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Abstract

We study the problem of fairly dividing a hetero-
geneous resource, commonly known as cake cut-
ting and chore division, in the presence of strategic
agents. While a number of results in this setting
have been established in previous works, they rely
crucially on the free disposal assumption, meaning
that the mechanism is allowed to throw away part
of the resource at no cost. In the present work, we
remove this assumption and focus on mechanisms
that always allocate the entire resource. We exhibit
a truthful envy-free mechanism for cake cutting
and chore division for two agents with piecewise
uniform valuations, and we complement our result
by showing that such a mechanism does not ex-
ist when certain additional assumptions are made.
Moreover, we give truthful mechanisms for multi-
ple agents with restricted classes of valuations.

1 Introduction

Given a heterogeneous divisible resource and a set of in-
terested agents with potentially differing valuations on dif-
ferent parts of the resource, how can we allocate the re-
source to the agents in such a way that all agents per-
ceive the resulting allocation as fair? The resource is of-
ten modeled as a cake in the literature, and the problem,
which therefore commonly goes by the name of cake cut-
ting, has occupied the minds of mathematicians, computer
scientists, economists, and political scientists alike for the
past seventy years [Steinhaus, 1948; Brams and Taylor, 1996;
Robertson and Webb, 1998; Moulin, 2004; Procaccia, 2016].
Cake in the cake cutting problem is used to represent a de-
sirable resource; all agents wish to maximize the amount of
resource that they receive. In contrast, the dual problem to
cake cutting, known as chore division, aims to allocate an
undesirable resource to the agents, with every agent want-
ing to receive as little of the resource as possible. Though
several algorithms for cake cutting also apply to chore divi-
sion, the theoretical properties of the two problems differ in
many cases, and much less work has been done for chore di-
vision than for cake cutting [Peterson and Su, 1998; 2002;
Heydrich and van Stee, 2015; Farhadi and Hajiaghayi, 2017;
Dehghani et al., 2018].
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Perhaps the simplest and most well-known fair division
protocol is the cut-and-choose protocol, which works for both
cake cutting and chore division with two agents. The proto-
col operates by letting the first agent divide the resource into
two parts that she values equally, and letting the second agent
choose the part that she prefers. The resulting allocation is
always envy-free—each agent likes her part at least as much
as the other agent’s part, and proportional—both agents find
their part better than or equal to half of the entire resource.
However, the protocol has the disadvantage that it is not truth-
ful, meaning that a strategic agent can sometimes benefit from
misreporting her valuation to the protocol. For example, if
the first agent values the whole cake equally, according to the
protocol she will divide the cake into half and get half of her
value for the entire cake. However, if she knows that the sec-
ond agent only cares about the leftmost quarter of the cake,
she can divide the cake into the leftmost quarter and the rest,
knowing that the second agent will choose the left part and
leave her with three-quarters of the cake. The failure to sat-
isfy truthfulness renders the protocol difficult to participate
in, since the first agent needs to guess the second agent’s val-
uation in order to find a beneficial manipulation.

This issue was first addressed by Chen er al. [2013], who
gave a truthful deterministic cake cutting mechanism that is
Pareto optimal, envy-free, and proportional for any number
of agents with piecewise uniform valuations. Chen et al.’s
result shows that fairness and truthfulness are compatible in
the allocation of heterogeneous resources. Nevertheless, their
result hinges upon a pivotal assumption known as the free
disposal assumption, which says that the mechanism is al-
lowed to throw away part of the resource without incurring
any cost.! While certain resources such as cake or machine
processing time may be easy to get rid of, for other resources
this is not the case. For instance, when we divide a piece of
land among antagonistic agents or countries, we cannot sim-
ply throw away part of the land, and any piece of land left
unallocated constitutes a potential subject of future dispute.
The free disposal assumption is even less reasonable when it
comes to chore allocation—indeed, with this assumption we
might as well simply dispose of the whole chore altogether!

