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Abstract. What is the value of input information in solving linear programming?
The celebrated ellipsoid algorithm tells us that the full information of input con-
straints is not necessary; the algorithm works as long as there exists an oracle that,
on a proposed candidate solution, returns a violation in the form of a separat-
ing hyperplane. Can linear programming still be efficiently solved if the returned
violation is in other formats?
Motivated by some real-world scenarios, we study this question in a trial-and-error
framework: there is an oracle that, upon a proposed solution, returns the index
of a violated constraint (with the content of the constraint still hidden). When
more than one constraint is violated, two variants in the model are investigated.
(1) The oracle returns the index of a “most violated” constraint, measured by
the Euclidean distance of the proposed solution and the half-spaces defined by
the constraints. In this case, the LP can be efficiently solved (under a mild con-
dition of non-degeneracy). (2) The oracle returns the index of an arbitrary (i.e.,
worst-case) violated constraint. In this case, we give an algorithm with running
time exponential in the number of variables. We then show that the exponential
dependence on n is unfortunately necessary even for the query complexity. These
results put together shed light on the amount of information that one needs in
order to solve a linear program efficiently.
The proofs of the results employ a variety of geometric techniques, including the
weighted spherical Voronoi diagram and the furthest Voronoi diagram.

1 Introduction

Solving linear programming (LP) is a central question studied in operations research and
theoretical computer science. The existence of efficient algorithms for LP is one of the
cornerstones of a broad class of designs in, for instance, approximation algorithms and
combinatorial optimization. The feasibility problem of linear programming asks to find an
x ∈ Rn to satisfy a number of linear constraints Ax > b. Some previous algorithms, such
as the simplex and interior point algorithms, assume that the constraints are explicitly
given. In contrast, the ellipsoid method is able to find a feasible solution even without
full knowledge of the constraints. This remarkable property grants the ellipsoid method
an important role in many theoretical applications.

A central ingredient in the ellipsoid method is an oracle that, for a proposed (infea-
sible) point x ∈ Rn, provides a violation that separates x and the feasible region of the
LP in the format of a hyperplane. Such a separation oracle captures situations in which
the input constraints are unavailable or cannot be accessed affordably, and the available
information is from separating hyperplanes for proposed solutions. A natural question is
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what if the feedback for a proposed solution is not a separating hyperplane. Aside from
theoretical curiosity, the question relates to practical applications, where the acquired
violation information is actually rather different and even more restricted and limited.

Transmit power control in cellular networks has been extensively studied in the past
two decades, and the techniques developed have become foundations in the CDMA stan-
dards in today’s 3G networks. In a typical scenario, there are a number of pairs of
transmitters and receivers, and the transmission power of each transmitter needs to be
determined to ensure that the signal is strong enough for the target receiver, yet not
so strong that it interferes with other receivers. This requirement can be written as an
LP of the form Ax > b, where each constraint i corresponds to the requirement that
the Signal to Interference Ratio (SIR) is no less than a certain threshold. In general the
power control is a well-known hard problem (except for very few cases, such as power
minimization [9]); a major difficulty is that matrix A depends mainly on the “channel
gains”, which are largely unknown in many practical scenarios [4]. Thus the LP Ax > b
needs to be solved despite the unavailability of (A, b). What is available here is that the
system can try some candidate solution x and observe violation information (namely
whether the SIR exceeds the threshold). The system can then adjust and propose new
solutions until finally finding an x to satisfy Ax > b.

There are more examples in other areas (e.g., normal form games and product design
and experiments [20]) with input information hidden. In these examples, for any pro-
posed solution that does not satisfy all the constraints, only certain salient phenomena
of violation (such as signal interference) are exhibited, which give indices of violated
constraints only. With so little information obtained from violations, is it still possible
to solve LP efficiently? In general, what is the least amount of input information, in
what format, that one needs to solve a linear program efficiently? This work attempts
to address these questions on the value of input information in solving LP.

1.1 Model and Results

Our model is defined as follows. In an LP Ax > b, the constraints aix > bi are hidden from
us. We can propose candidate solutions x ∈ Rn to a verification oracle4. If x satisfiesAx >
b, then the oracle returns Yes and the job is done. If x is not a feasible solution, then the
oracle returns the index of a violated constraint. The algorithm continues until it either
finds a feasible solution or concludes that no feasible solution exists. The algorithm is
adaptive in the sense that future queries may depend on the information returned during
previous queries. We focus only on the feasibility problem, to which an optimization LP
can be transformed by a standard binary search.

