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Abstract

Online on-demand ridesourcing service has played a huge
role in transforming urban transportation. A central function
in most on-demand ridesourcing platforms is to dynamically
assign drivers to rider requests that could balance the request
waiting times and the driver pick-up distances. To deal with
the online nature of this problem, existing literature either
divides the time horizon into short windows and applies a static
offline assignment algorithm within each window or assumes
a fully online setting that makes decisions for each request
immediately upon its arrival. In this paper, we propose a more
realistic model for the driver-request assignment that bridges
the above two settings together. Our model allows the requests
to wait after their arrival but assumes that they may leave at
any time following a quitting function. Under this model, we
design an efficient algorithm for assigning available drivers
to requests in real-time. Our algorithm is able to incorporate
future estimated driver arrivals into consideration and make
strategic waiting and matching decisions that could balance the
waiting time and pick-up distance of the assignment. We prove
that our algorithm is optimal ex-ante in the single-request
setting, and demonstrate its effectiveness in the general multi-
request setting through experiments on both synthetic and
real-world datasets.

Introduction
On-demand ridesourcing has become a pillar in urban trans-
portation due to its efficiency and flexibility in connecting
available drivers with on-demand riders. One of the essen-
tial components for a successful ridesourcing service is the
real-time assignment of drivers to riding requests. However,
the dynamic nature of on-demand ridesourcing brings sev-
eral major challenges. More specifically, on a ridesourcing
platform, drivers and riding requests are constantly arriving
at unpredictable times. Upon the arrival of a riding request,
its driver assignment needs to be computed in a very short
time while considering the often conflicting objectives of
minimizing request’s waiting time, minimizing the driver’s
pick-up distance, as well as maximizing the number of served
requests. The research community has only recently started
to look at these problems, and many issues have not been
addressed in satisfactory by existing works.
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In the literature, there are mainly two approaches for solv-
ing the driver-request assignment problem. The first line of
works (Cordeau and Laporte 2007; Bei and Zhang 2018)
adopts a static and offline approach. That is, they focus on
a single snapshot of the system and aims to find an optimal
matching between all available drivers and the active requests
in the snapshot. When dealing with real-time assignments, a
common approach is then to divide the whole time horizon
into small intervals (say one minute per interval) and apply
the offline algorithm at the end of each interval (Anshelevich
et al. 2013; Alonso-Mora et al. 2017; Lesmana, Zhang, and
Bei 2019; Ke et al. 2020). With the information of all the
drivers and requests at hand, the algorithm is usually able to
find very efficient assignments through methods like maxi-
mum weight matching. However, in order to accumulate a
sufficiently large pool of drivers and requests, the platform
needs to set a long enough interval length, which will in turn
incur a large waiting cost for the requests. In addition, be-
cause all assignments are being made at the end of an interval,
requests that arrived at the beginning and at the end of an
interval will experience a significantly different amount of
waiting time. For example, a request arriving at the beginning
of a one-minute interval needs to wait for a whole minute be-
fore it can be assigned, even if there is a nearby driver waiting
at the very start. This will create significant inefficiency to
the assignment, as well as a very unbalanced user experience
for different riders, which will in turn harm the sustainability
of the platform in the long run.

A second approach applies a fully online model that re-
quires each request to be assigned (or rejected) immediately
after its arrival. This approach has the advantage of reducing
a request’s waiting time to essentially zero. There is also a
large body of literature on online matching from other do-
mains, such as online bipartite matching (Karp, Vazirani, and
Vazirani 1990; Mehta et al. 2007) and AdWords display (Ag-
garwal et al. 2011), from which the ridesourcing algorithm
could draw inspirations. On the other hand, by completely
removing the waiting time, the algorithm has to make haste
and local decisions which will compromise the efficiency of
the assignment, which we define as the distance between the
request and the assigned driver in the assignment. In particu-
lar, a request that is assigned right upon its arrival loses the
opportunity to be matched to closer drivers that might arrive
in the near future.
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From these two approaches, we can see a clear trade-off
between the request waiting time and the assignment quality.
In order to balance these two objectives, an ideal assignment
algorithm should sit in the middle of these two approaches.
That is, it should find the appropriate assignment time of a
request that could strike a right balance between waiting for
new drivers to emerge nearby and matching the request to ex-
isting drivers. This calls for a new driver-request assignment
model that could capture the trade-off between request wait-
ing time and assignment quality, together with an efficient
assignment algorithm that could assign requests to the right
drivers at the right time. These are the main objectives of this
paper.

Our Contribution
In this paper, we propose a new driver-request real-time as-
signment model. In this model, both drivers and riding re-
quests arrive in an online fashion, and the algorithm is al-
lowed to make driver-request assignments at any time. To
capture the waiting time and assignment quality trade-off,
we assume the cost of an assignment consists of two com-
ponents: the waiting cost, which is the time the request has
waited before it gets assigned, and the matching cost, which
is the pick-up distance between the request and its assigned
driver. In addition, we will also assume that while waiting,
a request might also quit and leave the platform at any time
according to a quitting probability function. If the request
leaves the platform unassigned, it will incur a quitting penalty.
This assumption captures the impatient nature of the riding
requests and makes the model more realistic. We also take a
data-aware view and assume the algorithm knows the arrival
distribution of the available drivers, which in practice can be
estimated from historical data.