"Note that free disposal does not preclude Pareto optimality. The
mechanism can throw away parts of the resource not valued by any
agent and still maintain Pareto optimality; this is exactly what Chen
et al.’s mechanism does.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

With this motivation in mind, we consider in the present
paper the problem of fairly and truthfully dividing heteroge-
neous resources without the free disposal assumption. Not
having the ability to throw away part of the resource makes
the task of the mechanism more complicated. The reason is
that even if the mechanism is only allowed to throw away
parts that are not valued by any agent, this already prevents
agents from gaining by not reporting parts of the resource
that no other agent values, in the hope of getting those parts
for free along with a larger share of the remaining parts. As
Chen et al. [2013] noted, getting rid of the free disposal as-
sumption adds “significant complexity” to the problem, since
the mechanism would have to specify exactly how to allo-
cate parts that no agent desires. The same group of authors
also gave an example illustrating that removing the assump-
tion can be problematic even in the special case of two agents
with very simple valuations. Indeed, could it be that there is
an impossibility result once we dispose of free disposal?

1.1 Our Results

Throughout the paper, we focus on deterministic mechanisms
that are required to allocate the entire resource, which we
model as an interval [0, 1]. We assume that agents have piece-
wise uniform valuations, meaning that for each agent the cake
can be partitioned into desired and undesired intervals, and
the agent has the same marginal utility for any fractional piece
of any desired interval. We investigate the compatibility of
truthfulness and fairness in this setting.

First, in Section 3 we exhibit a truthful, envy-free, and
Pareto optimal cake cutting mechanism for two agents (The-
orem 1). At a high level, the mechanism lets the two agents
“eat” their desired intervals of the cake at the same speed but
starting from different ends of the cake. Using a simple re-
duction from chore division to cake cutting, we also derive a
chore division mechanism for two agents with the same set of
properties (Theorem 2).

Next, in Section 4 we show that if we add certain require-
ments for the mechanism on top of being fair and truthful,
then no desirable mechanism exists even for two agents. In
particular, the impossibility holds when we make any one
of the following assumptions in addition to truthfulness and
envy-freeness: (i) anonymity—the mechanism must treat all
agents equally (Theorem 3); (ii) connected piece assump-
tion—the mechanism must allocate a single interval to each
agent (Theorem 4); and (iii) position obliviousness—the val-
ues that the agents receive depend only on the lengths of the
pieces desired by various subsets of agents and not on the
positions of these pieces (Theorem 5).

Finally, in Section 5 we consider the more general setting
where there are multiple agents. We assume that each agent
only values a single interval of the form [0, z;]. We present
a truthful, envy-free, and Pareto optimal cake cutting mech-
anism (Theorem 6) and a truthful, proportional, and Pareto
optimal chore division mechanism (Theorem 7) for any num-
ber of agents with valuations in this class.

1.2 Related Work

Cake cutting has been a central topic in the area of fair di-
vision and social choice for decades. While the existence
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and computation of fair allocations have been extensively
studied [Dubins and Spanier, 1961; Stromquist, 1980; Brams
and Taylor, 1995; Su, 1999; Aziz and Mackenzie, 2016a;
2016b], the work of Chen et al. [2013] that we mentioned
earlier was the first to consider incentive issues. Like Chen
et al., Maya and Nisan [2012] considered piecewise uniform
valuations and gave a characterization of truthful and Pareto
optimal mechanisms for two agents. Recently, Alijani et
al. [2017] presented a truthful envy-free mechanism in the
setting where every agent values only a single interval.

For valuation functions beyond piecewise uniform, most
results are negative. For example, for piecewise constant val-
vations, Aziz and Ye [2014] showed that there is no truth-
ful and robust proportional mechanism, two works [Menon
and Larson, 2017; Bei et al., 2017] showed that there is no
proportional mechanism that allocates connected pieces or is
non-wasteful, and Bei et al. [2017] also showed that there is
no truthful mechanism that satisfies position obliviousness.
In the Robertson-Webb query model, Kurokawa ez al. [2013]
showed that there is no truthful envy-free mechanism with
bounded queries, while Branzei and Miltersen [2015] proved
that any deterministic truthful mechanism for two agents must
be a dictatorship.

