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Abstract

Question and answer pairs in Community Question Answer-
ing (CQA) services are organized into hierarchical structures
or taxonomies to facilitate users to find the answers for their
questions conveniently. We observe that different CQA ser-
vices have their own knowledge focus and used different tax-
onomies to organize their question and answer pairs in their
archives. As there are no simple semantic mappings between
the taxonomies of the CQA services, the integration of CQA
services is a challenging task. The existing approaches on in-
tegrating taxonomies ignore the hierarchical structures of the
source taxonomy. In this paper, we propose a novel approach
that is capable of incorporating the parent-child and sibling
information in the hierarchical structures of the source taxon-
omy for accurate taxonomy integration. Our experimental re-
sults with real world CQA data demonstrate that the proposed
method significantly outperforms state-of-the-art methods.

Introduction

Community Question Answering (CQA) services are In-
ternet services that enable users to ask and answer ques-
tions, as well as to search through historical question-answer
pairs. Examples of such community-based knowledge shar-
ing services include Yahoo! Answers (answers.yahoo.com),
WikiAnswers (wiki.answers.com), etc. CQA services can
provide an effective alterative to search engines for question
answering (Xue, Jeon, and Croft 2008). For example, given
a user’s query question such as “Who was the first human
being on the moon?”, CQA services can return the answer
“Neil Armstrong” directly. In contrast, a search engine will
typically return a long list of ranked Web pages and the user
will have to read through them to manually find the answer
he/she is looking for.

The question and answer (Q&A) pairs of CQA services
are typically organized into a hierarchy of categories to al-
low users to navigate and browse the archived questions and
their answers with ease. The hierarchical categories have the
following characteristics: 1) The questions in the same cat-
egory or subcategory relate to the same topic. 2) The cate-
gories are arranged in a general to specific fashion where the
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root node contains all the categories and the leaf nodes cor-
respond to specific categories. For example, the subcategory
“Health.Dental” is a child category of “Health” in Yahoo!
Answers which focuses on dental health care. 3) The hierar-
chies are generally organized in a way that similar categories
are closer to each other (Doan et al. 2002). Such organiza-
tion of the categories allows users to find what they want
conveniently.

The increasing popularity of CQA services has resulted
in many large-scale archives of historical Q&A pairs that
can be exploited as an important knowledge resource on the
Web. However, these Q&A archives cannot be easily inte-
grated as a comprehensive Q&A archive so that users can
have a better chance to find relevant answers to their ques-
tions. Instead, users often have to search (through the func-
tion of searching within a category offered by CQA ser-
vices (Cao et al. 2009)) or navigate multiple unfamiliarly or-
ganized Q&A archives from different CQA services to find
their answers.

We observe that different CQA services have different
knowledge focus, even though their topics may overlap with
each other. As such, different CQA services used different
taxonomies designed to suit their particular knowledge fo-
cus to organize their Q&A pairs. As there are no simple se-
mantic mappings between the taxonomies of different CQA
services, the integration of these CQA services is not an easy
task. To map the taxonomies from different CQA services
using a machine learning approach, we can formulate it as
a classification problem for questions: given a source tax-
onomy and a target taxonomy, a classifier can be built on
the target taxonomy using the question documents as train-
ing data, and then classify the questions in the source tax-
onomy into the categories in the target taxonomy. Clearly,
this method does not utilize the category information in
the source taxonomy at all (questions in the same source
category are likely to be mapped to similar categories in
the target), and several methods (e.g., (Agrawal and Srikant
2001)) have been developed to exploit such information in
the source taxonomy to improve accuracy of the mapping.

We observe that the parent-child relations and sibling
relations between the categories in the source taxonomy
can provide further valuable information to help charac-
terize the question documents. However, the existing ap-
proaches do not consider them. In this paper, we propose
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a novel approach that is able to incorporate such implicit
information (both parent-child and sibling relationships) in
the source taxonomy for accurate taxonomy integration.
We conducted experiments using two most popular real-
world CQA archives from Yahoo! Answers and Wiki An-
swers. Our experimental results demonstrate that the pro-
posed method significantly outperforms the Enhanced Naive
Bayes (Agrawal and Srikant 2001).