Note that when the proposed solution is not feasible, the oracle returns only the
index i of a violation rather than the constraint aix > bi itself. We make this assumption
for two reasons. First, consistent with the aforementioned examples, we are often only
able to observe unsatisfactory phenomena (such as a strong interference in the power
control problem). However, the exact reasons (corresponding to the content of violated
constraints) for these problems may still be unknown. Second, as our major focus is
on the value of information in solving linear programming, a weaker assumption on the
information obtained implies stronger algorithmic complexity results. Indeed, as will

4 The verification oracle is simply a means of determining whether a solution is feasible. It
arises from the nature of LP as shown from the foregoing examples. For infeasible solutions,
the feedback is a signaled violation.
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be shown, in some settings efficient algorithms exist even with this seeming deficit of
information.

For a proposed solution x, if there are multiple violated constraints, the oracle re-
turns the index of one of them5. This raises the question of which violation the oracle
returns, and two variants are studied in this paper. In the first one, the oracle gives more
information by returning the index of a “most violated” constraint, where the extent of
a violation is measured by (bi − 〈ai, x〉)/‖ai‖, the Euclidean distance of the proposed
solution x and the half-space defined by the constraint. This oracle, referred to as the
furthest oracle, attempts to capture the situation in which the first violation that oc-
curs or is observed is usually the most severe and dominant one. The second variant
follows the tradition of worst-case analysis in theoretical computer science, and makes
no assumption about the returned violation. This oracle is referred to as the worst-case
oracle.

We will denote by UnknownLP the problem of solving LP with unknown constraints
in the above model. In either oracle model, the time complexity is the minimum amount
of time needed for any algorithm to solve the UnknownLP problem, where each query, as
in the standard query complexity, costs a unit of time.

Our results are summarized below. In a nutshell, when given a furthest oracle, a
polynomial-time algorithm exists to solve LP (under a mild condition of non-degeneracy).
On the other hand, if only a worst-case oracle is given, the best time cost is polynomial
in m, the number of constraints, but exponential in n, the number of variables. Note that
it is efficient when n is small, a well-studied scenario called fixed-dimensional LP. The
exponential dependence on n is unfortunately necessary even for the query complexity.
This lower bound, when combined with the positive result for the furthest oracle case,
yields an illustration of the boundary of tractable LP.

Theorem 1 The UnknownLP problem can be solved in time polynomial in the input size6

in the furthest oracle model, provided that the input is non-degenerate.

The exact definition of non-degeneracy is given in Section 3. The condition is mild; ac-
tually a random perturbation on inputs yields non-degeneracy, thus the theorem implies
that the smooth complexity is polynomial.

The main idea of the algorithm design is as follows. Instead of searching for a solution
x directly, we consider the point (A, b) ∈ Rm(n+1) as a degenerate polyhedron, and use
the ellipsoid method to find (A, b). In each iteration take the center (A′, b′) of the current
ellipsoid in Rm(n+1), and aim to construct a separating hyperplane between (A, b) and
(A′, b′) through queries to the furthest oracle. The main difficulty lies in the case when
(A′, b′) is infeasible, in which a separating hyperplane cannot be constructed explicitly. It
can be observed that upon a query x, with the help of the furthest oracle, the information
returned from the oracle has a strong connection to the Voronoi diagram. Specifically,
if x is not a feasible solution, then the returned index is always the furthest Voronoi
cell that contains x. We can manage to compute the Voronoi diagram, but this does
not uniquely determine the constraints that define the LP. To handle this difficulty, we

5 It is also natural to consider the case where the oracle returns the indices of all violated
constraints. That model turns out to be so strong as to make the linear program easily
solvable. By moving the proposed points and observing the change of the set of violated
constraints, one can quickly identify the value of each (ai, bi).

6 The notion of input size in the unknown input setting is explained in Section 2.
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give a sufficient and necessary characterization reducing the input LP to that of a new
and homogeneous LP, for which the constraints can be identified using the structure of
a corresponding weighted spherical closest Voronoi diagram.

For the worst-case oracle, we first establish the following upper bound which is ex-
ponential in the number of variables only.