In all of the works above, either the free disposal assump-
tion is made, or it is assumed that every piece of the cake is
valuable for at least one agent. In contrast, in our work the
mechanism is required to always allocate the entire cake. Fi-
nally, all aforementioned results are restricted to deterministic
mechanisms. If one allows randomization, several truthful in
expectation mechanisms that guarantee either proportional-
ity or envy-freeness have been proposed [Mossel and Tamuz,
2010; Chen et al., 2013; Branzei and Miltersen, 2015].

2 Preliminaries

We consider a heterogeneous divisible resource, which we
represent by the interval® [0, 1]. A piece of the resource is a fi-
nite union of disjoint intervals. The resource is to be allocated
to n agents ay,as,. .., a,. Each agent a; has a density func-
tion f; : [0, 1] — R*tU{0}, which captures how the agent val-
ues different parts of the resource. We assume that the agents
have piecewise uniform valuations, i.e., for each agent a;, the
density function f; takes on the value 1 on a finite set of inter-
vals and O on the remaining intervals. The value of agent a;
for a subset S C [0, 1] is defined as v;(S) = [ fi da, which
is equivalent to the total length of the intervals in .S on which
fi takes on the value 1.> Let W; C [0, 1] denote the piece
on which f; = 1. We refer to a setting with agents and their
density functions as an instance.

An allocation of the resource is denoted by a vector A =
(A1, As, ..., A,), where A; is a union of finitely many in-
tervals that represents the piece of the resource allocated to
a;, and A; N A; = 0 for any ¢ # j. We consider two dif-
ferent types of resources: desirable resources, which we rep-
resent by a cake, and undesirable resources, which we rep-

2Sometimes we will denote the resource by an arbitrary interval
[a, b] for simplicity; this can be easily normalized back to [0, 1].

3In some papers, valuations are normalized so that v;([0,1]) = 1
for all <. We do not follow this convention.
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resent by a chore. We refer to the problem of allocating the
two types of resources as cake cutting and chore division re-
spectively. The agents want to maximize their value for their
piece in cake cutting and minimize this value in chore di-
vision. Two fairness properties that we consider are envy-
freeness and proportionality. In cake cutting, we say that an
allocation (A1, Ao, ..., A,,) is envy-free if for every agent a;,
we have v;(A;) > v;(A;) for any j. In other words, a; can-
not obtain a larger value from any other agent’s share. The
allocation is said to be proportional if v;(4;) > v;([0,1])/n.
Envy-freeness and proportionality are defined analogously in
chore division but with the inequality signs reversed.

A mechanism is a function M (f1,f2s--s fn) —
(A1, As, ..., A,). Thatis, given the input density functions
of the agents, the mechanism computes an allocation for the
agents. We only consider deterministic mechanisms in this
paper, meaning that the allocation is completely determined
by the input density functions. Moreover, we assume that the
mechanism has to allocate the entire resource to the agents,
i.e., in any allocation (A, As, . .., A,) returned by the mech-
anism, |J'_; A; = [0, 1]. In other words, the mechanism does
not have free disposal. Note that when the entire resource is
allocated, envy-free implies proportionality, and both notions
are equivalent in the case of two agents.

We end this section by defining a number of properties of
mechanisms that we consider in this paper. Given a vector
of input density functions f = (f1, fa,..., fn), let L be the
indicator function that maps f to a vector with 2" compo-
nents, where each component corresponds to a distinct subset
of agents and the value of the component is the length of the
piece desired only by that subset of agents.

Definition 1. A mechanism M (f1, fa,---
(A1, Aa, ..., Ay) is said to satisfy

s fn)

—

envy-freeness, if it always returns an envy-free alloca-
tion;

proportionality, if it always returns a proportional allo-
cation;

truthfulness, if it is a dominant strategy for every agent
to report her true density function;

Pareto optimality, if for any allocation returned by the
mechanism, there does not exist another allocation that
makes no agent worse off and at least one agent better
off with respect to the same density functions;

the connected piece assumption, if each A; is always a
single interval;

anonymity, if the following holds: For any den-
sity functions f1, fa, ..., fn and any permutation o of
(1127"'un)1 lfM(flaf27"'afn) = (A17A27~~‘7An)
and M(fo(1)7 fa(2)7 SRR fo(n)) = (A/la /2; RN A;z)’
then v;(A;) = vi(A;,l(i))for every i.

