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Abstract. Clinical Named Entity Recognition (CNER), the task of
identifying the entity boundaries in clinical texts, is essential for many
applications. Previous methods usually follow the traditional NER meth-
ods that heavily rely on language specific features (i.e. linguistics and
lexicons) and high quality annotated data. However, due to the problem
of Limited Availability of Annotated Data and Informal Clinical Texts,
CNER becomes more challenging. In this paper, we propose a novel
method that learn multiple representations for each category, namely
category-multi-representation (CMR) that captures the semantic relat-
edness between words and clinical categories from different perspectives.
CMR is learned based on a large scale unannotated corpus and a small
set of annotated data, which greatly alleviates the burden of human ef-
fort. Instead of the language specific features, our proposed method uses
more evidential features without any additional NLP tools, and enjoys
a lightweight adaption among languages. We conduct a series of exper-
iments to verify our new CMR features can further improve the perfor-
mance of NER significantly without leveraging any external lexicons.

1 Introduction

Electronic Medical Records (EMR) contains valuable and detailed medical in-
formation of patients accessed and modified in a digital format [15]. Identifying
the boundaries of clinically relevant entities in clinical texts from EMR and clas-
sifying them into predefined categories such as disease, treatment and symptom,
namely Clinical Named Entity Recognition (CNER) is a fundamental task both
in medical data mining and information extraction. CNER could benefit many
applications in medical domain such as comorbidity analyses, syndromic surveil-
lance, adverse drug event detection and the analysis of drug-drug interaction [12],
as well as the NLP related tasks like information retrieval, relation extraction
and question answering [18].

Most existing work of NER in medical domain [6, 10, 21, 4, 1] simply follows
the conventional NER methods in general domain which focus on identifying



general named entities such as person, location and organization. They usually
utilize linguistic features based on syntactics and lexicons1 to feed a supervised
model, e.g. SVM [24], CRF [21] or a hybrid of several classification models [6,
10]. However, these methods may achieve poor performance in realistic applica-
tions because (i) they heavily depend on linguistic features and lexicons, which
varies greatly among different datasets or across various languages, and (ii) the
annotated data for the supervised model is not always available.

Despite the success of traditional NER, CNER receives relatively few studies
which has the following challenges:

Limited Availability of Annotated Data As mentioned above, previous
works following traditional NER rely on a supervised model over a high qual-
ity training data. However, in the clinical domain, annotated data are not only
expensive (usually requires domain expertise) but also often unavailable due to
patient privacy and confidentiality requirements. Even though there are a few
public available annotated datasets for CNER task, such as i2b2 2010 [25] and
ShARe/CLEF eHealth 2013 [23], they are usually insufficient for training an
applicable system. For example, ShARe dataset contains only 300 documents
including 9,768 entity mentions annotated. On the other hand, the gap among
different languages always requires new language-specific annotated data. There-
fore, we need to use the unlabeled data, usually available in clinical domain, such
as MIMC III [11], to alleviate the burden of human effort involved in creating
annotated resources and improve the performance of CNER.

Informal Clinical Texts A clinical text is dictated by a doctor (and transcribed
later by a third-party) to capture the proceedings of a doctor-patient interac-
tion, or to document the results of a medical procedure or test [12]. It is usually
far different from general texts and even scholarly medical literatures. Clinical
texts have the following unique characteristics: 1) incomplete sentences, 2) in-
formal grammar, and 3) littered with misspellings and non-standard shorthand,
abbreviations and acronyms. All these characteristics result in the unreliability
of the linguistic based features used in the traditional NER and the effectiveness
of NLP tools (e.g. POS tagging). Therefore, we need to explore more eviden-
tial features with good generalization and independent of language to cope with
characteristics of clinical texts.

To address these challenges, our solution is to learn semantic features by
taking advantage of large scale unannotated corpora, instead of the language
specific features, such as syntactic and lexicon. The semantic features will be
trained in an unsupervised way, and measure the similarity between the words in
clinical texts and CNER categories. Our solution doesn’t rely on any additional
NLP tools which can avoid the unreliable linguistic features, and alleviate the
burden of language specific annotated data.