Theorem 2 The UnknownLP problem with m constraints, n variables, and input size L
can be deterministically solved in time (mnL)poly(n). In particular, the algorithm is of
polynomial time for constant dimensional LP (i.e. constant number of variables n).

At the heart of the efficiency guarantee of our algorithm is a technical bound of∑n
i=0

(
m
i

)
on the number of “holes” formed by the union of m convex bodies in Rn.

The above theorem implies a polynomial time algorithm when the number n of vari-
ables is a constant. This is a well-studied scenario, called fixed dimensional LP in which n
is much smaller than the number of constraints m; see [15, 5, 18, 19, 8] and the survey [7].

On the other hand, a natural question is whether the exponential dependence is
necessary; at the very least, can we improve the bound to subexponential, as Kalai [15]
and Matousěk et al. [18] have done for simplex-like algorithms? Unfortunately, the next
lower bound theorem indicates that this is impossible.

Theorem 3 Any algorithm that solves the UnknownLP problem with m constraints and
n variables needs Ω

(
mbn/2c

)
queries to the oracle, regardless of its time cost.

We prove this by constructing a family of 2k = Θ(mbn/2c) LPs, such that the first k LPs
Pi have disjoint feasible regions, and the last k LPs P ′i are the infeasible variants of the
first k LPs. Unless the algorithm proposes a point in one of feasible regions, the oracle
is designed to return a fixed (thus meaningless) constraint index. After k − 1 queries,
the algorithm still cannot distinguish LP Pi and P ′i for some i. Thus even the feasibility
problem cannot be solved with less than k queries.

It is worth comparing the exponential hardness of UnknownLP with the complexities of
Nash and CE, the problems of finding a Nash or correlated equilibrium in a normal-form
game, in the trial-and-error model. In our previous work [2], we presented algorithms
with polynomial numbers of queries for Nash and CE with unknown payoff matrices in
the model with worst-case oracle7. Nash and CE can be written as quadratic and linear
programs, respectively, but why is the general UnknownLP hard while the unknown-input
Nash and CE are easy (especially when all are given unlimited computational power)?
The most critical reason is that in normal-form games, there always exists a Nash and
a correlated equilibrium, but a general linear program may not have feasible solutions.
Indeed, if a feasible solution is guaranteed to exist (even for only a random instance),
such as when the number of constraints is no more than that of variables, then an effi-
cient algorithm for UnknownLP does exist: see the full version [3]. (In our algorithms for
UnknownLP, the major effort is devoted to handling infeasible LP instances.) It is inter-
esting to see that the solution-existing property plays a fundamental role in developing
efficient algorithms.

Related work. There were a few work studying LP with restricted input information
[22, 23, 25], in settings different than the current paper; see the full version [3] for detailed

7 An algorithm proposes a candidate equilibrium and a verification oracle returns the index of
an arbitrary better response of some player as a violation.
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comparisons. The trial-and-error model was proposed in [2], where a number of specific
questions were studied. In [14], the model of [2] is extended to probabilistic queries and
systematic studies about Constraint Satisfaction Problems (CSP) are conducted.

2 Preliminaries

Consider the following linear program (LP): Ax > b, where A = (aij)m×n ∈ Rm×n and
b = (b1, . . . , bm)T ∈ Rm. The feasibility problem asks to find a feasible solution x ∈ Rn

that satisfies Ax > b (or report that such a solution does not exist). Equivalently, this
is to find a point x ∈ Rn that satisfies m linear constraints {aix > bi : i ∈ [m]}, where
each ai = (ai1, . . . , ain).

In the unknown-constraint LP feasibility problem, denoted by UnknownLP, the coef-
ficient matrix A and the vector b are unknown to us, and we need to determine whether
the LP has a feasible solution and find one if it does. We can propose candidate solutions
x ∈ Rn to a verification oracle. If a query x is indeed a feasible solution, the oracle
returns Yes and the problem is solved. Otherwise, the oracle returns an index i satisfying
aix ≤ bi, i.e., the index of a violated constraint. Note that from this, the algorithm knows
only the index i, but not ai and bi. In addition, if multiple constraints are violated, only
the index of one of them is returned.

We will analyze the complexity for two types of oracles: the furthest oracle which
returns the index of a “most” violated constraint (Section 3), and the worst-case oracle
which can return an arbitrary index among those violated constraints (Section 4). In
either variant, a query to the oracle takes unit time.