position obliviousness, if the following holds: For any
vectors of density functions £ and £ such that Ly =
Ly, if M(f) (A1, Ag,...,A,) and M(F)

(A}, AL o AL), then vi(A;) = vl(AL) for every i

“This is a weaker notion of position obliviousness than the one
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Intuitively, a mechanism is anonymous if the utilities that
the agents receive do not depend on the identities of the
agents, and position oblivious if the values that the agents
receive depend only on the lengths of the pieces desired by
various subsets of agents and not on the positions of these
pieces.

3 Truthful Mechanisms for Two Agents

In this section, we focus on the case of two agents. We show

that in this case, there exists a truthful, envy-free, and Pareto

optimal mechanism for both cake cutting and chore division,

for two agents with arbitrary piecewise uniform valuations.
We first describe the cake cutting mechanism.

Mechanism 1 (for cake cutting between two agents)

Step 1: Find the smallest value of = € [0, 1] such that
vi([0,2]) = va([2,1])?

Step 2: Assign to a; the intervals in [0, 2] valued by a;
and the intervals in [z, 1] not valued by as, and assign
the rest of the cake to as.

While this is a succinct description of the mechanism, it
turns out that the description is somewhat difficult to work
with. We next provide an alternative formulation that is more
intuitive and will help us in establishing the claimed proper-
ties of the mechanism.

Mechanism 1 (alternative formulation)

Phase 1: Let ay start at point 0 of the cake moving to
the right and as start at point 1 of the cake moving to
the left. Let both agents “eat” the cake with the same
constant speed, jumping over any interval for which they
have no value according to their reported valuations.
If the agents are at the same point while both are still
eating, go to Phase 3. Else, one of the agents has no
more valued interval to eat; go to Phase 2.

Phase 2: Assume that a; is the agent who has no more
valued interval to eat. Let a; stop and a3_; continue eat-
ing. If the agents are at the same point (either while az_;
eats or while as_; jumps over an interval of zero value),
go to Phase 3. Else, both agents have stopped but there
is still unallocated cake between their current points.
In this case, let a3_; continue eating the unallocated
cake until he is at the same point as a;, and go to Phase 3.

Phase 3: Assume that both agents are at point x of the
cake. (It is possible that the two agents meet while both

considered by Bei er al. [2017]: Our definition only requires that
the agents get the same value if the indicator function of their den-
sity functions remain the same, whereas Bei et al.’s definition also
requires the pieces to be allocated in “equivalent” ways.

The existence of z is guaranteed by the intermediate value the-
orem.
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of them are jumping. In this case, we let as jump first.)
Assign any unallocated interval to the left of x to a5 and
any unallocated interval to the right of z to a;.

Theorem 1. Mechanism 1 is a truthful, envy-free, and Pareto
optimal cake cutting mechanism for two agents.

Proof. We begin with truthfulness. Note that there is no in-
centive for an agent to report an interval that she does not
value, since this can only result in the agent wasting time eat-
ing such intervals. So the only potential deviation is for the
agent to report a strict subset of the intervals that she values.
If the agent does not report intervals that she values, then the
intervals that she jumps over before the agents meet will be
lost to the other agent, and the agent can use the extra time
gained from not reporting these intervals to eat intervals of
no more than the same length. Moreover, not reporting inter-
vals after the agents meet has no effect on the outcome of the
mechanism.

Next, for envy-freeness, it suffices to show that each agent
gets at least half of her valued intervals allocated in each
phase. In Phase 1, each agent only gains intervals that she
values, and loses intervals that she values (due to the other
agent’s eating) at no more than the same speed. In Phase 2,
the agent who continues eating can only gain more, while the
agent who has stopped eating has no more interval that she
values. In Phase 3, a; has no unallocated interval to the left
of x that she values, so she cannot lose any unallocated inter-
val that she values. The same argument holds for as.