Based on this model, our second contribution is an efficient
algorithm for assigning drivers to requests in real-time. At
the heart of our algorithm, we want to answer the follow-
ing question of a typical scenario: When there is an active
request and some drivers waiting, how long should the algo-
rithm wait in the hope of a better (i.e. closer) driver arriving
soon before assigning this request to the currently available
driver? To answer this question, we start from the simple
case with only a single request and show how to compute
the optimal waiting time thresholds when there are multiple
types of drivers with different arrival rates. Next, we use the
single-request algorithm as a building block to construct an
efficient algorithm for the general case with multiple hetero-
geneous requests and drivers. Our algorithm is efficient and
only requires a small polynomial update time for each arrival
event. We also demonstrate the effectiveness of our algo-
rithm through experiments on both synthetic and real-world
datasets.

Related Works
Driver-request assignment in ridesourcing has been studied
extensively in the literature across multiple disciplines. As
discussed above, most works can be categorized into the
offline static assignment setting and the online dynamic as-
signment setting.

On the offline front, in operation research, the problem
is under the name of dial-a-ride problem (DARP) and has
been studied in several works (Colorni and Righini 2001;
Coslovich, Pesenti, and Ukovich 2006; Cordeau and Laporte
2007). In computer science, the offline assignment prob-
lem has been considered in the context of ride-sharing (Bei
and Zhang 2018), efficiency and fairness balance (Lesmana,
Zhang, and Bei 2019), route optimization (Alonso-Mora et al.
2017). Many of these works also use the batch approach (i.e.
divide the time horizon into short intervals) to convert the
offline algorithm to solve the real-time assignment problem.

On the online front, several works have investigated the
online ridesourcing assignment problem (Lee et al. 2004;
Caramia et al. 2001; Bertsimas, Jaillet, and Martin 2019; Ma,
Zheng, and Wolfson 2013; Xu et al. 2018; Miao et al. 2016;
Dickerson et al. 2018b,a; Nanda et al. 2020). This problem
is also closely related to online bipartite matching (Karp,
Vazirani, and Vazirani 1990; Mehta et al. 2007; Aggarwal
et al. 2011) in which one side of the vertices arrive online. All
of these works require the request to be assigned immediately
upon its arrival. That is, there is no waiting time involved.

There are also works that allow vertices to quit during the
matching process. Huang et al. (2018, 2019) study an online
general graph matching model in which every arrival vertex
has a fixed deadline to be matched before it leaves the system.
Collina et al. (2020); Aouad and Saritaç (2020) consider a
general graph matching problem in which vertices arrive
and depart following given processes. A major difference
between these works and ours is they do not consider request
waiting time as part of the matching cost.

Ke et al. (2020); Xu et al. (2018); Feng, Gluzman, and Dai
(2021); Lowalekar, Varakantham, and Jaillet (2021) use rein-
forcement learning to solve different ridesourcing problems.
(Ke et al. 2020) consider a model which is similar to our
settings. However, their model still uses fixed time intervals
and can only make matches at the end of each interval, while
our model focuses on the real-time assignment.

Another related problem is the min-cost perfect matching
with delays (MCMD) model studied in (Emek, Kutten, and
Wattenhofer 2016; Azar, Chiplunkar, and Kaplan 2017; Azar
and Fanani 2020; Ashlagi et al. 2017). Similar to our model,
these works consider both waiting cost and matching cost
as part of their objectives. The main difference is that in
our model, only the request waiting time is counted while
they consider the waiting cost of all vertices. They also do
not allow vertices leaving the system voluntarily, which is
different from our assumption.

Finally, queueing model is another related model that
has been used for ridesourcing assignment problems be-
fore (Zhang and Pavone 2016; Zukerman 2013; Banerjee,
Johari, and Riquelme 2015).

Model
We consider a bipartite graph G0 = (R,D, E) that is known
to the algorithm. Here R = {r|1 ≤ r ≤ N} and D =
{d|1 ≤ d ≤M} are the type spaces of requests and drivers,
respectively, with |R| = N and |D| = M . E denotes the set
of allowed matches between requests and drivers. In other
words, a request of type r can be matched to a driver of
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type d if (r, d) ∈ E. We do not put any restrictions on the
structure of the graph and allow E to encode any physical or
performance-related constraints. In practice, usually requests
can only be matched to nearby drivers due to pick-up distance
constraints. This means G0 is usually a sparse graph. Each
edge (r, d) ∈ E is also associated with a cost crd. This cost
represents the time for the driver to pick up the request. We
consider an infinite time horizon starting from time 0, and a
fully online setting where vertices from both sides arrive at
different times.
Driver and Request Arrival. For each driver type d ∈ D,
the arrival of a driver of this type is independent of arrivals
of other types and follows a known random process. In this
paper, we limit our focus to the Poisson process with process
rate λd. This is a standard assumption for driver arrivals that
has been considered in many works (Collina et al. 2020;
Aouad and Saritaç 2020). After its arrival, the driver will stay
in the system until it is matched.