Input size and solution precision. A clarification is needed for the size of the input.
Since the input LP instance (A, b) is unknown, neither do we know its binary size.
To handle this issue, we assume that we are given the information that there are m
constraints8, n variables, and the binary size of the input instance (A, b) is at most L.
Note that L is O(mn log(N)), where N is the maximum entry (in absolute value) in
A and b. We say that an algorithm solves UnknownLP efficiently if its running time is
poly(m,n,L).

Given an LP with input size L = O(mn log(N)), it is known [16] that if the LP
has a feasible solution, then there is one whose numerators and denominators of all
components are bounded by (nN)n. Hence, an alternative way to describe our assumption
is that, instead of knowing the input size bound L, there is a required precision for
feasible solutions. That is, we only look for a feasible solution in which the numerators
and denominators of all components are bounded by the required precision. These two
assumptions, i.e., giving an input size bound and giving a solution precision requirement,
are equivalent, and it is necessary to have one of them in our algorithms.9 In the rest of
the paper, we will use the first one, the input size bound, to analyze the running time of
our algorithms.

8 Indeed, the number of constraints can be unknown to us as well: In an algorithm, we only
need to track those violated constraints that have ever been returned by the oracle.

9 Otherwise, we may not be able to distinguish between cases when there are no feasible so-
lutions (e.g., x > 0, x < 0) and when there are feasible solutions but the feasible set is very
small (e.g., x > 0, x < ε). For any queried solution y > 0, the oracle always returns that the
second constraint is violated. However, we cannot distinguish whether it is x < 0 in the first
LP or x < ε in the second LP, as ε can be arbitrarily small and we have no information on
how small it is.
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The unit sphere in Rn is denoted by Sn−1 = {x ∈ Rn : ‖x‖ = 1}, where, throughout
this paper, ‖ · ‖ refers to the `2-norm. A set C ⊆ Rn is a convex cone if for any x, y ∈ C
and any α, β > 0, αx + βy is also in C. The normalized volume of a convex cone C is

defined as the ratio v(C) = voln(C∩Bn)
1
2 ·voln(Bn)

where Bn is the closed unit ball in Rn and voln

refers to the n-dimensional volume. For any set C ∈ Rn, its polar cone C∗ is the set
C∗ =

{
y ∈ Rn : 〈x, y〉 ≤ 0,∀x ∈ C

}
.

Lemma 4 ([24]) Let C1, C2, . . . , Ck be k closed convex cones, then (
⋂

i Ci)
∗ = conv(

⋃
i C
∗
i ).

It was shown in [21] (Lemma 8.14) that if an LP has a feasible solution, then the set
of solutions within the ball

{
x ∈ Rn : ‖x‖ ≤ n2L

}
has volume at least 2−(n+2)L. Given

this lemma, we can easily derive the following claim.

Lemma 5 If a linear program Ax > 0 has a feasible solution, then the feasible region is
a convex cone in Rn and has normalized volume no less than 2−(2n+3)L.

3 Furthest Oracle

In this section, we will consider the UnknownLP problem Ax > b with the furthest oracle,
formally defined as follows. For a proposed candidate solution x, if x is not a feasible
solution, instead of returning the index of an arbitrary (worse case) violated constraint,
the oracle returns the index of a “most violated” constraint, measured by the Euclidean
distance from the proposed solution x and the half-space defined by the constraint. More
precisely, the oracle returns the index of a constraint which, among all i with 〈ai, x〉 ≤ bi,
maximizes bi−〈ai,x〉

‖ai‖ , the distance from x to the half-space {z ∈ Rn : 〈ai, z〉 ≥ bi}. If there

are more than one maximizer, the oracle returns an arbitrary one.
Compared to the worse-case oracle, the furthest oracle reveals more information about

the unknown LP system, and indeed, it can help us to derive a more efficient algorithm.
Our main theorem in this section is the following.

Theorem 6 The UnknownLP problem Ax > b with a non-degenerate matrix A in the
furthest oracle model can be solved in time polynomial in the input size.

We call a matrix A = (a1, . . . , am)T non-degenerate if for each point p ∈ Sn−1, at
most n points in

{
a1

‖a1‖ , . . . ,
am

‖am‖
}

have the same spherical distance to p on Sn−1. This

assumption is with little loss of generality; it holds for almost all real instances and can
be derived easily by a small perturbation.

