details of the mechanism are shown below.
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Mechanism 1. Eros: a truthful, individually rational, 2-approximation
mechanism.

Input: reported bids (b1, . . . , bn);

1 Let C be the union set of all agents and edges, the value v(e) for element e in C
is defined as its bid if e is an agent, and its reserve price if e is an edge.

2 Remove all edges (i, j) with bi < p̄ij in C.
3 Let VA = ∅, VI be the set of all items.
4 Let bipartite graph G = (VA, VI , E = ∅).
5 for each element e in C in decreasing order of v(e) do
6 if e is an edge (i, j) in G and i ∈ VA then
7 Remove (i, j) from G.
8 if G no longer has a left-perfect matching then
9 Assign item j to agent i, let i pay p̄ij .

10 Remove i and j from G.

11 if e is an agent i then
12 if G ∪ {i} has a left-perfect matching then
13 Add vertex i and its incident edges to G.

14 else
15 for each agent i′ in G do
16 Let M be a left-perfect matching in G
17 if G \ {i′} ∪ {i} has a left-perfect matching then
18 Assign agent i′ her matched item j in M , let i′ pay bi.
19 Remove i′ and j from G.
20 i remains unallocated.

Lemma 1. The invariants hold throughout the run of the mechanism.

Theorem 1. Eros is a truthful, individually rational, and computationally ef-
ficient mechanism with 2-approximation for social benefit maximization.

We prove each part of Theorem 1 separately in the following subsections.

4.1 Truthfulness

Our mechanism design problem belongs to the single-parameter domain (i.e., the
private information of every agent is a single value). By the well known charac-
terization of truthful mechanisms in single-parameter domains [16], it suffices to
show that our mechanism satisfies the following two properties.

– Allocation Monotonicity. For every agent i and fixed bids b−i by other agents,
i can win an item when bidding bi, then she can still win if she bids any value
b′i > bi.

– Critical Payment Rule. The payment charged to each winning agent equals
to the minimal bid for this agent to win. This value is also called the critical
bid of this agent.
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Allocation Monotonicity.

Lemma 2. The allocation rule in Eros is monotone.

Proof. First, it is easy to see from the mechanism that, every agent that is added
to graph G in line 11 of the mechanism will end up being assigned an item in the
output allocation. Thus the allocation monotonicity rule is equivalent of saying
that, if agent i can be added to G with bid bi, i will still be added to G if she
bids any value b′i > bi, assuming all other bids remain the same.

We focus on the agent adding process in Eros. Without loss of generality,
assume that k(k′) agents, denoted as Ak(Ak′), have been added to G before
agent i bidding bi(b′i) is considered at moment ti(t′i). Note that Ak(Ak′) does
not only contain agents in G at ti(t′i), but also the ones that have been matched
and removed from G before ti(t′i).

When processing elements (i.e., agents and edges) in the union set C in de-
creasing order of their values, agent i will be processed earlier when bidding b′i
than bidding bi. Thus we have t′i ≤ ti. With all the other information remaining
unchanged, it is easy to see that Ak′ ⊆ Ak. Furthermore, if graph (Ak∪{i}, I, E)
has a left-perfect matching, graph (Ak′∪{i}, I, E) will have a left-perfect match-
ing as well. Therefore when bidding b′i, agent i will still be added to graph G,
and thus be assigned an item in the final mechanism outcome.

Critical-bid Payment. Next we show the payment specified by our mechanism
coincides with the critical bid of the monotone allocation rule.

Lemma 3. The payment of a winning agent i is her critical bid in Eros.

Proof. Here we show that the payment of each assigned agent is the minimum
bid that she needs to report to be added in G. That is, the agent will lose the
item if she bids anything less than that payment.

There are two places in the mechanism where items are assigned to agents.
We consider them separately.

