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Abstract

We propose representing one’s visual experiences (cap-

tured as a series of ego-centric videos) as a sparse-graph,

where each node is an individual frame in the video, and

nodes are connected if there exists a geometric transform

between them. Such a graph is massive and contains mil-

lions of edges. Autobiographical egocentric visual data are

highly redundant, and we show how the graph represen-

tation and graph clustering can be used to exploit redun-

dancy in the data. We show that popular global cluster-

ing methods like spectral clustering and multi-level graph

partitioning perform poorly for clustering egocentric visual

data. We propose using local density clustering algorithms

for clustering the data, and provide detailed qualitative

and quantitative comparisons between the two approaches.

The graph-representation and clustering are used to aggres-

sively prune the database. By retaining only representative

nodes from dense sub graphs, we achieve 90% of peak re-

call by retaining only 1% of data, with a significant 18%
improvement in absolute recall over naive uniform subsam-

pling of the egocentric video data.

1. Introduction

First-person-view systems will become popular with de-

vices like Google Glass. These systems will enable new

applications for visual search and augmented reality, ex-

ploiting what a person has seen in the past. Applications

like summarization, scene understanding, object recogni-

tion and activity recognition are being explored in the con-

text of egocentric visual data [26, 5, 18].

We envision a system where one’s entire visual mem-

ory is captured, stored and indexed. We believe that such

systems will have a wide range of applications in search,

understanding and navigation. With visual search, such a

system could be used for answering interesting questions

like: Have I seen this object before ? When and where did I

last see this person or object ? How often do I visit a place

(e.g., a restaurant) ? Where am I right now ? or when was I

(a)

(b) (c)
Figure 1. Figure (a) shows snapshots from an autobiographical

egocentric video collected over a week. Figure (b) illustrates a

sparse graph representation using Graphviz [4] of a 2-hour subset

of the data (20K frames). Nodes correspond to individual frames

and edges correspond to frames that match. Figure (c) illustrates

images from a dense sub-graph cluster.

here last ?

But before such a system can provide relevant and mean-

ingful assistance to our queries, there is a genuine and press-

ing need to develop efficient ways to organize such volumi-

nous visual data. In this work, we explore how egocen-

tric visual memory should be stored and represented. We

consider the most general (and typical) case where egocen-

tric visual data is not labelled, and no GPS information is

available. We explore a sparse-graph based representation

of the data, and show how large-scale graph-processing al-

gorithms can be used for efficient object retrieval. We sum-

marize our contributions as follows:

• We propose representing one’s visual experiences (cap-

tured as a series of ego-centric videos) as a sparse-

graph, where each node is an individual frame in the

video. Frames (or nodes) that have a valid geometric

transform between them are connected by edges. The

constructed graph is massive with hundreds of thou-

sands of nodes, and millions of edges. We use graph

visualization techniques to provide insight into typical

subgraphs (substructures) found in such data, and show
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how to use the graph based representation for efficient

object retrieval.

• We show that popular global clustering methods like

spectral clustering and Graclus [8] perform poorly for

clustering egocentric graph data. We propose using lo-

cal density-based clustering algorithms for clustering

the data, and provide detailed qualitative and quantita-

tive comparisons of different clustering schemes.

• We demonstrate object and scene retrieval from visual

memory using our proposed graph-based representation

and clustering, which are used to exploit redundancy in

the data. By retaining only representative nodes from

dense sub-graphs, we show how we can aggressively

prune the data by an order of magnitude with only a

small loss in recall. We achieve 90% of peak recall by

retaining only 1% of data: a 18% improvement over a

naive scheme like uniformly subsampling the egocentric

video data.

2. Related Work

Graph-based representations of image collections

have been used for detecting images of landmarks, label

propagation, and 3-D reconstruction [7, 9, 17]. A graph

over the entire image collection can be constructed effi-

ciently using state-of-the-art content based image retrieval

techniques [7]. In [9], Simon et al. start from connected

components in a sparse-graph representation, and use clus-

tering techniques on visual features to find representative

views for scenes. In [17], Philbin and Zisserman find con-

nected components in a large graph to identify similar im-

ages of individual landmarks. The authors also apply spec-

tral clustering techniques on small connected components

(tens of nodes) to seperate image-clusters that might have

merged. In [11], the PageRank algorithm is used to find

representative images in sets of images returned by text-

based searches. In [7], Heath et al. discuss how to improve

global connectivity when constructing graph-based repre-

sentations of image collections from Flickr.