Preliminary

We briefly describe naive Bayesian classifier (NB) for taxon-
omy integration. Suppose we have a set of predefined classes
from the target taxonomy F = {c1, c2, . . . , c|F|}, we aim to
classify a document d in T into a target category in F .

Given a set of training questions D, each question is con-
sidered a set of words and each word in a document is from
the vocabulary V =< w1, w2, . . . , w|v| >. To perform clas-
sification for a question d, we need to compute the posterior
probability, Pr(cj |d), cj ∈ F . Based on the Bayesian prob-
ability and the multinomial model, we have

Pr(cj) =

∑|D|
i=1 Pr(cj |di)

|D|
(1)

Pr(wt|cj) =
1 +

∑|D|
i=1 N(wt, di)Pr(cj |di)

|V |+
∑|V |

s=1

∑|D|
i=1 N(ws, di)Pr(cj |di)

(2)

Here, N(wt, di) is the number of occurrences of word wt in
question di. Pr(cj |d) ∈ {0, 1} depending on the class label
of the question. Assuming that the probabilities of words are
independent given the class, we obtain the NB classifier:

Pr(cj |d) =
Pr(cj)Π

|d|
k=1Pr(wd,k|cj)∑|C|

r=1 Pr(cr)Π
|d|
k=1Pr(wd,k|cr)

(3)

In the NB classifier, the class with the highest Pr(cj |d) is
assigned as the class of d. The NB method is known to be an
effective technique for text classification.

Proposed approach

We present our proposed approach that utilizes the implicit
information in hierarchies of source taxonomy to integrate
hierarchical CQA archives.

Table 1: Notations
Notations Descriptions

T source archive
F target archive
vi a category of T
cj a category of F
d a question of one category
|F| number of categories in F
C(vi) the child node set of vi
S(vi) the sibling node set of vi
P(vi) the parent node of vi
vTi the set of nodes in the subtree rooted at vi

Motivations

Relationships between categories CQA archives are or-
ganized by hierarchies of categories, which are usually tree
structures. The state-of-the-art integration approaches make
use of the data in source archive to enhance the classification
performance by using the classification results of the source
to adjust the classification models. The rationale behind is
that the documents in the same category of source archive
are similar, and thus probably should be integrated into sim-
ilar categories in the target.

However, the existing approaches ignore the hierarchical
structures of the source archive. The categories in a tax-
onomy are not independent. The hierarchical structures of
a CQA archive enclose richer information than individual
categories. For a category node in the source archive, we
consider two types of relations in the hierarchical structure,
namely parent-child and sibling. It is challenging to make
use of the relationships between categories to enhance the
integration since questions in two categories can be classi-
fied to either similar categories or different categories.

Figure 1: Category Integration Example

We illustrate this with a simplified example in Figure 1.
Consider Sibling relation in the source. The questions

of “Football” and “Basketball” are classified into “Team
Sports” category of target taxonomy. Thus we can enhance
them by classifying them into the same category. On the
other hand, Questions in “Tennis” or “Skating” are classified
into categories “Skating” and “Ball Games” respectively,
which needs a different method to improve the performance
of integration by classifying them into different categories.
Similarly, for parent-child relation we can observe similar
phenomenon.

The relationships can be utilized in two different ways to
improve the integration. First, if the questions of two cate-
gories tend to be classified into similar categories in target
taxonomy, we adjust the weight of classification model to
make them more likely to be classified into one category.
We term this by Similarity Re-weighting. Second, questions
of two categories are classified into different set of target cat-
egories. This motivates us to develop techniques to make use
of them in a different way to reduce the probability of mis-
classification. We term this by Dissimilarity Re-weighting.