For each request type r ∈ R, we do not make any as-
sumptions on its arriving process and allow it to be arbitrary.
However, when a request of type r arrives, this request will
only be available for a period of time before it quits and
leaves the system. The length of time t that this request
stays in the system follows a quitting distribution F (t). More
specifically, if a request arrives at time t0, then F (t) denote
the probability that this request quits before time t0 + t. Let
f(t) = dF (t)

dt be the probability density function of F (t). We
make a natural assumption that F (t) is continuous and f(t)
is non-decreasing. That is, the requests are more likely to quit
the longer they have been waiting.
Matching and Matching Cost. Our goal is to design an
online algorithm that matches the requests and drivers in real
time as they arrive. Note that our setting differs from the
traditional online matching setting in that when a request or a
drive arrives, we are not required to immediately find a match
for it. Instead, we are allowed to match a request and a driver
at any time as long as they are both still in the system.

For every request i arrived in the system, it will either be
matched by the algorithm to some driver j at some time t, or
it will quit at some time tQi unmatched. In either case, this
request will incur two types of costs: a waiting cost and a
matching cost.

• The waiting cost is the waiting time of a request before it
is matched, or it quits. That is, if request i arrives at time
ti and is matched at time t, then the waiting cost is t− ti.
If the request i quits at time tQi without being matched to
any drivers, the waiting cost is tQi − ti.

• The matching cost is crd when the request i (of type r)
is matched to some driver j of type d. If the request i
quits without being matched to any drivers, it will incur
a fixed matching cost of cQr . We assume cQr > crd for all
(r, d) ∈ E.

The cost of a request is the sum of the waiting cost and the
matching cost. The goal of the algorithm is to minimize the
total cost of the matching, which is the sum of the costs of
all requests.

Single Request
We start off by considering a simplified model with the fol-
lowing assumption.

Assumption 0.1. There is a single request of type r arriving
at time 0 in the whole time horizon.

The reason for starting from this simplified setting is
twofold: first, it can provide us useful intuitions about what
should an optimal matching strategy look like, even in the
general case; second, the solution of this simple case can
also be used as a building block for the algorithms for the
general, multi-request case. In the following we will also call
this request r when the context is clear.

Assume there are M types of drivers, and type i driver
has a matching cost cri = bi. We assume without loss of
generality that b1 < b2 < · · · < bM < cq, where cq is the
quit cost of request r. We also assume the arrival rate of type i
driver is λi, and we denote the vector λ = (λ1, λ2, . . . , λM ).

First, observe that at any time when there are multiple
drivers of different types waiting, only the driver with the
smallest matching cost should be considered. Therefore,
throughout the process, we only needs to maintain two pieces
of information: the current time t and the best driver type m
that is currently available. We denote this state as s(t,m).

At state s(t,m), intuitively, the algorithm faces two
choices: wait or match. If the time is still early or the avail-
able driver m is far away, we may want to wait a bit to see
if a closer driver can arrive soon (unless m = 1 is already
the closest driver type, in which case the algorithm should
match r to this driver immediately). On the other hand, as
time grows, the probability of the request quitting will in-
crease, until it becomes large enough such that the chance
of receiving a quitting cost cq will outweigh the potential
benefits of waiting for a better driver. Then the algorithm
should simply match r to the type m driver.

Based on this intuition, we can see that the optimal
algorithm in this setting should be in the form of a pa-
rameterized threshold algorithm SINGLE-REQr(λ,T =
(T1, T2, . . . , TM+1)) described as below.1 Here Tm is the
threshold waiting time for state s(t,m), such that when
t < Tm, the algorithm should wait, and when the time
reaches Tm with no better driver arrived, the algorithm would
match the request to this type m driver. Note that if there is
better driver m′ < m arrived at time t′ before Tm, the algo-
rithm does not necessarily have to match r to this driver m′

immediately. Rather, it will transit to a new state s(t′,m′) and
use the new threshold waiting time Tm′ to decide whether to
continue waiting or not. 2 The pseudocode can be found in
Algorithm 1.

The remaining question boils down to how to choose the
threshold waiting times (T1, . . . , TM ) that is optimal for the
algorithm.

1Without loss of generality, we only focus on deterministic algo-
rithms here.

2For notational convenience, we define a new type M +1 driver
with cr(M+1) = ∞ to represent the state of no available drivers.
Clearly we would have TM+1 = ∞ because without any available
drivers, the request has no other options except waiting.
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Algorithm 1: Single Request and Multi Driver Types
SINGLE-REQr(λ,T )

Input: a single request r arrives at time 0;
M driver types with arrival rates λ = (λ1, . . . , λM );
Threshold T = (T1 = 0, T2, T3, . . . , TM , TM+1 =∞).