In our work, we consider graph-based representations of

egocentric videos, and aim to find interesting patterns in the

data. We collect over 20 hours of data over a week (over

1 million frames): capturing time at work, commuting to

work, at lunch, in meetings and shopping. The nature of

such data is highly different from that of image-collections.

Sparse graph representations of image collections typically

consist of small groups of connected components (typically

tens of images), which correspond to individual objects or

scenes. As a result, most of the work on sparse-graph rep-

resentations stop at detecting connected components in the

graph [9, 17, 7, 21]. In our case, connected component anal-

ysis would reveal little insight into patterns in the data. The

connected components detected in our data are several or-

ders of magnitude larger than those detected in image col-

lection [17]. E.g., a single connected component covers

over 90% of the 1M frames collected in egocentric video

data over a week, as discussed in Figure 2(a). This is partly

because of the contiguous nature of video data, but more

importantly, because of the high levels of redundancy in vi-

sual data, i.e, we tend to see the same objects and scenes

over and over again in our lives.

Graph clustering has been studied extensively in the

literature (see [20] for a survey). Regardless of whether

all nodes are assigned to a cluster or not, clustering al-

gorithms can be broadly categorized into two categories:

global and local. Popular global methods are based on spec-

tral clustering [23], which are “cut-based” methods which

partition data using eigenvectors of the adjacency matrix.

Other examples of popular global clustering methods in-

clude multi-level partitioning approaches like Metis [12]

and Graclus [8]. Local clustering algorithms, on the other

hand, typically start from individual nodes and build dense

clusters bottom-up by examining adjacency lists. Examples

of such algorithms can be found in [13]. From the compu-

tational perspective, approximation algorithms and heuris-

tic solutions are used for graph clustering, as the problem is

NP-hard, and no constant-factor approximation algorithms

are known [6].

In spite of the rich literature on graph clustering, select-

ing the appropriate algorithm is not straightforward and re-

quires understanding of the underlying graph. [19] illus-

trates just one such example, where blindly applying tradi-

tional clustering methods like spectral clustering result in

poor performance. In our work, we show why standard

clustering methods, specifically, spectral clustering [23] and

multi-level graph partitioning (Graclus) [8], perform poorly

and are not suited to the problem. Instead, we propose us-

ing local density-based clustering algorithms for detecting

dense subgraphs in the egocentric data.

3. Data Set

Existing egocentric data sets are inadequate for our ap-

plication scenario, in that they either consist of clips with a

single activity (e.g., cooking) [18], clips that are too short

or consist of several short segments collected by multiple

individuals [15], or clips with limited variety of content [5].

We are interested in egocentric data, that is autobiograph-

ical in nature i.e. capturing the activities of a single indi-

vidual over extended periods of time (life-logging). Fur-

ther, none of the existing data sets have a notion of “query”

and “database” data, which we require for object-retrieval

experiments. In our work, the “database” consists of the

video sequences captured by the person, while queries are

snap-shots of objects or scenes of interest seen by the per-

son, which can be retrieved from the database. Our video

database is collected by two different users: we name the

data sets as Egocentric (1) and Egocentric (2) here-on. We

use a BH-906 spy-camera for collecting data, which is worn
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Figure 2. (a) Percentage of data covered as the number of con-

nected components increases. Note that a single connected com-

ponent covers over 90% of the Egocentric data-sets. (b) Newman

Q measure for Graclus as the number of clusters k is increased.

Typically, k corresponding to values between 0.3 and 0.7 are cho-

sen.

over the ear like a blue-tooth ear piece. The BH-906 has a

short battery life: as a result, each video segment is typi-

cally less than half an hour. The camera has limited field

of view, and captures data at VGA resolution (640 × 480)

at 30 frames per second. Each data set consists of over 10

hours of video data captured over a week. To avoid long

segments of video with no activity (as would be typical of

a work-day spent in a cubicle), we select 1-2 hours of inter-

esting activity per day, capturing a wide variety of content.

Typical activities include commuting from home to work

(bus or train), walking around the office, eating food at the

pantry, manipulating objects of interest, shopping and meet-

ing colleagues. The data consists of plenty of rapid motion,

and captures a typical week in a person’s life. The data is

highly redundant, as would be typical of such autobiograph-

ical data. To the best of our knowledge, this is one of the

largest autobiographical video data sets currently available,

with over 1M frames per user, and captured over one week.