Tables 2-3 illustrate both strategies. Assume that the sim-
ilarity between “Tennis” and “Basketball” is 0.01 and they
need dissimilarity re-weighting; and the similarity between
‘Basketball” and “Football” is 0.6 and they need similarity
re-weighting (we will elaborate how to compute similarity
later on). Table 2 shows the initial prior probability of clas-
sifying a source category (corresponding to a row) into a tar-
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Table 2: Initial prior probability
Ball Games Team Sports Skating

Tennis 0.7 0.2 0.1

Football 0.3 0.5 0.2

Basketball 0.3 0.5 0.2

Table 3: Prior probability after adjustment
Ball Games Team Sports Skating

Tennis 0.8 0.1 0.1

Football 0.24 0.66 0.1

Basketball 0.24 0.66 0.1

get category (a column). We use the probability of “Tennis”
to adjust the “Football” and “Basketball” to get the adjusted
prior in Table 3. With the adjusted prior, the questions of
“Football” in T are more likely to be classified to “Team
Sports” in F , but not “Ball Games”; questions of “Tennis”
in T are more likely to be classified to “Ball Games” in F ,
but not others.

Category with mixed topics In a CQA archive, a leaf
category can be represented by the questions contained in
the category. However, a non-leaf category is characterized
by both questions contained in the category, and questions
contained in its descendant nodes. For example, a user sub-
mits a “NBA” question by navigating through the categories
(“Sports → Basketball → NBA”). Although the ques-
tion is more related to specific category “NBA”, it is also re-
lated to generic categories “Sports” and “Basketball”. More-
over, users may submit questions to upper levels although
the questions are more related to lower levels since it is eas-
ier to navigate and choose the upper levels.

An overview

We extend the Bayes rule in Eq. 3 to incorporate the hier-
archical information in source taxonomy T . The posterior
probability of category cj in F given a question document d
belonging to category vi in T is computed as

Pr(cj |d, T
vi) =

Pr(cj)Pr(T vi |cj)Pr(d|T vi , cj)

Pr(d, T vi)

// the above is according to chain rule

=
Pr(T vi)Pr(cj |T

vi)Pr(d|T vi , cj)

Pr(d, T vi)

∝ Pr(cj |T
vi)Pr(d|T vi , cj) (4)

where T vi represents category vi and its hierarchical rela-
tions in T . Pr(T vi) and Pr(d, T vi) are the same for all
classes, and thus do not affect relative probabilities.

The remaining problem is to estimate the prior probabil-
ity Pr(cj |T

vi) and the likelihood Pr(d|T vi , cj). To esti-
mate the prior probability Pr(cj |T

vi), we apply Similarity
Re-weighting and Dissimilarity Re-weighting to make use
of the relationships enclosed in a hierarchical source taxon-
omy. A challenge here is to identify when to use Similarity
Re-weighting or Dissimilarity Re-weighting. We tackle this
by developing a similarity measure. To compute similarity,
we represent a leaf category with its probability distribution
over the target taxonomy. For a non-leaf category that usu-
ally contains mixed topics from its descendant nodes, we

take into account its descendant nodes to help to represent
it. We also adjust the likelihood probability with the infor-
mation of source taxonomy.

We can build a flat or a hierarchical classifier for the tar-
get CQA archive where each target category will contain the
questions from source categories that are classified into it.
While the proposed solution is applicable to both flat and hi-
erarchical classifier, our experimental results show that their
performance is similar. For presentation purpose, we use the
flat classifier for the target archive.

Computing prior probability

We present the proposed method of incorporating the influ-
ence of child, sibling and parent nodes of a category vi in
T to compute its prior probability in target taxonomy. The
challenge is to decide whether they play a similarity or dis-
similarity re-weighting role.

The prior probability of questions in vi being classified
into category cj in the target taxonomy F is computed by

Pr(cj |T
vi) = φPr(cj) + (1 − φ)Pr(cj |vi)) (5)

Pr(cj |vi) =

max{0, L(cj|v
T
i )+L(cj|C(vi))+L(cj|(S(vi) ∪ P(vi)))}∑

k(max{0, L(ck|vTi )+L(ck|C(vi))+L(ck|(S(vi)∪P(vi)))})
(6)

where Pr(cj) is the conventional prior computed by Eq.1,
and Pr(cj |vi) is the contribution from source taxonomy;
φ(0 ≤ φ ≤ 1) is a parameter to combine them.