Next we describe our algorithm for the special case of Ax > 0.

3.1 Algorithm Solving Ax > 0

We assume without loss of generality that ‖ai‖ = 1 for all i. Furthermore, we can also
always propose points in Sn−1 for the same reason.

Ellipsoid method and issues. The main approach of the algorithm is to use the
ellipsoid method to find the unknown matrix A = (aij)m×n, which can be viewed as a
point in the dimension Rmn, i.e., a degenerate polyhedron in Rmn. Initially, for the given
input size information m,n and L, we choose a sufficiently large ellipsoid that contains
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the candidate region of A, and pick the center A′ ∈ Rmn of the ellipsoid. To further the
ellipsoid method, we need a hyperplane separating A′ from A.

Consider the linear system A′x > 0. If it has a feasible solution x, then {x : A′x > 0}
is a full-dimensional cone. We query an x in this cone to the oracle. If the oracle returns
an affirmative answer, then x is a feasible solution of Ax > 0 as well, and the job is
done. Otherwise, the oracle returns an index i, meaning that 〈ai, x〉 ≤ 0. Hence, we
have 〈a′i, x〉 > 0 ≥ 〈ai, x〉, which defines a separating hyperplane between A and A′ with
normal vector (0, . . . , 0︸ ︷︷ ︸

(i−1)n

, x, 0, . . . , 0︸ ︷︷ ︸
(m−i)n

) (note that a hyperplane in Rmn has a normal vector

of dimension mn, and x is a vector of dimension n, also that we know the information
of A′ and x). Thus, we can cut the candidate region of A by a constant fraction and
continue with the ellipsoid method.

Note that there is a small issue: In our problem, the solution polyhedron degenerates
to a point A ∈ Rmn and has volume 0. As the input A is unknown, we cannot use the
standard approach in the ellipsoid method to introduce a positive volume for the poly-
hedron by adding a small perturbation. This issue can be handled by a more involved
machinery developed by Grötschel, Lovász, and Schrijver [11, 12], which solves the strong
nonemptiness problem for well-described polyhedra given by a strong separation oracle,
as long as a strong separation oracle exists. In the algorithms described below, we will
construct such oracles, thereby circumventing the issue of perturbation of the unknown
point A. The same idea has been used in [2] to find a Nash equilibrium when the pay-
off matrix is unknown and degenerates to a point in a high-dimensional space. More
discussions refer to [11, 12, 2].

The main difficulty is when the LP A′x > 0 is infeasible. In the following part of this
section we will discuss how to find a proper separating hyperplane in this case.

Spherical (closest) Voronoi diagram. Note that Ax > 0 is equivalent to −Ax < 0,
and i minimizes 〈ai, x〉 if and only if it maximizes 〈−ai, x〉. In the rest of this subsection,
for notational convenience, we use x ∈ Sn−1 to denote a proposed solution point, and let
y = −x. Since the distance from a proposed solution x to a half-space {z ∈ Rn : 〈ai, z〉 ≥
0} is −〈ai, x〉 = 〈ai, y〉, the oracle returns us an index i ∈ arg maxi

{
〈ai, y〉 : 〈ai, y〉 ≥ 0

}
if x is not feasible. Note that ‖z − ai‖ ≤ ‖z − aj‖ if and only if 〈ai, z〉 ≥ 〈aj , z〉 for
any z ∈ Sn−1; thus, 〈ai, y〉 is closely related to the distance between ai and y on Sn−1.
That is, the oracle actually provides information about the closest Voronoi diagram of
a1, . . . , am on Sn−1.

The (closest) Voronoi diagram of a set of points {ai}i in Sn−1 is a partition of Sn−1

into cells, such that each point ai is associated with the cell {z ∈ Sn−1 : d(z, ai) ≤
d(z, aj),∀j}, where d in our case is the spherical distance on Sn−1. We denote by Vor
the spherical (closest) Voronoi diagram of the points a1, . . . , am on Sn−1 and denote by
Vor(i) the cell in the diagram associated with ai, i.e.,

Vor(i) =
{
z ∈ Sn−1 : 〈ai, z〉 ≥ 〈aj , z〉, ∀j ∈ [m]

}
(1)

=
{
z ∈ Sn−1 : ‖z − ai‖ ≤ ‖z − aj‖, ∀j ∈ [m]

}
.