Finally, our mechanism allocates any interval valued by at
least one agent to an agent who values it. This establishes
Pareto optimality. O

Mechanism 1 gives rise to a dual mechanism for two-agent
chore division that satisfies the same set of properties.

Mechanism 2 (for chore division between two agents)

Step 1: Use Mechanism 1 to find an initial allocation
of the chore, treating the chore valuations as cake
valuations.

Step 2: Swap the pieces of the two agents in the alloca-
tion from Step 1.

Theorem 2. Mechanism 2 is a truthful, envy-free, and Pareto
optimal chore division mechanism for two agents.

Proof. First, truthfulness holds because minimizing the chore
in the swapped allocation is equivalent to maximizing the
chore in the initial allocation, and Theorem 1 shows that this
is exactly what Mechanism 1 incentivizes the agents to do.
Next, envy-freeness holds again by Theorem 1 because get-
ting at most half of the chore in the swapped allocation is
equivalent to getting at least half of the chore in the initial
allocation. Finally, in the initial allocation any interval of the
chore valued by only one agent is allocated to that agent, so
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in the swapped allocation the interval is allocated to the other
agent, implying that the mechanism is Pareto optimal. [

Besides truthfulness, envy-freeness, and Pareto optimality,
how do Mechanisms 1 and 2 fare with respect to the other
properties defined in Section 2?

e Mechanism 1 is not anonymous: If W, = [0,0.5] and
W5 = [0,1] then both agents get value 0.5, while if
Wy = [0,1] and Wo = [0,0.5] then a; gets value 0.75
and ay gets value 0.25.

e It is also not position oblivious: If Wi = [0,0.5] and
Wo [0,1] then both agents get value 0.5, while if
Wy = [0.5,1] and Wy = [0, 1] then aq gets value 0.25
and as gets value 0.75.

e The allocation when W, = [0,1] and W5 = [0,0.5]
shows that the mechanism does not satisfy the connected
piece assumption.

The same examples demonstrate that Mechanism 2 likewise
satisfies none of the three properties. As we show in the next
section, these negative results are in fact not restricted to the
two mechanisms that we consider here, but rather apply to all
possible cake cutting and chore division mechanisms.

4 Impossibility Results

In this section, we present a number of impossibility results
on the existence of fair and truthful mechanisms that satisfy
certain additional properties, for both cake cutting and chore
division. Interestingly, all of the impossibility results cease
to hold if the mechanism is not required to allocate the entire
resource, which again highlights the crucial difference that
the free disposal assumption makes.

We begin with anonymity. One might expect that a “fair”
mechanism should treat the agents equally regardless of their
identity. However, the following result shows that anonymity
is incompatible with truthfulness and envy-freeness.

Theorem 3. There does not exist a truthful, envy-free, and
anonymous cake cutting mechanism for two agents, even
when each agent values a single interval of the form [0, z;].

Proof. Suppose that such a mechanism exists. Let x € [0, 1)
and Wy = Wy = [0, z]. Assume without loss of generality
that in this instance, a; gets an interval containing point z
and ending at point = + f(x) > x, possibly among other
intervals. By envy-freeness, both agents must get half of the
interval [0, x].

If Wy = [0,z + €] for some € € [0, f(z)] and Wo = [0, z],
then a; must get the entire interval [z, 2 + €] and half of the
interval [0, z]. This is because a; must get at least half of
the interval [0, z], and if a; gets less than the whole interval
[,z + €], she can manipulate by reporting W7 = [0, 2] and
getting the whole interval [z, z + €]. By anonymity, if W =
[0,2] and W5 = [0,z + €] for some € € [0, f(z)], az must
also get the whole interval [z, z + €] and half of the interval
[0, z].