In this paper, we propose a unified solution for CNER without leveraging
any language specific features. It induces multiple representations for each cat-
egory, namely category-multi-representation (CMR) that is used to measure the

1 These methods extract lexicons from UMLS [3] or MeSH:
https://www.nlm.nih.gov/mesh/meshhome.html.



semantic similarity between words and categories. Specifically, we first construct
a semantic space of clinical texts by employing a model of distributed represen-
tation (word embedding) over a large unannotated clinical corpus (e.g. MIMC
III). As each entity mention has been classified into a certain predefined category
in the annotated dataset, each category could be regarded as a vector cluster in
the semantic space. Then we learn multiple representations for each category
from 4 different aspects by leveraging the statistics and context information de-
rived from the large unlabeled data to holistically capture the meaning of each
category. That is, CMR shares a common semantic space with words in clinical
texts which could easily be used to measure the semantic similarity between
words and categories. Based on these representations, our proposed model only
requires a small annotated dataset for training a sequence labeling model due
to the good generalization ability of CMR. For inference, we adopt a heuristic
method to assign a threshold for each CMR, which aims to filter out irrelevant
noise (words) belonging to the corresponding category.

Contributions Our main contributions are summarized as follows.

– To the best of our knowledge, this is the first work for CNER that represents
category from multiple perspectives, which is based on unlabeled clinical
corpus without any additional NLP tools.

– Our CNER model is a united method, which is independent of language-
specific features (i.e. lexicons and linguistic features), and lightweight for
adaption to identify clinical entities in another language and another dataset.

– Extensive experiments are conducted on two public datasets and the results
demonstrate that our new CMR features can further improve the perfor-
mance of CNER by 2.05% in terms of F1 score.

2 Problem Definition

Given a clinical text s = 〈w1, w2, ...w|s|〉 and a set of predefined categories
C = {c1, ...c|C|}, the output of our task is to generate a list of tags ti for each
word wi ∈ s. ti ∈ T = {cp|c ∈ C, p ∈ P−{O}}∪{O} is a category-position com-
binatorial tag for wi, where P = {B, I,O} is a set of position tags indicating the
position information of a word located in an entity mention. B and I stand for
beginning, intermediate positions of a multi-word entity respectively and O de-
notes outside of any entity mention. In short, our task is to identify every entity
mention m = 〈wi, · · · , wj〉, i ≤ j (perhaps including multiple words) occurring
in the clinical text s and then classify it into a predefined category ci ∈ C. Fig.1

He did have burst of atrial fibrillation and was started on Amiodarone gtt

Fig. 1. An example of labeling process for CNER.

gives an example of sequence labeling for CNER, in which C = {Pr, Tr, Te},
represents Problem, Treatment and Test respectively.



3 Our Proposed Approach

Our proposed method presupposes the existence of two resources: (1) an anno-
tated corpus L in which each word has been annotated as a predefined category
c ∈ C; (2) a much larger unannotated clinical corpus U . The main steps of our
method are as follows. Firstly, we construct a semantic clinical space by training
a word embedding model over U . Each predefined category can be seen as a
word cluster in this space. Secondly, we learn abstract representations for each
category from many different perspectives (CMR) derived from U . Thirdly, we
generate a bundle of novel features for the target word based on its distance
to each of CMR. Lastly, an appropriate learning algorithm is applied to L with
the generated new features to evaluate our method. The focus of this paper is
primarily on the first three steps.

3.1 Generating Semantic Space

We first construct a semantic space by learning word embeddings (e.g. GloVe [17]
and Word2vec [16]) on U to obtain low-dimensional, real-valued vector represen-
tation for each word in clinical texts. Each word w ∈ U ∪ L is represented as a
point (vector) vw in this semantic space. If an entity mention m = 〈wi, · · · , wj〉
contains more than one word (i < j), we simply represent it as the mean vector

of its component words, i.e. vm = ( 1
j−i+1 )

∑j
k=i vwk

.