If the oracle returns i upon a query x = −y ∈ Sn−1, then y ∈ Vor(i).

Representation. Note that for a general (spherical) Voronoi diagram formed by m
points, it is possible that some of its cells contain exponential number of vertices, which
is unaffordable for our algorithm. However, in the H-representation of a convex polytope,
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every cell can be represented by at most m linear inequalities, as shown in Formula (1).
In the following, we will see that the information of these linear inequalities is sufficient
to implement our algorithm efficiently.

Weighted spherical (closest) Voronoi diagram. For the presumed matrix A′, note
that it can be an arbitrary point in the space Rmn and each row in A′ may not necessarily
fall into Sn−1. Our solution is to consider a weighted spherical Voronoi diagram, denoted

by Vor′, of points
a′
1

‖a′
1‖
, . . . ,

a′
m

‖a′
m‖

on Sn−1 as follows: for each point
a′
i

‖a′
i‖

, its associated

cell is defined as

Vor′(i) =
{
z ∈ Sn−1 : 〈a′i, z〉 ≥ 〈a′j , z〉,∀j ∈ [m]

}
.

Note that Vor′ is a partition of Sn−1; and if we assign a weight ‖a′i‖ to each point
a′
i

‖a′
i‖

,

then for each point p ∈ Vor′(i), the site among
a′
1

‖a′
1‖
, . . . ,

a′
m

‖a′
m‖

that has the smallest

weighted distance to p is
a′
i

‖a′
i‖

.10 Note that each cell of Vor′ is defined by a set of linear

inequalities (other than the unit norm requirement) and each of them can be computed
efficiently.

Now we have two diagrams: Vor, which is unknown, and Vor′, which can be represented
efficiently using the H-representation. If Vor 6= Vor′, then there exists a point y ∈ Sn−1

such that y ∈ Vor(i) and y /∈ Vor′(i). Suppose that y ∈ Vor′(j) for some j 6= i. According
to the definition, we have 〈ai, y〉 ≥ 〈aj , y〉 and 〈a′i, y〉 < 〈a′j , y〉; this gives us a separating
hyperplane between A and A′. The questions are then (1) how to find such a point y
when Vor 6= Vor′, and (2) what if Vor = Vor′.

Consistency check. In this part we will show how to check whether Vor = Vor′, and if
not equal, how to find a y as above. Although we know neither the positions of points
a1, . . . , am, nor the corresponding spherical Voronoi diagram Vor, we can still efficiently
compare it with Vor′, with the help of the oracle.

For each cell Vor′(i), assume that it has k facets (i.e., (n−1)-dimensional faces). Note
that k ≤ m and that Vor′(i) is uniquely determined by these facets. Further, each facet
is defined by a hyperplane H ′ij = {z ∈ Sn−1 : 〈a′i, z〉 = 〈a′j , z〉} for some j 6= i. To decide

whether Vor = Vor′, for each i and j such that Vor′(i)∩Vor′(j) 6= ∅, we find a sufficiently
small εy and three points y, y + εy, y − εy, such that

y ∈ Vor′(i) ∩ Vor′(j) ⊂ H ′ij , y + εy ∈ Vor′(i) \ Vor′(j), y − εy ∈ Vor′(j) \ Vor′(i).

Notice that such y and εy exist and can be found efficiently. We now query points y+ εy
and y − εy to the oracle. If the oracle does return us the expected answers, i.e., i and
j, respectively, then, with ‖εy‖ sufficiently small (up to 2−poly(L)), we can conclude that
y must also be in the facet of Vor(i) and Vor(j) of the hidden diagram Vor. That is,
y ∈ Hij = {z ∈ Sn−1 : 〈ai, z〉 = 〈aj , z〉}. We implement the above procedure n− 1 times
to look for n−1 linearly independent points y1, . . . , yn−1 ∈ Vor′(i)∩Vor′(j). If the oracle
always returns the expected answers i and j, respectively, for all k = 1, . . . , n − 1, then
we know that Hij = H ′ij .