1. When the element e being processed is an edge (i, j) (line 8,9).
Here agent i is assigned item j and pays p̄ij . Let G be the bipartite graph at
this moment. Based on line 7 condition, we know that G \ {(i, j)} does not
have a left-perfect matching.
Now assume that agent i bids b′i = p̄ij − ε for some small ε > 0. Note that
in this case, edge (i, j) will be removed from C at line 2 of the mechanism.
Therefore when agent i is being processed, adding it will give us exactly the
graph G \ {(i, j)}. Because it does not have a left-perfect matching, we know
in this case agent i will not be added to G and hence will be left unassigned.

2. When the element e being processed is an agent i (line 15,16).
Here agent i′ is assigned her matched item in matching M and pays bi, where
i is the agent failing to be added to G.
Assume i′ bids bi − ε. According to the mechanism, the following events will
happen.
(a) Agent i will be picked in C before agent i′.
(b) When processing agent i, she will be added to the graph since G\{i′}∪{i}

has a left-perfect matching.
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(c) After i is added, agent i′ will not be able to added to G any more when
processed. Because otherwise it would violate the condition that agent i
is not added to G with the original bidding.

We conclude that in this case, agent i′ will also not be assigned if she bids
below the payment.

Lemma 2 and Lemma 3 together imply the truthfulness of Eros.

4.2 Individual Rationality and Reserve Price Constraints

Individual rationality and reserve price constraints can be easily proved by the
invariant properties of the mechanism.

Lemma 4. Eros respects the reserve price constraints and is individually ra-
tional.

Proof. Note that at each iteration of the mechanism, the value of element e in C
is exactly the threshold value mentioned in Invariant 2. Furthermore, whenever
we assign an item j to an agent i in the iteration (at line 9 or line 18), the
payment charged to the agent is exactly this threshold value. Hence we always
have vi ≥ pi ≥ p̄ij . This proves both reserve price constraints and individual
rationality of the mechanism.

4.3 Approximation Ratio

To show the social benefit approximation of Eros, we relate the winning set of
agents to the outcome of the following simple greedy allocation algorithm.

Greedy Algorithm
Consider each agent i in decreasing order of vi, if there is an unassigned item j
with vi ≥ p̄ij , assign item j to agent i (if there are more than one such items,
pick an arbitrary one).

This is a variant of the greedy matching algorithm, which is known to achieve
2-approximation for social benefit maximization. The proof is omitted due to
space constraints.

Lemma 5. The Greedy Algorithm is a 2-approximation to the optimal social
benefit solution.

Next we will show that the allocation produced by Eros coincides with a
particular run of this greedy algorithm.

Lemma 6. Eros always achieves at least half of the optimal social benefit.

Proof. Let M be the matching output by our mechanism. We assume that this
matching is produced by the following process:
For each agent i in decreasing order of vi, if i ∈ M , assign agent i her matched
item inM . Otherwise discard this agent. To prove this allocation is 2-approximation,
it suffices to show that the above process is also a valid running process of the
greedy algorithm. That is, we want to show that for each agent i /∈ M , when
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i is considered in the greedy algorithm, there is no unassigned item j left with
vi ≥ p̄ij .

Assume by contradiction that we can find an unassigned item j with vi ≥ p̄ij

when processing agent i. This means that when processing agent i in line 11
of Eros, the graph G ∪ {i} will have a left-perfect matching M ∪ (i, j). Hence
according to the mechanism, agent i will be added to graph G at this step. How-
ever, we also observe that every agent added to the graph G in the mechanism
will all end up being assigned to an item. This contradicts the assumption that
i /∈M and proves the lemma.

4.4 Lower Bounds
In this subsection we focus on the lower bounds for the approximation ra-
tio of any truthful and individually rational mechanism. We show that the 2-
approximation achieved by our mechanism is actually tight in this model.

Theorem 2. There is no truthful and individually rational mechanism that can
achieve an approximate ratio better than 2 for social benefit maximization, even
with only two items.

Proof. We prove this theorem through a concrete counter example. Assume oth-
erwise that such a mechanism exists. We focus on the following 2 scenarios.