1: m←M + 1 // m represents the best available driver
type so far

2: while time t grows continuously starting from 0 do
3: if A type di driver arrives with i < m then
4: m← i
5: end if
6: if t ≥ Tm then
7: match request r to the dm driver
8: return
9: end if

10: end while

Finding the optimal threshold times T ∗. Next we pro-
vide a characterization of the optimal thresholds in algorithm
SINGLE-REQ for the case of a single request and multiple
driver types.
Theorem 1. With a single request r and M types of
drivers, the optimal algorithm is the threshold algorithm
SINGLE-REQr(λ,T = (T ∗

1 , . . . , T
∗
M+1)), where T ∗

j is the
smallest nonnegative value satisfies

q(T ∗
j ) ≥

∑j−1
i=1 λi(bj − bi)− 1

cq − bj
,

where q(t) = f(t)
1−F (t) is the probability density function that

the request quits conditioning on the request still being alive
at time t. If no such T ∗

j exists, then we set T ∗
j = ∞ which

means the algorithm will always wait no matter how long the
request has waited.

Proof. Consider the scenario in which j is currently the best
available driver type, and we are at time t = T ∗

j . Consider
the following two options.

• Option (1): assign request r to currently the best driver,
which will generate a cost of bj + t.

• Option (2): wait for a short time ∆, match r to any driver
with type i < j that arrives during time (t, t + ∆), and
assign r to the type j driver at time t + ∆ otherwise.
For this option, there are j events could happen in the
[t, t+∆] time interval: the request quits (with probability
∆q(t) + o(∆)) or a type di(i < j) driver arrives (with
probability ∆λi+o(∆)). Again we ignore the probability
that two or more such events happen within this short time
interval. If a driver of type i < j arrives, the algorithm will
assign r to this driver with a total cost of bi + t+O(∆).
In summary, the expected cost of this option is

t+∆
∑
i<j

λibi +∆q(t)cq

+

1−∆
∑
i<j

λi −∆q(t)

 (∆ + bj) + o(∆).

It is not hard to see that the optimal threshold T ∗
j should

be the smallest time t where the cost of option (1) becomes
smaller than the expected cost of option (2). This is because
the request’s quitting probability f(t) is non-decreasing.
Therefore, if matching dj at time t is better than matching
dj at time t+∆, it should also be better than matching dj at
any time afterwards. By letting ∆ approach 0, we have that
T ∗
j is the smallest value that satisfies

q(T ∗
j ) ≥

∑j−1
i=1 λi(bj − bi)− 1

cq − bj
.

In the following we give an intuitive explanation of this
theorem.

• cq − bj is the cost difference between request r quitting
and matching to a type dj driver. q(t) is the probability
density of quitting at time t. This means q(t)(cq − bj) is
the expected increase of cost if we choose to wait (for a
unit time period) but r quits during the period. Waiting
will also incur an additional unit of waiting cost. Overall,
compare to matching at time t, the downside of waiting is
q(t)(cq − bj) + 1.

• bj−bi is the cost difference between the request matching
to a type dj driver and matching to a type di driver. λi is
the probability density of the arriving distribution of type
di driver. Therefore, λi(bj − bi) is the expected decrease
of cost if we choose to wait and a type dj driver arrives
during the period.

When t < T ∗
j , we have q(t)(cq−bj)+1 <

∑
i<j λi(bj−bi).

In other words, the expected downside of waiting is less than
its upside. Therefore, we should continue waiting until t
reaches T ∗

j .
Extensions. In our model, we assume the waiting cost is ex-
actly the waiting time. We can generalize it to the setting that
the waiting cost is a function h(t) of waiting time t. Follow-
ing a similar analysis, when h(t) is a non-convex function,
one can show that the optimal algorithm is still SINGLE-REQ,
and the threshold time T ∗

j is the smallest nonnegative value
satisfying

q(T ∗
j ) ≥

∑j−1
i=1 λi(bj − bi)− h′(t)

cq − bj
,

where h′(t) is the derivative of h(t).

Multiple Requests
In this section we investigate the general case with multiple
heterogeneous requests and drivers. Following the single-
request case in Section , we can model this problem as a Con-
tinuous Markov Decision Process (CMDP). Unfortunately,
similar to many other real-world problems, this CMDP prob-
lem suffers from the curse of dimensionality and curse of
modeling. That is, the CMDP has multi-dimension and con-
tinuous state space, with very complicated transition proba-
bilities and reward structure. As a result, traditional policy or
value iteration methods are infeasible, and we have to rely
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on approximate solutions. In the following, we will show a
simple and efficient approximation approach that takes into
consideration the specific problem structure and also makes
use of the single-request optimal solution that we obtained in
Section .
Main idea. At any time t, assuming that there are currently
n available requests and m available drivers, our main idea
is that we first “virtually” match each available request i
with at most one available driver di, and then decompose
our problem into n subproblems, where each subproblem
contains only a single request with zero or one available
driver exclusively waiting for this request. Note that any new
driver arrives after time t can be assigned to at most one of
these subproblems, which means these n subproblems also
need to “share” the arrival rate of each driver type. Thanks
to the decomposition property of the Poisson arrival process,
we can “decompose” a Poisson process with rate λ into n
independent Poisson subprocesses with rates λi(1 ≤ i ≤
n) as long as it satisfies

∑
i λi = λ.3 This allows us to

conveniently distribute both the available drivers and the
driver arrival rates to each request, therefore reducing our
problem to n different single-request problems, for which we
know the exact optimal strategy from Section .