For queries, we took images of 100 objects or scenes of

interest, seen by each user. We restrict our query data set to

rigid objects. The queries are collected at a completely dif-

ferent time from the database videos, using a different cap-

ture device (the iPhone4). Queries consist of typical objects

of interest like milk cartons, buildings, scenes at the work

place, posters on the wall, restaurant signs, book covers, etc,

which are seen one or more times by the user. The queries

are collected independently of the database data. Some ex-

amples of database and query images can be seen in Fig-

ure 10. All collected data will be made available on our

website [1].

4. Graph Representation and Visualization

We use Content Based Image Retrieval (CBIR) tech-

niques [7, 16] for building a graph based representation.

Each node in the graph denotes a video frame, and two

nodes are connected if they have a geometric transform be-

tween them. We sub-sample the video data by 10× (result-

Data Set Number of nodes Number of edges

Egocentric (1) 103,596 6,822,822

Egocentric (2) 115,585 18,690,994
Table 1. Details of graphs of egocentric data sets

ing in 3 frames per second), as it suffices to capture rapid

motion in the data. Each data set consists of ∼100K frames

after subsampling.

The technique used for graph construction is similar

to [7]. For local features, we extract Difference-of-Gaussian

(DoG) interest points, and SIFT feature descriptors [22].

Since the data set is large, it is not feasible to perform

pairwise comparison between all pairs of frames. As a

result, we use a standard Bag-of-Words (BoW) retrieval

pipeline [16, 2] for discovering matching frames. Geomet-

ric Consistency Checks (GCC), using RANSAC with a ho-

mography model are used to eliminate false positives. Up

to 500 images are considered in the GCC step. The post

GCC threshold is set to 12, which results in very low false

positives.

For constructing the graph, each of the frames is queried

into the BoW framework. Edges are added to the graph as

matches are found. Setting edge weights using a normal-

ized measure based on the number of matching features,

did not lead to any significant improvement in our exper-

iments. As a result, we set edge weight to 1 or 0, based

on whether or not frames match. Such a graph is typically

very sparse, compared to the total number of possible edges

O(N2), where N is the number of nodes. The number of

nodes and edges found are listed in Table 1. Note there

are millions of edges in each graph. Also, note that dif-

ferent users’ data can produce different graph statistics, as

expected, based on their movement patterns.

To highlight the key difference between our data sets and

typical image collections, we perform connected compo-

nent analysis on the constructed graph data. In Figure 2(a),

we plot the percentage of data covered, against the num-

ber of connected components, for the popular Oxford data

set [16] (5K images), and the Egocentric (1)-(2) data (100K

frames). The largest connected component in both egocen-

tric data sets has more than 90K nodes. We note that the

Oxford data set has small groups of connected components,

while a single connected component covers over 90% of the

Egocentric data-sets. From Figure 2(a), it is clear that con-

nected component analysis suffices for discovering objects

in image collections like Oxford, while yields little insight

for our data. This motivates the need for more sophisticated

algorithms to detect dense subgraphs from the data.

We also use Graphviz [4] for visualizing our graph-

data. Typical subgraphs and substructures in the underlying

data are shown in Figure 3(a)-(e). Figure 3(a) represents a

clique, which corresponds to a static object or scene in the

video, or an object that appears repeatedly. Figure 3(b) cor-
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Figure 3. (a) corresponds to a clique-like structure representing a

long static scene, or a repetitive scene or object, (b) corresponds to

a chain representing rapid motion, (c) corresponds to a path taken

multiple times. (d) and (e) show the largest connected component

in 2 hours and 10 hours of data respectively.

responds to a chain, which represents rapid motion along a

path, where only adjacent frames are similar to each other.

Figure 3(c) corresponds to a path taken repeatedly by the

user, which results in multiple chains merging together. Fig-

ure 3(d) and (e) are visualizations of the largest connected

component in 2 hours of data, and the entire 10-hour data

set, respectively. Figure 3(e) contains close to 90K nodes:

the visualization of subgraphs provide intuition on typical

structures present in the underlying data. Next, we discuss

how to perform effective clustering on the graph, which we

subsequently use for pruning the database.