Now suppose that W1 = Wy = [0,z + €] for some € €
[0, f(x)]. Both agents must get half of the interval [0, z + €].
If a; gets more than half of the interval [z, 2 + €], then asg
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gets more than half of the interval [0, z]. In this case, if W5 =
[0, 2], a2 can manipulate by reporting Wo = [0,z + €]. So
ay cannot get more than half of the interval [z, 2z + €¢]. By
symmetry, neither can as. This means that both agents get
exactly half of the interval [z, z + €]. In other words, for any
y € [x,x + f(x)], if Wi = Wy = [0, y], then both agents get
exactly half of the interval [z, y].
Next, consider the set

A:={(z,y) €Rp1) x Qo [z <y <z+ flz)}
This set is uncountable, since for each of the uncountably
many z’s, there is at least one y such that (z,y) € A. If
for each y there only exist a finite number of 2’s such that
(z,y) € A, this set would be countable, which we know is
not the case. Hence there exists a y such that (z,y) € A for
infinitely many «’s. Fix such a y.

Finally, suppose that W; = W, = [0,y]. For any of the
infinitely many 2’s such that (z,y) € A, both agents must
receive exactly half of the interval [z,y|. However, if the
mechanism divides the interval [0, y] into & intervals in the
allocation, then there can be at most one value of z per inter-
val, and therefore at most k values in total, with this property.
Since k is finite, this gives us the desired contradiction.  [J

We remark that with the free disposal assumption, Chen et
al.’s mechanism is a truthful, envy-free, and anonymous cake
cutting mechanism for two agents with arbitrary piecewise
uniform valuations. The same authors showed that a particu-
lar extension of their mechanism, which allocates the desired
pieces of the cake in the same way as their mechanism and
allocates the undesired pieces of the cake in a certain sim-
ple way, is not truthful [Chen et al., 2013, p. 296]. Since any
mechanism that allocates the desired pieces of the cake in this
way is also anonymous, Theorem 3 shows that no extension
of Chen et al.’s mechanism can be truthful.

Next, we turn to the connected piece assumption.

Theorem 4. There does not exist a truthful and envy-free
cake cutting mechanism for two agents that satisfies the con-
nected piece assumption, even when each agent values a sin-
gle interval of the form [0, x;).

Proof. Suppose that such a mechanism exists. First, consider
the instance where W, = Wy = [0, z] for some = € (0, 1).
One agent will get the interval [0, /2] and the other agent
the interval [z/2, 1]; assume without loss of generality that a;
gets [0, z/2] and ay gets [x/2, 1]. Next, consider the instance
where W, = [0,z] and Wy = [0,y] for some y € (z,1).
Then as must still get the interval [x/2, 1]; otherwise she can
report Wy = [0, z] instead.

Now, consider the instance where Wy = Wy = [0,y]. As
before, one agent will get the interval [0,y/2] and the other
agent the interval [y/2, 1]. If a; gets [0,y/2], then in the pre-
vious instance a; can gain more by reporting W7 = [0, y].
Hence it must be that as gets [0,y/2] and a; gets [y/2,1].
This means that in the instance where both agents report
[0, y], the ordering of the allocated pieces is reversed from
the allocation in the instance where both agents report [0, x].
Since this holds for any y > =z, if we take some z > y (ob-
viously z > x also), we find that no allocation works when
both agents report [0, z], a contradiction. O
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Bei ef al. [2017] showed that a similar impossibility result
holds even with the free disposal assumption, but using the
larger class of piecewise constant valuations. For the class of
valuations that we consider in Theorem 4, there exists a sim-
ple truthful and envy-free mechanism that always returns a
connected allocation assuming free disposal. The mechanism
works as follows: Assume that agent a; declares W; = [0, 2]
fori =1,2. If 21 > xo, allocate the interval [z /2, z1] to a4
and [0, 21 /2] to ag; otherwise allocate the interval [0, z2/2] to
ay and [z2/2, 25] to as. One can check that this mechanism
satisfies the claimed properties.

We now consider position obliviousness and show the
nonexistence of a truthful, envy-free, and position oblivious
cake cutting mechanism for two agents. In fact, we prove
a more general statement that holds for any even number of
agents and also uses the weaker notion of proportionality.

Theorem 5. Let n = 2k for some positive integer k. There
does not exist a truthful, proportional, and position oblivious
cake cutting mechanism for n agents.

Proof. Suppose that such a mechanism exists. Assume that
the cake is represented by the interval [0, 4k% + k).