This idea leads us to the following algorithm MULTI-REQ
(Algorithm 2) for solving the general heterogeneous case.

Algorithm 2: Heterogeneous Requests and Driver Types
MULTI-REQ(λ)

Input: M driver types with arrival rates λ = (λ1, . . . , λM );
1: while time t grows continuously starting from 0 do
2: R← currently available requests
3: D ← currently available drivers
4: if a new request inew arrives then
5: create a new SINGLE-REQinew starting from t
6: end if
7: if a request i ∈ R quits then
8: terminate SINGLE-REQi

9: end if
10: if any arrival or quit event happens then
11: recompute {λi} and {di}, ∀i ∈ R
12: recompute thresholds T i from Thm 1, ∀i ∈ R
13: update {λi}, {di}, and {T i} in

SINGLE-REQi(λ
i,T i, di), ∀i ∈ R 4

14: end if
15: while there exists request i with t ≥ T i

di

in SINGLE-REQi do
16: pick i with the smallest T i

di among all such requests
17: match request i to the corresponding driver di
18: terminate SINGLE-REQi

19: recompute and update {λi} and {T i}, ∀i ∈ R
20: end while
21: end while

3This can be done by assigning each arrival to subprocess i with
probability λi/λ.

4We make two adjustments to the single-request algorithm
SINGLE-REQi(λ

i,T i) from Section . First, we allow the single

Given this algorithm framework, we have two important
tasks left: how to allocate the available drivers in D and the
driver arrival rates λ to these n requests in R to form the n
subproblems. This task can be characterized by an optimiza-
tion problem formulation with the following notations:
• xij ∈ {0, 1}(i ∈ R, j ∈ D): xij = 1 means we match

request i to driver j. We also introduce a “null” driver j0
with type dj0 = M + 1, and use xij0 = 1 to denote that
request i is unmatched. We denote D+ = D ∪ {j0}.

• Uβ
rd(t)(r ∈ R, d ∈ D): the optimal expected cost func-

tion of the subproblem with a type r request that has
waited for t time, an available driver of type d, and arrival
rates vector β.

P0 : min
xij ,λi

∑
i∈R

j∈D+

xijU
λi

ridj
(t− ti)

s.t.
∑

j∈D+

xij = 1 ∀i ∈ R

∑
i∈R

xij ≤ 1 ∀j ∈ D∑
i∈R

λi = λ

xij ∈ {0, 1} ∀i ∈ R, j ∈ D+

λi ≥ 0 ∀i ∈ R.

P1 : min
xij

∑
i∈R

j∈D+

xijŨridj

s.t.
∑

j∈D+

xij = 1 ∀i ∈ R

∑
i∈R

xij ≤ 1 ∀j ∈ D

xij ∈ {0, 1} ∀i ∈ R, j ∈ D+.

P2 : min
λi

∑
i∈R

Uridi(λi)

s.t.
∑
i∈R

λi = λ

λi ≥ 0 ∀i ∈ R.

Let P0 denote the optimization problem. Unfortunately,
we cannot solve P0 directly because Uλi

ridj
(t−ti) can be very

request i to arrive at any time t (not necessarily 0). It is easy to
check that all results from Section still holds if we shift all thresh-
old times by t. Second, we add a new parameter di to SINGLE-REQi

which simply denotes the driver that is already available to i from
the starting time.
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complex and does not have an explicit form. It also depends
on the time t which means we need to recalculate this value at
every possible time. Therefore, we have to find approximate
solutions of this optimization problem.

We apply a two-stage approximation approach. First, we
use a fix value Ũrd, which will be discussed later in details,
as an approximation of all Uβ

rd(t) with different β and t, and
use these values to compute the best request-driver matching
x∗. We denote this first-stage optimization problem as P1.

Next, given the matching x∗, for each i ∈ R, there is
only one driver di with xidi = 1. We then use another linear
approximation Urd(β), which also will be discussed later,
to approximate Uβ

rd(t) (note that this function has the arrival
rates as its parameter but still ignores the information of time
t), and compute a rate allocation based on these values. We
denote this second-stage optimization problem as P2.

Cost Function Approximation

In this section, we discuss in details how to design Ũrd in
P1 and Urd(β) in P2. We want our design to satisfy two
properties: (1) they are reasonable approximations of the
actual cost function Uβ

rd(t), and (2) they can be computed
and maintained efficiently.

We start with Urd(β). Fix any request type r and driver
type d. Note that Uβ

rd(t) describes the scenario with a single
request of type r and a single available driver of type d. We
can use Theorem 1 to compute the optimal time threshold
T ∗
rd(β). However, the expected cost of the optimal algorithm

does not have a simple closed-form and may be affected by
the value of β and t in a complicated way. Therefore, we
need to find simplifications to this single-request problem
such that the expected can be computed and approximated
more easily.