3.2 Category Multi-Representation

We first build a category-words set for each predefined category based on L and
U . That is, ∀ci ∈ C, we get ci = {wi1, · · · , wij , · · · , wi|ci|} where each wij has
been annotated as ci in training dataset of L and occurs at least 100 times in U .
Then each predefined category can be regarded as a word cluster in the semantic
space. The key point is how to represent the cluster of each category in order to
more holistically capture the meaning of it.
One-center Representation Since the distance between vectors indicates the
strength of the semantic relatedness of their corresponding words in the semantic
space, we regard each category as a hypersphere constructed by the vectors in
its category-words set. Each word located in the hypersphere of a category is
more likely classified into it without considering any orthographic and syntactic
features. In another word, the closer a word w is to the centre of the hypersphere
of a category ci, the more likely the word w belongs to the category ci. Then
we represent the category ci as the centroid vector of the semantic vectors of its
category-words set ci as follows:

Ro(ci) = centroid(ci) = 〈mediani1, · · · ,medianin〉, i = 1, · · · , |C| (1)

where the centroid vector is defined as the median value of each dimension of
the semantic vectors of words in ci and n is the dimension size of the embedding
vectors.
Multi-sub-center Representation Each predefined category usually can be
subdivided into several sub-categories in clinical texts. For example, category
Disease can be classified as Mental or Behavioral Dysfunction and Neoplastic



Process. Words in the same sub-category are more similar (closer in seman-
tic space) to each other than to those in other sub-categories. In other words,
the category may not be a normal hypersphere, it could be represented as sev-
eral smaller sub-hyperspheres. Therefore, we use a clustering algorithm (Affinity
propagation used in this paper which does not predefine the number of clusters)
to group all words in each category ci into Ki clusters {si1, · · · , sij , · · · , siKi

}
where sij is a subset of words in ci. Then, we represent each category ci as the set
of centroids of its sub-hyperspheres. The premise of this representation is that
some words which are a bit far from the centroid of the category are probably
close to the centroids of some sub-hyperspheres.

Rm(ci) = {centroid(si1), · · · , centroid(siKi
)}, i = 1, · · · , |C| (2)

Influence Representation The first two representations do not consider the
importance of component words of categories. However, different words belong-
ing to a certain category may have different influence on the category. Those
mentions occurring more frequently in U generally are more prominent and rep-
resentative for their categories. For example, since mentions cancer and tumor
representing certain diseases occur in U frequently, we consider they are more
representative for category Disease and those mentions related to them closely
such as Carcinoma are more likely be recognized as Disease. We define the in-
fluence factor if(wij) of each word wij ∈ ci as the normalized frequency of the
mention that it belongs to2 occurring in U . Then we represent each category as
the weighted mean vector of word embeddings of its category-words set:

Ri(ci) =
1

|ci|

|ci|∑
j=1

if(wij) · vwij , i = 1, · · · , |C| (3)

Context Representation Our last category representation bases on following
assumption: contexts of each mention occurring in U embrace rich information
and patterns which are helpful to recognize the entity mention. For example, “the
effect of · · · ” is always followed by a drug name. Therefore, adding context infor-
mation into category representation will be useful. We consider a fixed length of
window for each mention: two previous words and two following words in U . Then
we construct a set of context words for each category cwi = {cwi1, · · · , cwi|cwi|}
where cwij denotes a bigram or unigram context word occurring over a certain
number of times in U (e.g. 50). Then we represent each category ci as the mean
vector of the set of its context words:

Rc(ci) =
1

|cwi|

|cwi|∑
j=1

vcwij
, i = 1, · · · , |C| (4)

where vcwij
denotes the embedding vector of a context word cwij .

In summary, we learn 4 representations R∗(ci), ∗ ∈ {o,m, i, c} for each pre-
defined category ci which capture the four different semantic information of it.
2 If one word belongs to multiple mentions, we simply choose the one with highest

frequency.