First, consider two agents {1, 2} and two items {a, b}, with variable reserve
prices p̄1a = p̄2a = 1, p̄1b = ∞, p̄2b = 1 + ε and v1 = 1, v2 = 1 + ε/2 where
ε > 0. Since neither agent can afford item b, and agent 2 has a higher value
than agent 1, the truthful mechanism must assign item a to agent 2 with price
p2 ∈ [1, 1 + ε/2] and leave item b unassigned.

Next, consider a similar case where from the above example we change the
value v2 from 1 + ε/2 to 1 + ε. Note that although agent 2 can now afford to
have item b, a truthful mechanism must still assign item a to agent 2 with price
p2 ∈ [1, 1 + ε/2] when they are bidding truthfully. This is becasue agent 2 can
always get this allocation by reporting b2 = 1 + ε/2, and this is always a better
result for agent 2 than assigning item b to her.

Note that in the later instance, the optimal social benefit is 2 + ε from
assigning item a to agent 1 and item b to agent 2. Hence any truthful and
individually rational mechanism cannot have approximation ratio better than
2+ε
1+ε , whose limit is 2 when ε→ 0.

5 Evaluation
We conduct experiments in a ridesourcing scenario on a real taxi-trace dataset to
evaluate the performance of our mechanism. Please refer to Section 3 “Example
in ridesourcing” paragraph for the model details.

5.1 Simulation Setup

Our experimental evaluation is based on a taxi-trace dataset of city Shanghai
in 2015. The data contains the locations of about 100 taxis in that city at a
particular time.

We then randomly sample the information of passengers [14]. For each pas-
senger i, her origin loi and destination ldi are randomly sampled from a uniform
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(a) Social Benefit for k = 1 (b) Social Benefit for k = 3 (c) Social Benefit for k = 5

Fig. 1: Social Benefit Comparison

(a) Revenue for k = 1 (b) Revenue for k = 3 (c) Revenue for k = 5

Fig. 2: Revenue Comparison

distribution over the main city area. Recall that the reserve price of assigning
taxi j to passenger i is p̄ij = pu ∗ (dis(lj , loi )+dis(loi , l

d
i )), where lj is the location

of taxi j, and pu is the specific fuel consumption of a car in that city. Note the
actual value of pu is not important since it is a common factor in all costs and
passenger valuations.

The individual valuation vi of each passenger i is sampled from a Gaussian
distribution over the interval 2µ ≥ vi ≥ 0 with mean µ = k ∗ pu ∗ dis(loi , ldi ) and
variance δ = 20. The idea is to let µ represent the standard taxi fare for the trip,
and use Gaussian distribution to model that with high probability a passenger
would be willing to pay a price close to that taxi fare. The taxi price is on average
5 times the gas or oil cost of the trip in the targeted city. In order to examine
the effects of different valuation distributions on the mechanism performance,
we run the entire set of experiments with three different values k = 1, 3, 5.

To investigate the influence of different levels of supply and demand on the
performance of each mechanism, we run all the aforementioned mechanisms with
different passenger quantities P, ranging from 70 to 200. For every value of P, we
simulate the mechanisms on 50 sets of passenger samples and take the average
result. Each data point is also plotted together with the 95% confidence interval.

5.2 Benchmark Mechanisms
To evaluate the performance of Eros, we compared Eros with several other
mechanisms.

– Greedy. We use this mechanism to model the simplest strategy of assigning
each passenger to its nearest car in a greedy fashion. The mechanism runs
as follows: Repeatedly pick passenger i and car j with the smallest distance
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dis(lj , loi ), offer this car to this passenger at price pi = p̄ij . If passenger i
accepts this offer (i.e., her bid is not less than this price), make the match
and remove this pair from the system. Otherwise mark passenger i as unas-
signed and remove her from the system (because under individual budget
balance condition this passenger cannot be assigned to any car). Clearly this
mechanism is truthful and individually rational.