We will make the following simplifications. First, because
the information of the request waiting time is not in the
approximation, we will assume t = 0. That is, the request just
arrives. Second, we will assume a simple quitting function
for this request: it will stay in the system until time T ∗

rd(β)
and quit right after. Third, we also assume a simple strategy:
whenever a driver better than d arrives before time T ∗

rd(β),
match it to the request immediately. If there are no such
drivers, match the request to the only available driver at
time T ∗

rd(β). Let U ′
rd(β) be the expected cost function with

all these simplifications. We will find the explicit solution
of U ′

rd(β), and then approximate it with a linear function
Urd(β) with arrival rates β as the function parameter.

We denote

β<d =
∑

d′:crd′<crd

βd′ and cβ<d =

∑
d′:crd′<crd

βd′crd′∑
d′:crd′<crd

βd′
.

Let C(x) denote the algorithm cost when the first driver
better than d arrives at time x. According to our simplified
strategy, the algorithm will match this driver to the request
right away. Because each type d driver arrives following a
Poisson process with rate βd, by the additive property of
Poisson processes, we know x also follows a Poisson process

with parameter β<d, and conditioning on the arrival, the
probability that this driver is of type d′ is βd′

β<d
. This gives us

C(x) =

{
cβ<d + x, x ≤ T ∗

rd(β)

crd + T ∗
rd(β), x > T ∗

rd(β)

From here we can then derive the expected cost function

U ′
rd(β) =

∫ ∞

0

β<d exp (−β<dx)C(x)dx

= (crd − c̃β<d) exp (−β<dT
∗
rd(β)) + c̃β<d

where c̃β<d = cβ<d +
1

β<d
.

Having obtained U ′
rd(β), our final task is to approximate

it with a linear function. It is easy to see that U ′
rd(0) = crd.

We will use the linear function Urd(β) that goes through
(0, crd) and (λ, U ′

rd(λ)) to approximate U ′.
For Ũrd in P1, because it lacks the arrival rates information,

we use the average value of this linear function between
(0, crd) and (λ<d, Ud(λ)), that is, 1

2 (Ud(λ) + crd), as the
approximation.

Our final construction of Ũ and U is summarized below.

Approximations in P1 and P2

• In P1, we use:

Ũrd =
1

2
(U ′

rd(0) + U ′
rd(λ)) =

1

2
(crd + U ′

rd(λ)).

• In P2, we use:

Urd(β) =
U ′
rd(λ)− crd

λ<d
β<d + crd.

Implementation
We now discuss the implementation of the multiple-request
algorithm MULTI-REQ. Although the algorithm describes a
continuous time process, during which {λi}, {di}, and {T i}
needs to be recomputed after every relevant event, we can
implement it efficiently. In the following we show that using
the approximation we just obtained, one can implement the
algorithm in a discrete and very efficient way, such that it can
be applied in practice in a reasonable scale.

Because {λi} and {di} are derived from the optimiza-
tion problem P1 and P2, we first discuss how to solve and
maintain the optimal solutions of these two problems. In
the following we let n to be the maximum total number of
request and drivers in the system at any time, and let N de-
note the number of total arrivals. We will also analyze the
time complexity of each step as a function of n and the time
complexity of MULTI-REQ by n and N .

Solving and maintaining P1. Note that P1 is a standard
maximum weight matching problem5 whose optimal solution

5Technically it is a minimum cost perfect matching problem,
though it can be easily converted to a maximum weight matching
problem by replacing the cost crd of each edge by M − crd with
some large constant M .
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needs to be maintained throughout the time horizon. Note
that both P1 and P2 do not involve the current time t as a
parameter. This means when time t grows without any events
happened, the optimal matching will remain unchanged. Next
we discuss how to deal with different events.

There are several events that will happen:

• When the time t hits T i
di

in the subproblem SINGLE-REQi

for some request i: this means we need to assign request i
to its matching driver di in the optimal matching at this
time. Both request i and driver di will be removed from
the graph. However, it is easy to see that the remaining
matching is still a maximum weight matching in the re-
maining graph. Therefore, we don’t need to apply any
additional updates.

• A new driver or request arrives: we add a new vertex to
the bipartite graph and find the smallest negative cycle
that contains this vertex (if there is any), and update the
matching via the augmenting path according to this cycle.

• A request i quits: we remove the corresponding vertex
from the graph, and treat its matched driver as a new
arriving driver to the graph.

Regarding the implementation of this update, we maintain a
residual graph of the optimal solution and the negative cycle
can be detected using the Bellman-Ford algorithm in O(mn)
time, where m is the maximum number of edges at any time.
As discussed before, in practice our bipartite graph is usually
sparse with only O(n) edges, which would bring the time
complexity down to O(n2). Since every event means that
one driver/request arrives, one request quits, or at least one
driver/request leaves. Hence, there are O(N) events in total.

Solving and maintaining P2. First, because Urd(β) is a lin-
ear function of the given arrival rate vector β, this makes P2

a linear program which can be solved efficiently. Moreover,
the optimal solution of P2 has a very simple greedy structure.
For each request i, let kid denote the slope of the variable λi

d
in the objective of P2. We have

kid =

0, crid ≥ cridj

U ′
ridj

(λ)−cridj
λ<dj

, crid < cridj
.