Next, we discuss how to compute likelihood L(cj|v
T
i )

(contribution from subtree of vi), L(cj|C(vi)) (contribution
from vi’s child nodes), and L(cj |(S(vi)∪P(vi))) (contribu-
tion from vi’s parent and sibling nodes) in Eq. 6. The contri-
bution value can be negative (will be clear later on) and we
set 0 as the minimum value.

L(cj|v
T
i ): Recall that the descendant nodes of a non-leaf

category in T help to characterize the category. Hence, we
incorporate the probability distribution of descendant nodes
into the probability distribution of a category vi according to
their similarity to vi.

L(cj|v
T
i ) = Pr(vi→cj) +

∑
v∈vT

i
\{vi}

Sim(vi, v)×Pr(v→cj)

(7)

pj = Pr(v → cj) =
|v → cj |

|v|
(8)

where |v → cj | is the number of questions in v that are
classified to category cj in target taxonomy.

We proceed to present the similarity function
Sim(vi, vj). A straightforward approach to calculating
the similarity between two categories vi and vj is to repre-
sent each category by a word vector of its questions (e.g.,
TF-IDF) and then compute their cosine similarity.However,
we aim to see if two categories are classified into similar
categories in target taxonomy.

Hence, we use the probability distribution pv of a cat-
egory v in the target taxonomy to compute similarity. The
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probability distribution vector of a category v of T in target
F is denoted by pv = {p1, p2, ..., p|F|}, where each pj is
calculated as Eq.8. We compute their distance by

Dist(vi, vj) = ‖pvi
− pvj

‖2 (9)

To transform the distance measure to similarity, we use
Eq.10 (Von Luxburg 2007).

Sim(vi, vj) = e−
‖pvi

−pvj
‖2

2σ2 (10)

where a larger parameter σ will result in larger similarity
values, and we set σ = 1.0 (Von Luxburg 2007).

We can obtain a probability vector pvT
i

to represent vTi
by using Eq. 7 for each cj , cj ∈ F .

L(cj |C(vi)): The contribution from vi’s child nodes is
computed by

L(cj|C(vi)) =
∑

vij∈C(vi)

E(vi, vij)L(cj|(v
T
ij )) (11)

Given a category vi in T and its child category vij , vij ∈
C(vi), we have

E(vi, vij) = sgx(vi, vij) · Sim(vi, vij) (12)

sgx(vi, vij) =

⎧⎨
⎩

1, if d̄ > dij and |d̄− dij | > ε,
−1, if d̄ ≤ dij and |d̄− dij | > ε,
0, if |d̄− dij | ≤ ε,

d̄ =
‖pΩvi

− pvi
‖2 + ‖pΩvi

− pvij
‖2

2
dij = ‖pvi

− pvij
‖2

where ε is a threshold value close to 0 and is set at 0.001;
Ωvi = {{vi} ∪ C(vi)}={vi, vi1, vi2,..., vi|C(vi)|}}, and its
probability distribution vector pΩc

is computed by Eq.8; we
set σ = (d̄− dij) in computing Sim(vi, vij) in Eq. 10.

Note that sign function sgx(vi, vij) is used to deter-
mine whether the contribution of cij is similarity re-
weighting (sgx(vi, vij)=1), or dissimilarity re-weighting (-
1), or should be ignored (0).

L(cj |(P(vi) ∪ S(vi))): We consider parent node and sib-
ling nodes together since their influence on vi is similar. The
influence of parent node and sibling nodes on vi’s prior prob-
ability can be computed similarly as we do for child nodes.
We ignore the details due to space limitation.

L(cj |(P(vi) ∪ S(vi))) = E(vi,P(vi))Pr(cj |P(vi))

+
∑

sij∈S(vi)

E(vi, sij)L(cj |(s
T
ij)) (13)

We only consider the parent category P(vi) of vi, but not
further ancestor categories of vi. This is because we inte-
grate each category in T in a top-down order, and thus the
influence of P(vi)’s ancestors has already been considered
when we integrate P(vi). As such, the influence will be in-
herited when we process vi.