5. Graph Clustering

In [21], the authors show how to prune an image-

database by giving higher importance to images that belong

to connected components, while giving less importance to

singleton images, in a graph-representation. In analogous

fashion, for egocentric video: chains are less important

than dense subgraphs and clique-like structures, which typi-

cally correspond to salient objects or scenes, e.g., important

static or repetitive scenes, or objects that are manipulated in

daily activities. With graph clustering, our goal is to clus-

ter frames of the same scene or object together. Ideally, we

would like each cluster to correspond to an object in the

real world. First, we discuss why traditional global cluster-

ing techniques do not work well for our data. Second, we

use a local density clustering algorithm, that overcomes the

short-comings of “cut” based approaches. Third, we pro-

vide detailed qualitative and quantitative comparisons of the

different clustering algorithms.

5.1. Why not Global Clustering?

We first discuss two popular techniques for graph clus-

tering.

• Spectral Clustering. Spectral clustering works by op-

erating on eigen-vectors of the Laplacian matrix of the

graph [23]. We use the implementation in [3].

• Graclus Clustering. Graclus, a multi-level graph par-

titioning algorithm, is based on repeated coarsening and

(Spectral)

(Graclus)

Figure 4. Examples of parts of clusters found with spectral clus-

tering and Graclus clustering. Several clusters found have little

internal coherence. Often, objects connected through long chains

end up in the same cluster.

refinement with emphasis on balanced cuts. Graclus is a

popular replacement to spectral clustering, as it is faster

and avoids the expensive eigenvector computation step.

First, we note that eigenvector computation is the bottle-

neck in spectral clustering methods, making it quickly in-

feasible, as the size of the graph grows [3].For huge graphs

of size in Table 1, spectral clustering is not practical. Hence,

to illustrate problems with spectral clustering, we consider

a graph with only the first 10% of the data in Egocentric (1).

Also, another major problem with these approaches is

choosing the number of clusters k apriori. Popular tech-

niques for choosing k are based on the Newman Q mea-

sure [14]. Two popular approaches for choosing k are (1)

repeat the clustering for different values of k and choosing

the one with the highest Newman Q measure [14], or (2)

choose k that corresponds to Newman Q values in the range

of 0.3 to 0.7 [14]. In Figure 2(b), we plot the Newman Q

measure for Graclus clusters for the Egocentric (1) data set.

A similar trend is obtained for spectral clustering. We note

that the number of clusters, which maximizes the Newman

Q measure, is in the order of 10, which is too small to be

useful. We pick k ∼ 1000: Newman Q of close to 0.5.

While both the above approaches detect some clusters

corresponding to a single object or scene, we find several

problematic clusters when applying such top-down tech-

niques to our data. First, we find plenty of clusters which

lack any coherence. Second, objects connected through

long chains often end up in the same cluster. Chains are

highly common in the data, as shown in Figure 3, due to

the nature of the egocentric video data. Third, disparate

object clusters that might be connected through weak links

end up in the same cluster. More generally, often clusters

are under-segmented, or over-segmented, inspite of using

the Newman Q measure for choosing k. All these can be at-

tributed to the cut-based metric used for partitioning. Some

examples of poor clusters are shown in Figure 4. Finally,

note that even Graclus would not scale well, if we were to

increase the data size by another order of magnitude. To

overcome these issues, we propose using a local density-

based clustering algorithm.
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5.2. Local Density-based Clustering

In contrast to global clustering approaches, local clus-

tering algorithms typically start from individual nodes and

build dense clusters bottom-up by examining adjacency

lists. A survey of subgraph detection algorithms can be

found in [13, 25]. We surveyed the literature of local den-

sity clustering algorithms and build on the clustering algo-

rithm proposed in [25]. We choose [25] as the starting point,

as it was one of the top-performing clustering algorithms

used for detecting dense sub-graphs in networks, as summa-

rized in the recent survey [10], outperforming several other

schemes based on Markov clustering, spectral clustering,

partition-based clustering and density-based clustering.

The Parallel Local Density Clustering (PLDC) algorithm

consists of two steps, namely (1) identifying preliminary

clusters, and (2) refining them to obtain the final set of clus-

ters. The set of preliminary clusters are chosen in a greedy

fashion, based on local neighborhood graphs. These prelim-

inary clusters contain nodes that have higher degree com-

pared to nodes in their neighborhood. The preliminary clus-

ters are typically very dense (clique-like): so an additional

step is included to expand clusters in a greedy fashion. A

cluster density parameter (t) in the algorithm is used to gen-

erate clusters with varying density. Precise definitions of

cluster density and the exact algorithm used are presented

in Appendix A.