It is easy to see that in the optimal allocation, for each driver
type d, we should allocate all of λd to the request i with the
smallest slope kid. This is a very simple greedy solution of
P2 which can be computed and maintained in O(n) time.
To summarize, the time complexity of recomputing (solving
and maintaining P1 and P2) is O(n2), and the time complex-
ity of MULTI-REQ is O(n2N).

Computing {T i} and implementing Line 15 of MULTI-
REQ. Finally, we explain how the matching event (i.e.,
Line 15 of MULTI-REQ) is detected and processed. Note
that we do not need to check whether this condition is met
for every request at every possible time t. Instead, each time
when {T i} needs to be updated, for each request i, we only
need to compute one threshold T i

di using Theorem 1. This is
the time when request i needs to be matched to its assigned
driver. Then we check if the current time t ≥ T i

di holds for

any request i and proceed accordingly. If no matching hap-
pens at the moment, we only need to identify t∗ = mini T

i
di

and register a future event that will be triggered at time t∗. In
this way, the algorithm does not need to take any additional
time to detect whether the condition in Line 15 is satisfied.

Experiments
In this section, we evaluate the performance of our algorithm
using experiments on both synthetic and real-world datasets.6

Experiment Setup
We first construct a bipartite graph G0 = (R,D, E) that
defines the arrival process and quitting process. We intro-
duce two parameters: the matching factor CL and the waiting
factor TL. CL influences the value of edge cost crd and rep-
resents the relative importance of matching cost and waiting
cost. Larger CL means the matching cost carries more weight.
TL is only used by synthetic data and influences the quitting
distribution of requests. Larger TL means requests are more
likely to wait for a longer time. The details of graph construc-
tion, arrival process and quitting process are deferred to the
supplementary material.

We use a publicly available New York City taxi
dataset (Donovan and Work 2014) (under CC0 license) and
extract 100, 000 taxi trip records as our real-world data. The
data processing details are also deferred to the supplementary
material.

We first consider an important baseline—offline optimal
(OPT) which denotes the optimal min-cost matching in the
hindsight if we know the arrival and the quitting information
of all requests and drivers. We recall the notation that we
used before. Let R and D be the set of requests and drivers
during the entire time horizon. For each request i ∈ R, let ri
be its type, ti be its arrival time, and tQi be its quitting time.
For each driver j ∈ D, let dj be its type and tj its arrival time.
This offline optimal solution can be computed by solving the
following integer linear program. In this program, the binary
variable xij indicates whether request i is matched to driver j.
We also introduce a “null” driver j0 and let xij0 = 1 indicate
that request i quits. We set D+ = D ∪ {j0}.

min
xij

∑
i∈R
j∈D

(cridj
+max(0, tj − ti))xij +

∑
i∈R

(cQri + tQi )xij0

s.t.
∑

j∈D+

xij = 1 ∀i ∈ R

∑
i∈R

xij ≤ 1 ∀j ∈ D

xij ∈ {0, 1} ∀i ∈ R, j ∈ D+

Clearly this offline optimal solution is unattainable by any
online algorithm and can only serve as a lower bound of the

6We use a computer with 2.2 GHz Intel Core i7 processor, 16
GB 1600 MHz DDR3 memory and Intel Iris Pro 1536 MB Graphics
to run all the experiments. We use (Gurobi Optimization 2021) as
our linear program solver in our code.
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(a) Synthetic data
CL = 0.01, TL = 0.1, . . . , 1.0
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(b) Synthetic data
TL = 0.5, CL = 0.01, . . . , 0.1
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(c) Real-world data
CL = 0.01, . . . , 0.1

Figure 1: Performance of different algorithms with synthetic and real-world data w.r.t. to TL and CL

total cost. Nevertheless, it could serve as a useful benchmark
for our analysis and experiments.

Then we list the algorithms that are tested in experiments
as below, including baseline algorithms and our algorithm.

• NADAP: This is the algorithm NADAP from (Dickerson
et al. 2018b). This algorithm solves a two-sided online
bipartite matching problem but without the waiting cost in
their objective. We further modify the algorithm to allow
requests to wait in the system if there is no available driver
for it at its arrival (in (Dickerson et al. 2018b) such request
is rejected right away).

• LP Matcher (LP): This is the LP-based algorithm 1 from
(Collina et al. 2020). Their work assumes the quitting
function follows a Poisson process, whereas in our ex-
periment we use a step function to model the quitting
function. Thus, when implementing LP, we set αr = 1

Qr

as the departure rate of request type r and αd = 0 as the
departure rate of driver type d.

• Greedy (GRD): When a request/driver arrives, immedi-
ately match it to the nearest available driver/request.

• Batch-w: This is an algorithm that divides the time hori-
zon into small length w windows. The unit of w is minutes.
At the end of each window, a min-cost bipartite matching
is applied to all available requests and drivers. We test
with w = 0.2 and w = 1.

• DMDQN-w: The algorithm Delayed-M-DQN from (Ke
et al. 2020). It is based on Batch-w (w has the same
meaning in DMDQN and Batch). The difference is that
the min-cost bipartite matching at the end of each window
is applied to all available drivers and requests in matching
pool which is decided by deep reinforcement learning.

• MULTI-REQ: Refer to our algorithm from Section .