– Surge. Surge pricing is a dynamic pricing strategy used by many online rides-
ourcing companies. It is an effective way to extract more revenue from the
discrepancy between demand and supply. Here we consider a very simple
version of this pricing strategy. Let α ≥ 1 be the surge factor. We simply
employ the Greedy mechanism described above, but replace the offered price
p̄ij by α · p̄ij . We vary the value of α from 1 to 5 and pick the allocation with
the largest revenue as our final allocation. Note that this is not a truthful
mechanism.

Finally, we use OPT to denote the optimal social benefit in each problem
instance. Note that as shown in Section 4.4, no truthful and individually rational
mechanism can always achieve optimal social benefit. Thus it only serves as an
upper bound of all mechanisms’ performances. Also note that when considering
revenue as the performance metric, the optimal social benefit still serves as a
(perhaps loose) upper bound on the possible revenue that any mechanism can
achieve.

5.3 Results
Figures 1(a), 1(b), 1(c) show the social benefit achieved by different mechanisms
with k = 1, 3, 5 respectively4. We can see from the results that our mechanism
outperforms all other mechanisms by a clear margin. In particular, when the
ratio between the number of passengers and the number of taxis is large, i.e.,
the market is in high demand, our mechanism achieves near optimal social benefit
most of the time, while the performances of Greedy and Surge start to drop down.

Figures 2(a), 2(b), 2(c) show the revenue comparisons between each mecha-
nism. Note that in this work we did not provide any theoretical analysis on the
revenue aspect of our mechanism. Yet empirical results show that our mecha-
nism is able to generate competitive revenue performance. In particular, when
the demand is high compared with the supply, our mechanism again outperforms
Surge, which is a non-truthful mechanism designed specifically for the purpose
of revenue extraction.

5.4 Discussion

From the experiments we can also form the following observations and discus-
sions.
Low Demand vs. High Demand. The discrepancy between supply and demand
plays an important role in different mechanisms. Note that as the number of
passengers increases, OPT also increases. However, such correlation is not re-
flected in Greedy and Surge. The reason is that these two mechanisms assign
cars to passengers based on the distances between them, hence they do not take
4 In Figure 1(a) Surge mechanism achieves optimal performance with surge factor
α = 1, i.e., it coincides with the Greedy mechanism. Thus its plot is not displayed
in the figure. The same is true also for Figure 2(a).
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advantage of the increasing number of high-valuation passengers. On the other
hand, our mechanism is able to exploit such discrepancy and picks passengers
selectively based on their valuations. This partially explains why our mechanism
always gives good performance in the cases with high demand.
Theory vs. Practice. In Section 4.4 we established a lower bound of 2 on the
social benefit approximation ratio for any truthful mechanisms in this model.
However, as the empirical results suggest, in practice one can usually go beyond
this lower bound and achieve much better social benefit. This is because practi-
cal data usually have special structures and properties. How to formally analyze
these properties from a theoretical point of view, and obtain better lower/upper
bounds for auctions in specific application domains is an interesting open ques-
tion in this area.

6 Conclusion and Future Work

In this paper, we study an mechanism design model for ridesourcing that allo-
cates cars to unit-demand single-parameter agents with variable reserve price
constraints. We give a truthful, individually rational, and computationally ef-
ficient mechanism that respects the reserve price constraints and achieves 2-
approximation for social benefit maximization. We further evaluate the perfor-
mance of our mechanism based on real taxi-trace data, and empirical results
show that our mechanism outperforms other benchmark mechanisms in terms
of both social benefit and revenue.

There are a number of future working directions that worth pursuing. First,
given the online nature of the ridesourcing application, an important challenge
is to design a dynamic online mechanism. Second, given the simplicity of our
mechanism, it would be interesting to know how it can be generalized to be
applied in other related domains.Third, appropriate design of the formulation of
the social benefit can make our mechanism be adapted to practical applications
with more interesting social objectives.
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