The local clustering scheme in [25] is typically designed

for small graphs with thousands of edges, while the PLDC

algorithm presented in Appendix A can scale to large-

graphs with tens of millions of edges. The preliminary clus-

tering step in Algorithm 1 is the most time-consuming and

we show how it can be parallelized for speed-up, i.e., we

can divide the graph data (nodes and their adjacency lists)

into blocks for computing preliminary clusters.

Finally, we observe that images in the same PLDC clus-

ter tend to be of the same scene or object. Since egocentric

data are highly redundant, we are motivated to prune the

database further by selecting representative nodes in each

cluster. For a cluster, we define its representative nodes as

the minimum node cover [24]. The minimum node cover

is a minimal subset of nodes, to which the remaining nodes

in the graph are connected. The minimum node cover is a

well-known NP-complete problem, and the heuristic used

is discussed in the Appendix. The number of representative

nodes in typical clusters ranges from a few nodes to tens of

nodes.

5.3. Comparing Global and Local Density Cluster-
ing

Effect of changing PLDC parameter The parameter t
represents how dense individual clusters are. The effect

of changing t is shown in Figure 5 for data set Egocentric

(1). A higher t results in clusters with higher density, and a
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Figure 5. For PLDC, higher t results in clusters with higher density

and smaller coverage of the entire graph.
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Figure 6. Comparing Graclus (a)-(b), and PLDC (c)-(d) as clus-

tering parameters are varied. For PLDC, there are ∼6K clusters.

From CDF of cluster density in (b) and (d), we note that PLDC is

effective at finding dense subgraphs in the data, while increasing

the number of clusters in Graclus is not effective.

lower coverage of the entire graph.

Comparing distribution of cluster density and cluster

sizes. In Figure 6, we describe how the distribution of

cluster sizes and cluster density vary as clustering param-

eters are varied for Graclus and PLDC for Egocentric (1)

data. For Graclus, clustering density is increased by in-

creasing the number of partitions k. For PLDC, we increase

clustering density by increasing t. For Graclus, it is intu-

itive that the distribution of cluster sizes shifts left (smaller

average cluster size) as k increases from 2000 to 10000 in

Figure 6(a). However, the Cumulative Distribution Func-

tion (CDF) of cluster density shifts right only gradually, i.e.,

even with k = 10000, more than half the clusters have less

than 0.5 cluster density, as seen in Figure 6(b). This shows

that a majority of clusters still contain chains or are weakly

bound, due to the cut-based approach of Graclus. On the

other hand, for PLDC, as t increases (number of clusters is
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Figure 7. Comparing Graclus and PLDC for the same number of

clusters (∼6K). We note that distribution of cluster density for Gr-

aclus is almost uniform, while the distribution of cluster density

for PLDC is skewed toward higher values.

∼6000), we obtain clusters which are highly dense as seen

from the CDF of cluster density for t = 0.5 in Figure 6(d).

Note the difference in CDF distributions of cluster-density

for PLDC with fewer (∼6000) clusters compared to 10000

Graclus clusters, in Figure 6(b) and (d).

In Figure 7, we compare the distribution of cluster sizes

and cluster density, for the same number of clusters: For

Graclus (k = 6000), and for PLDC (∼6000 clusters). For

Graclus, all nodes in the graph are labelled as determined by

the algorithm, while for PLDC, a high percentage of 0.7 to

0.9 graph coverage is obtained as seen in Figure 5. We note

in Figure 7(b), that the distribution of cluster density for

Graclus is almost uniform, while PLDC results in smaller

clusters, with cluster density distributions skewed towards

higher values (increasing as t increases). In conclusion,

PLDC is more effective in finding dense sub-graphs, than

merely increasing the number of partitions in Graclus (or

spectral clustering).

Qualitative comparisons. For Graclus, we choose a typ-

ical operating point corresponding to Newman Q measure

of 0.5, while for PLDC, we set t = 0.5. We note that

PLDC clusters typically correspond to the same object or

scene, while Graclus often results in weak clusters. Two

typical failure examples in Figure 8 show the case for Gr-

aclus, where multiple scenes connected by long chains end

up in the same cluster. Finally, we discuss how the proposed

clustering scheme can be used for efficient image retrieval.