The procedure described above can be implemented in polynomial time. Now we can
use this approach to check all facets of all of the cells of Vor′. If none of them returns

10 The reason of defining such a weighted spherical Voronoi diagram is that we want to have a

separating hyperplane between A and A′ = (a′1, . . . , a
′
m)T , rather than

( a′
1

‖a′
1‖
, . . . ,

a′
m

‖a′
m‖

)T
.
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us an unexpected answer, we know that every facet of every cell Vor′(i) is also a facet of
cell Vor(i), i.e., the set of linear constraints that defines Vor′(i) is a subset of those that
define Vor(i). Thus, we have Vor(i) ⊆ Vor′(i) for each i. Together with the fact that both
Vor and Vor′ are tessellations of Sn−1, we can conclude that Vor = Vor′.

Lemma 7 For the hidden matrix A ∈ Rmn with spherical Voronoi diagram Vor and
proposed matrix A′ ∈ Rmn with weighted spherical Voronoi diagram Vor′, we can in
polynomial time

– either conclude that Vor = Vor′, or
– find a separating hyperplane between A and A′.

A formal and detailed description of this consistency check procedure and its correctness
proof can be found in the full version [3].

Voronoi diagram recognition. If the above process concludes that Vor = Vor′, we
have successfully found the Voronoi diagram Vor (in its H-representation) for the hid-
den points a1, . . . , am. It was shown by Hartvigsen [13] that given a Voronoi diagram
with its H-representation, a set of points that generates the diagram can be computed
efficiently. Further, Ash and Bolker [1] showed that the set of points that generates a
non-degenerate Voronoi diagram is unique. Therefore, by coupling these two results and
the assumption that the input matrix A is non-degenerate, we are able to identify the
positions of a1, . . . , am given the computed Voronoi diagram Vor, and easily determine
if the LP Ax > 0 has a feasible solution, and compute one if it exists.

The general case of Ax > b New difficulties arise in the general case of Ax > b. A
particular one is that, even for the non-degenerate input A, the Voronoi diagram may
correspond to multiple sets of points ai, which makes it hard to recover the ai’s. To handle
this difficulty, we give a sufficient and necessary characterization reducing the input
LP to that of a new and homogeneous LP, for which the constraints can be identified
using the structure of a corresponding weighted spherical closest Voronoi diagram. We
unfortunately have to leave this part to the full version [3] due to space limit.

4 Worst-Case Oracle

In this section, we consider the worst-case oracle. Recall that in this setting, the oracle
plays as an adversary by giving the worst-case violation index to force an algorithm to
use the maximum amount of time to solve the problem.

For any linear program Ax > b, we can introduce another variable y and transform
the linear program into the following form:

Ax− by > 0, y > 0

It is easy to check that Ax > b is feasible if and only if the new LP is feasible, and the
solutions of these two linear systems can be easily transformed to each other. Given the
oracle for Ax > b, one can also get another oracle for the new LP easily. (On a query
(x, y), if y ≤ 0, return the index m+ 1; otherwise, query x/y to the oracle for Ax > b.)
This means that the UnknownLP problem of the homogeneous form Ax > 0 is no easier
than the problem of the general form. In all the analysis of this section, we will therefore
only consider the problem of form Ax > 0.
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Geometric explanations. Let us consider the problem from a geometric viewpoint.
Any matrix A = (aij)m×n can be considered as m points a1, a2, . . . , am in the n-
dimensional space Rn, where each ai = (ai1, ai2, . . . , ain). The positions of these points
are unknown to us. Finding a feasible solution x ∈ Rn that satisfies Ax > 0 is equivalent
to finding an open half-space

Hx =
{
y ∈ Rn : 〈x, y〉 , x1y1 + x2y2 + · · ·+ xnyn > 0

}
containing all points ai.

In an algorithm, we propose a sequence of candidate solutions. When a query x ∈
Rn violates a constraint i, we know that 〈ai, x〉 ≤ 0. Hence, ai cannot be contained
in the half-space Hx, and we are able to cut Hx off from the possible region of ai.
Based on this observation, we maintain a set region(i), the region of possible positions
of point ai consistent with the information obtained from the previous queries. Initially,
no information is known about the position of any point; thus, region(i) = Rn for all
1 ≤ i ≤ m.