Likelihood estimation

The questions of a category in source taxonomy are expected
to be classified into similar categories in target taxonomy.
This motivates us to use the questions of a source category
to adjust the likelihood estimation as EM (Nigam et al. 2000)
algorithm uses unlabeled data to modify likelihood estima-
tion. Given a word w in source category vi and target cate-
gory cj , we estimate Pr(w|T vi , cj) by

Pr(w|T vi , cj) =

1+
∑

d∈vi
PrNB(cj |d)N(w, d)+

∑
d∈cj

N(w, d)

|V |+
∑|V |

s=1[
∑

d∈vi
PrNB(cj |d)N(ws, d)+

∑
d∈cj

N(ws, d)]

(14)

where PrNB(cj |d) is the probability of d belonging to cj
using the NB algorithm.

CQA Integration Approach (CQai)

Given a question d in vi of T , the probability of d being
integrated to category cj of F is

Prd∈vi(cj |d) ∝ Pr(cj |T
vi)×

∏
[Pr(w|T vi , cj)]

N(w,d)

(15)
where Pr(cj |T

vi) is computed by Eq. 5, and Pr(w|T vi , cj)
is computed by Eq. 14.

The algorithm, described in Algorithm 1, is called CQai.

Algorithm 1: CQA Integration (CQai)

Input : T : the source taxonomy,
F : the target taxonomy

Result: R: a set of pair, < d, c∗ >, d ∈ T , c∗ ∈ F
1 R′ ← Use NB to classify questions in T
// each pair of R′ is question and its category in F

2 foreach category vi ∈ T do

3 Use Eq.7 to calculate L(cj |v
T
i ) for each cj in F

4 Use Eq.11, Eq.12 and Eq.13 to calculate L(cj |C(vi)),
L(cj |(P(vi) ∪ S(vi))) for each cj in F

5 Use Eq.6 and Eq.5 to calculate Pr(cj |T
vi)

6 Use R′ and Eq.14 to update probability of each term in F
7 foreach d in vi do
8 c∗ = argmaxcj Pr(cj |d) is the category of d;

Pr(cj |d) is calculated with Eq.15
9 add < d, c∗ > to R

10 Return R;

Analysis

We next analyze the rationale of the weighted function of
E(.,.) in the context of incorporating child node information,
and the analysis equally applies to parent and sibling nodes.
Recall that given a source category vi and its child node set
C(vi), we construct Ωc = {vi, vi1, vi2, ..., vi|C(vi)|}.

Consider a child category vij . Let d1 = ‖pΩc
− pvi‖ (the

distance between vi and Ωc), d2 = ‖pΩc
−pvij‖ (the distance

between cij and Ωc), and d3=‖pvi − pvij‖ (the distance be-

tween vi and vij ). Recall d̄ = d1+d2

2 in Eq. 12.
If the questions of Ω are classified into a single category in

F , it means the questions of vi and C(vi) should be classified
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together. Hence, (d̄ − d3) is close to 0. In the case, we have
∀ vij ∈ C(vi), sgx(vi, vij) = 0 ⇒ E(vi, vij) = 0, i.e. we
disregard the influence of C(vi).

We next consider that the questions of Ω are classified into
several categories in F . We have the following 4 cases.

1) d3 < d1 < d2 or d3 < d2 < d1: Due to d3 < d1
and d3 < d2. vi and vij should be closer, compared with the
other category in Ω. In other words, vij should play the role
of similarity enhancement for vi. When d3 < d1 < d2 or
d3 < d2 < d1, we know d̄ − d3 > 0, and thus E(.,.) covers
the case.

2) d1 < d2 < d3 or d2 < d1 < d3: Due to d1 < d3
and d2 < d3, the distribution of vi in F is different from vij .
Hence, vij should play the role of dissimilarity enhancement
for vi. In this case, d1 < d2 < d3 or d2 < d1 < d3, we have
d̄− d3 < 0, and thus E(.,.) can cover the case.

3) d1 < d3 < d2: We rewrite d̄− d3 to
(d1−d3)+(d2−d3)

2 .