First, consider the instance where Wo;_1 = Wy, = [i —
1,i] fori = 1,2,..., k. Since the interval [k,4k? + k] is
of length 4%? and there are 2k agents, some agent gets value
more than 2k — 1 from the interval. Assume without loss
of generality that a; is one such agent, and that a; gets the
interval [k, 3k — 1]. Since the mechanism is proportional, a;
must get value at least 1/2k from the interval [0, 1] as well.

Next, consider the instance where W, = [0, 1]U[k, 3k —1],
W2 = [07 1}, and ngfl = ng = [Z — 1,i] for i =
2,3,...,k. Agent a; must still get value at least 1/2k from
the interval [0, 1]; otherwise she can report W; = [0, 1] in-
stead. This means that a5 gets a total value of at most 1—1/2k
in this instance.

Finally, consider the instance where W, = Wy = [0,1] U
[k,?)k—].] andWQi,legi [l—l,l] fori:2,3,...,k.
By proportionality, ao must receive value at least 1; let By C
[0,1] U [k, 3k — 1] be a piece of length 1 that ay receives.
If Wy = By while the other W;’s remain fixed, then since
the mechanism is position oblivious, as must get a total value
of at most 1 — 1/2k. However, in that case ag can report
Wy = [0,1] U [k, 3k — 1] and receive value 1. This implies
that the mechanism is not truthful and yields the desired con-
tradiction. O

As with the connected piece assumption, Bei et al. [2017]
showed a similar negative result for position obliviousness
with the free disposal assumption but using the larger class
of piecewise constant valuations. For piecewise uniform val-
uations, Chen et al.’s mechanism is truthful, envy-free, and
position oblivious under the free disposal assumption.

We end this section by showing that our impossibility re-
sults also carry over to chore division. The idea is the same
as the one used in Mechanism 2, except that here we use it to
establish negative results.

Corollary 1. There does not exist a truthful and envy-free
chore division mechanism for two agents if one of the follow-



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

ing conditions is added: (i) anonymity; (ii) connected piece
assumption, (iii) position obliviousness.

Proof. 1f there were a truthful and envy-free chore division
mechanism that satisfies one of the additional properties, we
could obtain a cake cutting mechanism with the same prop-
erties as follows: First, we use the chore division mechanism
to compute an initial allocation of the cake, treating the cake
valuations as chore valuations. Then we swap the pieces of
the two agents in this allocation. However, the existence of a
cake cutting mechanism with these properties would contra-
dict one of Theorems 3, 4, and 5, respectively. O

5 Extensions to Multiple Agents

In this section, we consider the general setting where we al-
locate the resource among any number of agents. We assume
that each agent a; only values the interval [0, x;] for some ;.
Such valuations may appear in a scenario where the agents are
dividing machine processing time: agent a; has a deadline z;
for her jobs, so she would like to maximize the processing
time she gets before x; but has no value for any processing
time after z;. We also remark that the example used to illus-
trate that removing the free disposal assumption can be prob-
lematic consists of two agents whose valuations belong to this
class [Chen er al., 2013, p. 296]. Hence, designing a fair and
truthful algorithm is by no means an easy problem even for
this valuation class.
We first describe the cake cutting mechanism.

Mechanism 3 (for cake cutting among n agents)

Step 1: If there is one agent left, the agent gets the
entire remaining cake. Else, assume that there are k£ > 2
agents and length [ of the cake left. Find the maximum
x € [0,1] such that agent ¢ values the entire interval
[(i = 1)x,ix] for all 4 1,2,...,k, and allocate the
interval [(i — 1)z, ix] to agent i.

Step 2: The agent whose right endpoint of her allocated
interval coincides with the right endpoint of her valued
piece exits the process. If there are more than one such
agent, choose the one with the lowest number.®

Step 3: Renumber the remaining agents in the same or-
der starting from 1, and relabel the left endpoint of the
remaining cake as point 0. Return to Step 1.

Theorem 6. Let n be any positive integer. Mechanism 3 is
a truthful, envy-free, and Pareto optimal cake cutting mecha-
nism for n agents, if each agent only values a single interval
of the form [0, ;].