6. Retrieval Experiments

Since egocentric data is highly redundant, we would like

to aggressively prune the database while maintaining high

recall. By retaining the most salient information in dense

sub-graphs, we can prune the database and exploit redun-

dancy in the data. We query 100 objects or scenes, with

the collected egocentric videos as the database, using the

same pipeline described in Section 4. Example query im-

ages and matching database frames are shown in Figure 10.

For querying, we follow the same two-step pipeline de-

(PLDC-1)

(GC-1)

(PLDC-2)

(GC-2)

Figure 8. Examples of images from Graclus (GC) and PLDC clus-

ters containing the same scene. (1):store-front, (2):train station.

PLDC clusters belong to the same scene, while the corresponding

Graclus clusters (GC) contains a wide range of scenes (connected

through chains).

scribed in Section 4, where we extract DoG features, short-

list 500 candidate images using an Inverted File System,

and perform Geometric Consistency Checks (GCC) on the

top ranked images, to eliminate false positives. We wish

to retain a small percentage of data in the database, while

maintaining recall. In Figure 9, we plot recall against the

percentage of data retained for different pruning schemes:

• Uniform. The simplest scheme to prune the database

is to uniformly sample the data. The points

10−1, 1, 10, 100 in Figure 9 correspond to picking every

1000th, 100th, 10th and every frame (entire database)

respectively. The point 1 corresponds to using the entire

data-set of 1M frames.

• PLDC. We use PLDC with parameters discussed in Sec-

tion 5. The number of clusters for datasets (1) and (2)

is ∼6000 and ∼5000 respectively. We only retain the

representative nodes in each cluster.

• PLDC-P1. Starting from PLDC, we prune clusters

based on the cluster density measure. We retain rep-

resentative nodes in the highest ranked clusters by clus-

ter density, in increments of 1000 till all representative

nodes are chosen.

• PLDC-P2. In addition to PLDC-P1 pruning, we prune

(1) clusters that are small (threshold=5) (2) clusters

where all frames are closely spaced in time, by consider-

ing a threshold on the standard deviation of timestamps

normalized by cluster size (threshold=0.6 works well).

• Graclus-P1. We apply Graclus clustering with 10K par-

titions. Similar to PLDC-P1, we retain representative

nodes in the highest ranked clusters by cluster density
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Figure 9. Comparing different pruning schemes. Pruning based

on the proposed PLDC scheme outperforms other schemes, with a

significant improvement over naive uniform sampling. For (1), we

achieve 90% of peak recall by retaining only 1% of the data.

in increments of 1000, till all representative nodes in

the 10000 clusters are chosen.

• Graclus-P2. In addition to Graclus-P1, we prune clus-

ters based on criteria used in PLDC-P2.

First, we note that the maximum performance is

achieved for the right-most point on the Uniform curve, cor-

responding to the entire database. There is a small drop in

performance (2-5%) when we consider every 10th frame,

but performance drops drastically when we sub-sample by

a factor of 10× and 100×. Second, we note that the PLDC

based pruning schemes outperform their Graclus counter-

parts consistently, while also performing significantly better

than Uniform. The P2 pruning helps for dataset (1), but not

for dataset (2), which suggests that clusters pruned in step

PLDC-P2 might still be useful. Third, compared to Gra-

clus, PLDC schemes provide up to a 15% improvement in

performance for both data sets.

Finally, consider peak performance on the PLDC curves:

we can achieve 90% and 80% of peak recall of Uniform,

while retaining only 1% of data: an increase of 18% and

14% in recall compared to Uniform for datasets (1) and

(2) respectively. The PLDC scheme is effective in finding

salient data in the database: PLDC finds dense subgraphs

and clique-like structures, which typically correspond to

salient objects or scenes, while discarding chains. In con-

clusion, the proposed approach can be used for maintaining

an online cache of the most important database data, and

can be used to significantly speed up retrieval time, com-

pared to querying the entire database.

7. Conclusion

In this work, we show how a large sparse-graph repre-

sentation of egocentric visual data can be used for efficient

object retrieval. We show that popular methods like spec-

tral clustering and Graclus perform poorly for clustering

egocentric visual data, and propose using a density-based

clustering algorithm for overcoming their shortcomings. By

keeping only representative data from dense sub-graphs, we

Figure 10. Example of query and matching images.

are able to prune the database by an order of magnitude with

only a small drop in retrieval performance. In future work,

we plan to consider databases that are 1-2 orders of magni-

tude larger than current size.