3.3 Generating CMR Features

We first calculate 4 kinds of semantic relatedness between target word wj and a
category ci based on CMR by leveraging a distance function such as Euclidean
distance as follows.

do(wj ,Ro(ci)) = dist(vwj , centroid(sj))

dm(wj ,Rm(ci)) = min
k∈[1,··· ,Ki]

dist(vwj , centroid(sik))

di(wj ,Ri(ci)) =
1

|ci|

|ci|∑
k=1

if(wik) · dist(vwj ,vwik )

dc(wj ,Rc(ci)) =
1

|cwi|

|cwi|∑
k=1

dist(vwj ,vcwik )

(5)

Then we define a threshold of each category for each CMR based on the dis-
tances between the annotated word and each representation of its corresponding
category, which is selected with the optimization objective to maximize Fβ-score.

τ∗(ci) = arg max
t∗∈V

((1 + β2)
P (t∗) ·R(t∗)

(β2 · P (t∗)) +R(t∗)
), ∗ ∈ {o,m, i, c} (6)

where P is precision and R is recall; V = (0, 0.01, 0.02, · · · , 1); β determines the
weight that should be given to recall relative to precision. The lowest threshold
τ∗(ci) is chosen that optimizes the Fβ-score.

Finally, we generate one feature per representation of each predefined cate-
gory. The value of the feature is either True or False depending on whether the
calculated distance is above the threshold τ∗(ci) or not.

f ci∗ (wj) =

{
0 if f∗(wj ,R∗(ci)) > τ∗(ci)
1 if f∗(wj ,R∗(ci)) ≤ τ∗(ci)

, ∗ ∈ {o,m, i, c} (7)

4 Experiments

4.1 Data Sets

To the best of our knowledge, the annotated corpora of the i2b2/VA 2010 shared
task (i2b2) and ShARe/CLEF eHealth 2013 Shared Task (ShARe) are the only
two public available datasets for CNER. Table 1 and 2 show the statistics of these
two datasets respectively. In i2b2, 3 different categories have been annotated:
Problem (Pr), Treatment (Tr), Test (Te) from discharge summaries and progress
notes. ShARe involves annotation of disorder mentions in a set of narrative
clinical reports. Since ShARe does not provide the exact category of each disorder
mention, we map each disorder mention into a category by ourselves according
to its linking UMLS CUI (Concept Unique Identifier)3. Then we get 11 different

3 In UMLS, each concept (entity) is represented by its CUI and is semantically clas-
sified into one of semantic types.



semantic types for this dataset and merge them into 5 categories: Anatomical
Abnormality (AA), Pathologic Function (PF), Injury or Poisoning (IP), Signs
and Symptoms (SS) and Others4(O) according to hierarchies of semantic types
in UMLS. Notice these two datasets have totally different categories and our
proposed method could work well on both of them which will be demonstrated
in following subsections. Two public available corpora are used as unannotated

Table 1. The statistics of i2b2

Dataset Pr Tr Te All
Training 11968 8500 7369 27837

Test 18550 13560 12899 45009

Table 2. The statistics of ShARe

Dataset AA PF IP SS O All
Training 250 2304 221 838 1525 5138

Test 157 2107 96 735 1535 4630

clinical data: the 378,000 Medline abstracts that are indexed as pertaining to
clinical trials and MIMIC III that comprises deidentified health data associated
with 40,000 critical care patients. Then we build a semantic space by training a
word embedding model — GloVe [17] used in this paper — on these two corpora
(merged).

4.2 Our Models and Parameter Settings

In our experiments, We apply two state-of-the-art sequence labeling models:
CRF and BLSTM+CRF (BLSTM for short) with the generated new CMR fea-
tures to evaluate our method. We implement CRF employing CRFsuite5 and
BLSTM using theano library.6 The parameter settings of these two models are
showed in Table 3 and 4 respectively.

Table 3. CRF settings

C-value
context regular-
window ization

5 2+2 L1&L2

Table 4. BLSTM settings

Layers
Layer batch activation learning drop

epochs optimizer
size size function rate out

2 100 64 RELU 1E-04 0.5 100 adam

The considered performance metrics are precision, recall and F1-score and
we adopt the strict metrics for evaluation used in both tasks. Performance scores
are macro-averaged over classes, giving equal weight to all classes.