Consider the case |d1−d3| < |d2−d3|. It means vi is more
similar with vij than Ω, and thus vij should be a similarity
enhancement for vi. As |d1−d3| < |d2−d3| and d1 < d3 <
d2, we can get (d3 − d1) < (d2 − d3) ⇒ d̄ > d3, and thus
E(.,.) can cover the case. The above analysis is applicable to
the case |d1 − d3| > |d2 − d3|.

4) d2 < d3 < d1: It is similar to case 3).

Cases 1)-4) cover all the relationships between d1, d2, d3.
Hence, E(.,.) can work well on all the cases.

Empirical Evaluation

We compare our proposed CQai algorithm with three exist-
ing state-of-the-art CQA integration methods, namely, NB,
ENB and EM. We use F-score to evaluate the performance
of the four integration techniques.

DataSets and Experimental Settings

We collected two real-world CQA datasets Y and W
from Yahoo! Answers and Wiki Answers respectively.
For Y , we used the publicly available Yahoo! Webscope
Datasets, which contains 3,895,298 questions and their an-
swers (Q&As) written in English. For W , we managed
to crawl two Wiki Answers categories: Health and Sports
(11/15/2010 version), and they contain 173,742 and 169,020
Q&As respectively. Additionly, Health in W has 732 subcat-
egories, Sports has 734, and each of them has 6 levels.

Our evaluation task is to integrate the crawled Wiki An-
swers W into the Yahoo! Answers Y , i.e. W ⇒ Y . Also,
since about a third of the questions in Wiki Answers W have
answers while the rest do not (see table 4), we also test if us-
ing the answers together with the questions will enhance the
integration accuracy as compared with using only the ques-
tions for the task.

Table 4: Number of Answers in Wiki Answers dataset
Total Qs Qs with As Qs without As

Health 173,742 67,912 105,830

Sports 169,020 68,094 101,926

We divided Health and Sports of W into training part and
test part with a ratio of 70 : 30 (Health: 123601/50141,

Sports: 118314/50706). We then randomly chose 500 ques-
tions from each test dataset and manually labeled them with
the categories in Y as the ground-truth. To make the anno-
tation manageable, we used the first two levels of taxonomy
for Y , which includes 351 categories.

Note that the performance of ENB would be largely af-
fected by its parameter ω. In our comparisons, we used the
recommended ω values (0, 1, 3, 10, 30, 100, 300, 1000) and
report the best results for comparison. For our proposed
CQai algorithm, we use the default parameter φ = 0.15 in
all our experiments. In fact, we found that we can always get
the best results (the different Micro F-scores are less than
1%) as long as φ is within the range of [0.1 − 0.3]. With
larger values of φ (e.g., larger than 0.5), the results become
worse which indicates the importance of incorporating the
hierarchical structures from source taxonomy.

Experimental Results

Table 5 and Table 6 show the comparison results among the
4 techniques on using training questions without answers
and with answers, respectively.

Table 5: Experimental Results Without Answers
NB ENB EM CQai

Health macro-F 0.3176 0.4747 0.3193 0.5793
micro-F 0.4891 0.6142 0.4903 0.6765

Sports macro-F 0.4318 0.4712 0.4890 0.5175
micro-F 0.6208 0.7246 0.6831 0.7862

From Table 5, we can see that both ENB and
EM performed better than NB, with improve-
ments of (15.72%, 12.51%)/(3.94%, 10.38%) and
(0.17%, 0.12%)/(5.72%, 6.22%) on Health/Sports datasets
respectively in terms of macro-F and micro-F score. We
noticed that ENB performed better than EM algorithm. One
possible reason is that Wiki Answers has much less data
(unlabeled) as compared with Yahoo! Answers, resulting in
EM not being able to boost NB very much, especially in
Health data. Our CQai algorithm significantly outperformed
ENB (10.46%, 6.23%)/(4.63%, 6.16%) on Health/Sports
dataset in terms of macro-F and micro-F score, since our
approach can leverage on additional hierarchical structural
information implicit in the source taxonomy W . In addition,
our method can compute the probability distribution of
all possible categories in the target taxonomy Y for each
category of the source taxonomy W and then exploit the
relationships of the hierarchical structure to adjust the
probability distribution for accurate classification.