A. Parallel Local Density Clustering

The PLDC algorithm consists of two steps, namely (1)

identifying preliminary clusters, and (2) refining them to

obtain the final set of clusters. Before introducing the two

steps, we briefly introduce some basic graph terminologies.

Given a graph G = (V,E), the degree of a node v ∈ V is

the number of edges connected to v in G (i.e., the number

of v’s neighbors), written as deg(v,G). The density of G,

denoted as den(G), is defined as den(G) = 2×|E|
|V |×(|V |−1) .

For a vertex v ∈ V , the neighborhood graph of v consists

of v, all its neighbors (i.e., Nv = {u|u ∈ V, (u, v) ∈ E})

and edges between them. It is defined as Gv = (V ′, E′),
where V ′ = {v} ∪ Nv , and E′ = {(ui, uj)|(ui, uj) ∈
E, ui, uj ∈ V ′}. Additionally, given two node sets VA and

VB , Sim(VA, VB) is defined as Sim(VA, VB) =
|VA∩VB |2

|VA|×|VB | :

a measure of similarity or redundancy between node sets.

A.1. Preliminary clustering step

First, we find a set of preliminary clusters based on local

neighborhood graphs. We define a node u ∈ Gv (i.e., v’s

neighborhood graph) as a core node if u’s degree in Gv is

larger than or equal to Gv’s average degree. Core nodes

have higher degree than other nodes in Gv and thus are more

likely to be part of dense clusters. We define the core graph

of Gv as the subgraph consisting of all the core nodes and

their corresponding edges.

A preliminary cluster is chosen and stored in a set PC
if it satisfies the following constraints: (1) it is a subgraph

of the core graph, i.e., all its nodes are core nodes, (2) it

is dense (with density ≥ 0.7) in [25]) and (3) it is maximal,

i.e., none of its super-graphs satisfy the first two constraints.

We apply the core-removal algorithm in [25] to detect pre-

liminary clusters starting from each node’s neighborhood

graph.

A.2. Refinement step

The set of preliminary clusters, denoted as PC, may

overlap with each other, and we need to remove redun-

dancy in the clusters. We construct a redundancy graph,
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denoted as RG = (VRG, ERG,W ), where the super ver-

tex set VRG = {Ci|Ci ∈ PC} is the set of preliminary

clusters. The super edge set ERG = {(Ci, Cj)|Ci, Cj ∈
VRG, Sim(Ci, Cj) ≥ ω} links pairs of super vertices if

their preliminary clusters overlap and satisfy the similar-

ity criterion. E.g., setting ω to 0 results in non-overlapping

clusters. The vertex weighting function W denotes the den-

sity of each preliminary cluster, i.e., W (Ci) = den(Ci).
Both preliminary and refinement steps of PLDC are il-

lustrated in Algorithm 1. We iteratively select the cluster

with highest density (in Line 5), and remove the cluster

and its neighbors (in Line 6) until the redundancy graph

RG is empty. At this point, we have a set of clusters FC,

where there is no overlap between clusters. Since our clus-

ters are very dense, we also include a step to expand clus-

ters (in Lines 9-11). Given a cluster Ci ∈ FC, we also

include nodes v into Ci if |N(v, Ci)|/|Ci| ≥ t, where

|N(v, Ci)| is the number of nodes in Ci connected to v, and

|N(v, Ci)|/|Ci| is the fraction of nodes in Ci connected to

v. E.g., for t = 0.5, we expand the cluster Ci to include

nodes that connect to more than half the nodes in Ci. By

varying parameter t, we can generate clusters with varying

density. Finally, the exact algorithm for computing repre-

Algorithm 1 Computing PLDC clusters

Input: Graph of egocentric data G.

Output: FC, final set of clusters.

// preliminary clustering step

1: identify preliminary clusters PC from G
2: construct RG = (VRG, ERG,W ) from PC

// refinement step

3: FC = φ, i = 0, Ti = RG ;

4: while V (Ti) �= φ do

// select vertex vi with the highest density

5: vi = arg max
u∈V (Ti)

W (u);

// update Ti: remove vi and its neighbors

6: Ti+1 = Ti − (NTi
(vi) ∪ {vi}), i = i+ 1;

7: FC = FC ∪ {vi};

8: end while

// expansion step

9: for each Ci ∈ FC do

10: ∀v, if |N(v, Ci)|/|Ci| ≥ t, do Ci = Ci ∪ {v};

11: end for

sentative nodes is presented in Algorithm 2.
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