Proof. First, for truthfulness, there are two types of manipu-
lation: moving x; to the left and to the right. Moving z; to the
left can only cause a; to quit the process early when she could

SThere must exist at least one such agent, since otherwise the
value of z in Step 1 can be increased.
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have gained more by staying on. On the other hand, if moving
x; to the right causes the allocation to change in some round
of Step 1, the agent can only get less value from the allocated
interval as its right endpoint moves past z;. Moreover, since
she has no more valued intervals to the right, she cannot make
up for the loss.

Next, for envy-freeness, if an agent is no longer in the pro-
cess, she has no more piece of value. During the process,
in each round all remaining agents receive an interval of the
same length. Since each agent values the entire interval that
she receives, she does not envy any other agent.

Finally, our mechanism allocates any interval valued by at
least one agent to an agent who values it. This establishes
Pareto optimality. O

Unlike in the case of two agents, there is no simple re-
duction between cake cutting and chore division in the gen-
eral case. Nevertheless, our next result shows a truthful and
proportional chore division mechanism for any number of
agents. We were not able to strengthen the proportionality
guarantee to envy-freeness and leave it as an interesting open
question for future research.

Mechanism 4 (for chore division among n agents)

Step 1. Let a; take the piece [0,z1/n] U [x1,1]. If
some other agent has no value on parts of the interval
[0,21/n], give those parts to the agent. (If there are
several such agents, allocate the parts arbitrarily.)

Step 2: Repeat Step 1 with the next agent up to a,_1
and the remaining chore; agent a; takes the leftmost
interval with value x;/n as well as any piece for which
she has no value. (If a; has value less than x; /n left, she
takes the entire remaining chore.)

Step 3: Agent a,, takes all of the remaining chore.

Theorem 7. Let n be any positive integer. Mechanism 4 is
a truthful, proportional, and Pareto optimal chore division
mechanism for n agents, if each agent only values a single
interval of the form [0, x;].

Proof. We begin with truthfulness. First, any agent who has
no value on some piece that the mechanism initially allocates
to another agent has no incentive not to take the piece. Apart
from this, agent a,, has no control over her allocation, so the
mechanism is truthful for her. For any other agent, there are
two types of manipulation: moving x; to the left and to the
right. Moving z; to the right can only increase the value of
the piece that a; has to take. If a; moves x; to the left by an
amount y, she can save a value of at most y/n but has to take
a piece of value y at the end. So a; does not have a profitable
manipulation.

We now consider proportionality. Each agent up to a,,_1
gets a piece of value at most z; /n. For a,,, we consider two
cases. Let x = min(x1,x9,...,2,-1). If 2, < z, then
each of the first n — 1 agents takes at least 1/n of the interval
[0, 2], so at most 1/n of this interval is left for a,. Else,
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we have z,, > z. The intervals [0, (n — 1)z/n] and [z, 1]
will not be left to a,,, meaning that a,, receives value at most
x/n < xn/n.

Finally, our mechanism allocates any interval for which
some agent has no value to one such agent. This establishes
Pareto optimality. O

6 Conclusion and Future Work

In this paper, we study the problem of fairly dividing a het-
erogeneous resource in the presence of strategic agents and
demonstrate the powers and limitations of truthful mecha-
nisms in this setting. An immediate question is whether our
mechanisms in Section 3 can be generalized to work for any
number of agents with piecewise uniform valuations. While
our results in Section 5 provide a partial answer to this ques-
tion, extending to the general setting seems to require a dras-
tically different idea. Indeed, it could also be that there is
an impossibility result once we move beyond the case of two
agents.

Another direction is to allow agents to have valuations
from a larger class. A natural next step would be to consider
the class of piecewise constant valuations, in which an agent
values each interval uniformly but can have different marginal
utilities for different intervals. It is not known whether there
exists a deterministic truthful envy-free mechanism even for
two agents with piecewise constant valuations, either with or
without the free disposal assumption. We believe that this is
a theoretically intriguing and practically important question
that should be resolved in future work.
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