When answers are also available, Table 6 shows that hav-
ing the answers can help improve the integration perfor-
mance for all the 4 techniques. This is easy to understand—
the answers provide additional information about the ques-
tions. In fact, having the questions alone may not have suffi-
cient information for accurate classification. For example,
one question in the Wiki data is “Why do people crave
drugs so much?” Without using its answer, NB will clas-
sify it as “Health/Other” which is wrong since the ques-
tion should belong to “Health/Mental Health” category in
Y . However, with the help of its answer, NB classifier is
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Table 6: Experimental Results With Answers
NB ENB EM CQai

Health macro-F 0.4980 0.7366 0.5267 0.7798
micro-F 0.5071 0.6272 0.5256 0.7108

Sports macro-F 0.5482 0.5900 0.6131 0.6551
micro-F 0.6556 0.7692 0.7037 0.8038

able to make correct classification since the answer used sev-
eral relevant terms about the mental health, such as “stress”,
“relaxed” and “pressure” etc. We also found that our CQai
achieved the best results with macro-F and micro-F score
(77.98%, 71.08%) and (65.51%, 80.38%) on Health and
Sports data respectively. Note that as we are dealing with
a challenging scenario which requires classifying the Q&As
into 351 categories in Y , our classifier can be considered
quite accurate with such performance.

Related Work

State-of-the-art taxonomy integration methods made use of
the category information in the source taxonomy to improve
classification results by assuming that the documents in the
same category are likely to be in similar classes in the tar-
get taxonomy. Enhanced Naive Bayes (Agrawal and Srikant
2001) is based on the idea. The framework proposed by
(Rajan, Punera, and Ghosh 2005), which is based on en-
hanced Naive Bayes, further allows the building of new cat-
egories in integration. Semi-supervised learning approaches
in which the source documents are treated as additional un-
labeled training data have also been employed to enhance
the accuracy of the resulting classification model built on
the target taxonomy. This includes the cross-training ap-
proach (Sarawagi, Chakrabarti, and Godbole 2003), boot-
strapping approach (Zhang and Lee 2004a), and transductive
SVM (Zhang and Lee 2004b). However, none of the above
have made use of the information in the hierarchical struc-
ture of source taxonomy as we did.

Other taxonomy integration approaches have impractical
assumptions for CQA integration. The GLUE system (Doan
et al. 2002) performs 1-to-1 mapping from a category in the
source taxonomy to a category in the target taxonomy. How-
ever, the notion of 1-to-1 mapping is too restrictive for gen-
eral CQA integration. (Ichise, Takeda, and Honiden 2003)
used the τ -statistic to determine whether the number of over-
lapping documents between two nodes from two taxonomies
is high enough to consider the two nodes as identical. The
method requires a significant number of common data in-
stances between the two taxonomies as does (Zhang and
Lee 2004a). Again, this requirement is impractical for inte-
grating two CQA archives that may share few common ques-
tions. Moreover, this method also requires 1-to-1 mapping.

Other related works can be found in the area of ontology
matching, in which heuristic methods are usually developed
to merge the elements of the ontologies. Some of the popular
ontology matching methods are the Chimaera (McGuinness
et al. 2000), FCA-MERGE (Stumme and Maedche 2001),
and PROMPT (Noy and Musen 2000), which require human
interaction. More representative works on ontology match-
ing can be found in (Euzenat and Shvaiko 2007).

Conclusions

Question and answer pairs in CQA archives are typically or-
ganized into categories that are hierarchically structured to
facilitate users to search for the answers to their questions.
Current integration approaches made use of the category in-
formation in the taxonomies for integrating different Q&A
archives, but they overlook the informative parent-child and
sibling relationships in the hierarchical structures of the tax-
onomies. This paper shows that the hierarchical structures of
the categories in a source taxonomy can be exploited to en-
hance the integration performance. Experiments on real data
showed that the proposed method CQai is more effective in
integrating CQA archives than previous approaches.
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