Let us have a closer look at these regions. For each i, suppose that xi1, x
i
2, . . . , x

i
k are

the queried points we have made so far for which the oracle returns index i. Then all
information we know about ai till this point is that the possible region is region(i) =⋂k

j=1{y ∈ Rn : 〈xij , y〉 ≤ 0}. Since region(i) is the intersection of k closed half-spaces, it
is a convex set. Equivalently, this means that any feasible solution to the LP, if existing,
cannot be in region(i)∗, the polar cone of region(i). Since the polar cone of a half-space
{y ∈ Rn | 〈xij , y〉 ≤ 0} is the ray along its normal vector, i.e., {λxij | λ ≥ 0}, we have by
Lemma 4 that

region(i)∗ = conv
(⋃

j

{
y | 〈xij , y〉 ≤ 0

}∗)
= conv

({
λxij | 1 ≤ j ≤ k, λ ≥ 0

})
.

Since region(i)∗’s are the forbidden areas for any feasible solution, we can conclude that
the LP has no feasible solution if

⋃
i region(i)∗ = Rn.

Convex hull covering algorithms. Based on above observations, we now sketch a
framework of convex hull covering algorithms that solves the UnknownLP problem. The
algorithm maintains a list of m convex cones

region(1)∗, region(2)∗, . . . , region(m)∗ ⊆ Rn.

Initially, region(i)∗ = ∅ for all 1 ≤ i ≤ m. On each query x ∈ Rn, the oracle either
returns Yes, indicating that the problem is solved, or returns us an index i, in which case
we update region(i)∗ to conv (region(i)∗, {λx | λ > 0}). The algorithm terminates when
either the oracle returns Yes, or when Rn−

⋃
i region(i)∗ does not contain a convex cone

with normalized volume at least 2−(2n+3)L, which indicates that the given instance has
no feasible solution. The above discussion can be formalized into the following theorem.

Theorem 8 Any algorithm that falls into the convex hull covering algorithm framework
solves the UnknownLP problem.

Though the framework guarantees the correctness, it does not specify how to make
queries to control complexity. Next we will show an algorithm with nearly optimal com-
plexity. The basic idea is to use induction on dimension. That is, we pick an (n − 1)-
dimensional subspace and recursively solve the problem on the subspace. The subroutine
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either finds a point x in the subspace that satisfies Ax > 0 (in which case the algorithm
ends), or finds out that there is no feasible solution in the entire subspace. In the latter
case, the whole space of candidate solutions can be divided into two open half-spaces,
and we will work on each of them separately. In general, we have a collection of connected
regions that can still contain a valid solution. These regions are the “holes”, formally
called chambers, separated by

⋃
i region(i)∗ (recall that points in region(i)∗ cannot be a

feasible solution). We can then pick a chamber with the largest volume, and cut it into
two balanced halves by calling the subroutine on the hyperplane slicing the chamber.

There are several issues for the above approach. The main one is that there may be
too many chambers: a priori, the number can grow exponentially with m. There are
also other technical issues to be handled, such as how to represent chambers (which are
generally concave), how to compute (even approximately) the volume of chambers, how
to find a hyperplane to cut a chamber into two balanced halves, etc.

For the first and main issue, it can be shown that the number of chambers cannot
be too large. In general, Kovalev [17] showed that any m convex sets in Rn cannot form
more than

∑n
i=1

(
m
i

)
chambers. For the rest of the technical issues, we deal with them in

the following way. Instead of keeping track of all actual chambers, in our algorithm, we
maintain a collection of disjoint sector cylinders, which can be shown to be supersets of
chambers. Furthermore, we keep only cylinders that contain at least one chamber, thus,
the bound for the number of chambers also bounds the number of cylinders from above.

Theorem 2 can be proved based on the ideas described above. The details of the
algorithm and its analysis can be found in the full version [3].

5 Concluding Remarks

We consider solving LP when the input constraints are unknown, and show that different
kinds of violation information yield different computational complexities. LP is a powerful
tool employed in real applications dealing with objects that are largely unknown. For
example, in the node localization of sensor networks where the locations of targets are
unknown [6], the computation of the locations in some settings can be formulated as a
linear program with constraints that measure partial information obtained from data [10].
However, the estimation usually has various levels of error, which may lead to violations
of the presumed constraints. Interesting questions that deserve further explorations are
what can be theoretically analyzed there, and in general, what other natural formats of
violations there are in linear programming and what complexities they impose.
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12. Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Springer, 1988.

13. David Hartvigsen. Recognizing voronoi diagrams with linear programming. INFORMS
Journal on Computing, 4(4):369–374, 1992.
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