We conduct our experiment on 100 test cases with both
synthetic data and real-world data. For each test case, we
sample an arrival sequence s with 1000 arrivals (including
both requests and drivers). Each arrival contains the arrival
time, arrive type, and quitting time if it is a request. For syn-
thetic data, the arrival time and type are generated according

to the arrival process. For real-world data, we choose 1000
consecutive arrivals from the dataset as the arrival sequence.

Let OPT(s),ALG(s) denote the cost of a given algorithm
with input sequence s and ALG ∈ {NADAP, LP, GRD,
Batch-0.2, Batch-1, DMDQN-0.2, DMDQN-1, MULTI-REQ
}. We use empirical competitive ratio (ECR) to measure the
performance of an algorithm.

ECR =

∑
s∈S OPT(s)∑
s∈S ALG(s)

, (1)

where S denotes the set of all sampled sequences. We use
ECR as our performance measure because when S is the set
of all possible sequences, Equation 1 becomes the compet-
itive ratio, which is a standard evaluation metric for online
algorithms.

Results
ECR Evaluation. Figure 1 demonstrates the performance
(ECR) of all baseline algorithms with the synthetic dataset
and real-world dataset. As one can see from the figures,
MULTI-REQ outperforms the baseline algorithms NADAP,
LP and GRD consistently by 10% - 20%. This shows that
identifying the right waiting time of a request can greatly
help to improve the overall efficiency of the driver-request
assignment. Compared to Batch-0.2 and Batch-1, our algo-
rithm outperforms Batch-0.2 and Batch-1 especially when
CL and TL are small. We can also notice the performance
of Batch-w is always better than DMDQN-w with same
window size w.

Figure 1(a) shows the algorithm performances when TL

varies from 0.1 to 1.0 (and CL is set to 0.01). When TL be-
comes larger, it means there are more possible new drivers
arriving during the request’s waiting window. Consequently,
algorithms that do not consider waiting time (NADAP, LP
and GRD) or only wait for short time (Batch-0.2) exhibit
a decrease in their performances. For Batch-1, the large
window size of 1 minutes means there are requests arriving
and quitting in the window, and these requests will not be
matched by the algorithm. Note that we also see a decrease
in the performance of our algorithm MULTI-REQ. This is be-
cause when TL becomes larger, the offline optimal algorithm
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Outcomes OPT NADAP LP GRD Batch-0.2 Batch-1 DMDQN-0.2 MULTI-REQ

No Wait 430.55 437.20 186.55 455.25 0 0 0 346.80

Wait&Match 53.25 29.70 273.05 7.40 479.2 462.85 471.1 131.05

Wait&Quit 16.30 33.20 40.05 37.45 20.90 37.25 29 22.25

Table 1: Average number of requests with each outcome.

will have a bigger advantage by knowing all future events
beforehand. Nevertheless, our algorithm maintains a strong
ECR and can still outperform all the baseline algorithms.

Figure 1(b) and 1(c) record the algorithm performances
when CL varies from 0.01 to 0.1 for synthetic data (TL is
set to 0.5) and real-world data. A larger value of CL means
the driver pick-up distances would matter more in the over-
all assignment costs. Because all baseline algorithms put a
higher priority in minimizing the matching cost, their relative
performances all increase with CL. With that being said, our
algorithm is able to hold a consistent edge over the baseline
algorithms.
Request Outcomes. We also provide statistics on the dif-
ferent request outcomes in the output of each algorithm. In
our model, each request has three possible ending outcomes:
(1) be assigned to a driver immediately upon its arrival, (2)
wait for some time then be assigned to a driver, and (3) leave
the system unassigned. Table 1 shows the average number
of requests with each ending outcome in a single test case in
each algorithm (with real-world dataset and parameters set
as CL = 0.01).

From the table, one can see that GRD and NADAP both
try to assign requests to drivers as soon as possible. As a
result, in their solutions the number of requests assigned
without waiting is larger than that in other algorithms. On
the other hand, LP does not contain the waiting cost com-
ponent in its objective function, therefore its solution will
naturally favor assignments with small matching costs and
large waiting costs. Because Batch-w and DMDQN-w only
make matches at the end of each window, essentially all
requests need to wait. Compared to these algorithms, our
algorithm MULTI-REQ is able to find the right amount of
waiting time for each request, therefore achieving a more
balanced assignment with better overall cost. Our output
also have the second least number of unmatched requests
compared to other baselines.

Conclusion
In this paper, we put forward a novel driver-request assign-
ment model for on-demand ridesourcing. Our model allows
real-time decision-making and takes account of requests vol-
untarily leaving the platform, therefore providing a more
realistic view of ridesourcing assignments in practice. We
then propose an efficient assignment algorithm that could
balance requests’ waiting times and the driver’s pick-up dis-
tances, and we demonstrate its effectiveness on both synthetic
and real-world datasets.

One interesting future working direction is to extend this
model with relaxed assumptions. For example, in future

works we can also allow drivers to leave the platform volun-
tarily as well. Another extension is to introduce ride-sharing
(i.e., multiple requests sharing the same vehicle) to the model
and study the dynamic ride-sharing assignment problem.
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