4.3 Threshold Settings for Determining CMR Features

We first investigate the impact of providing threshold of CMR that determine the
feature values on NER performance. Fig.2 shows the threshold setting procedure
for different CMR in which threshold is set by finding the distance that maxi-
mizes F1-score on i2b2. It can be seen that the thresholds are generally lower
and the F1-scores higher for Multi-sub-center Representation and One-center
Representation (also observed on ShARe). It indicates these two representations

4 For those mentions mapping to unknown CUI, i.e. CUI-less.
5 http://www.chokkan.org/software/crfsuite/
6 http://deeplearning.net/software/theano/



are better to separate the categories and important to capture the meaning of a
category. This is confirmed in the subsequent experiments, the results of which
show that the highest performance is obtained with these two representations.
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Fig. 2. Threshold Setting Procedure for CMR on i2b2.

To study the impact of changing the optimization objective to various Fβ-
scores on NER performance, experiments are conducted with the following β
values: 0.5, 1.0, 2.0 and 5.0. The highest F1-score are observed when β is set to
1.0 in i2b2 and 2.0 in ShARe. Then in our following experiments, we set β=1
for i2b2 and β=2 for ShARe.

4.4 Comparison with Different CMR Features

In order to study and verify the effectiveness of the proposed new CMR features
to the learning algorithms, our four groups of CMR features are evaluated and
compared one by one. For CRF model, we combine our CMR features with a set
of traditional features — orthographic and syntactic features7 — as our baseline
which is the most traditional method in CNER. For BLSTM, we take the word
embedding concatenating character embedding as the baseline — which is state-
of-the-art in general domain of NER task. Table 5 and 6 show the comparison
of different feature combinations on two datasets respectively.

Two traditional state-of-the-art models without leveraging lexicons (base-
lines) perform not well on both datasets. When we add our CMR features to
these models one by one, the experiment results show each group of CMR fea-
tures achieves improvement on both datasets. We can see the Multi-sub-center
Representation features achieve the best improvement among all CMR features
while the improvement obtained from Context Representation and Influence
Reresentation features are relatively small. This indicates that Multi-sub-center
Representation is more representative than other CMR and could more holisti-
cally capture the meaning of the category. When we combine all CMR features,

7 The same as the ones used in [10] except lexical features extracted from existing
annotated tools.



Table 5. Comparison with different CMR features on i2b2

CMR
CRF BLSTM

P R F1 ∆F1 P R F1 ∆F1
baseline 82.05 78.86 80.42 82.20 81.57 81.88
+fo 84.69 78.35 81.40 +0.97 84.29 81.70 82.97 +1.09
+fm 83.45 80.01 81.69 +1.27 83.92 83.07 83.50 +1.61
+fi 82.77 79.11 80.90 +0.48 83.40 81.67 82.53 +0.65
+fc 82.35 79.54 80.92 +0.50 83.26 82.48 82.87 +0.98
+fall 83.92 80.12 81.98 +1.55 84.48 83.39 83.93 +2.05

Table 6. Comparison with different CMR features on ShARe

CMR
CRF BLSTM

P R F1 ∆F1 P R F1 ∆F1
baseline 74.22 61.16 67.06 73.93 66.11 69.80
+fo 75.95 61.06 67.70 +0.64 75.32 66.31 70.53 +0.73
+fm 75.34 62.12 68.09 +1.04 75.31 67.35 71.11 +1.31
+fi 74.99 61.34 67.48 +0.42 74.83 66.36 70.34 +0.54
+fc 74.79 61.58 67.55 +0.49 74.25 66.95 70.41 +0.61
+fall 75.71 62.32 68.37 +1.31 75.74 67.93 71.62 +1.82

we achieve further significant improvement on both datasets (1.55% improve-
ment of CRF and 2.05% improvement of BLSTM on i2b2 as well as 1.31% and
1.82% on ShARe) that indicates the four groups of CMR features could compen-
sate each other and combination of them could further improve the performance.
We also find our CMR features get more improvement for BLSTM (2.05% on
i2b2 and 1.82% on SHARe) than CRF and achieve the best performance on
both datasets. The possible reason is that our CMR features are derived from
word embedding and could work better when combining with it. Furthermore,
in addition to powerful capability of BLSTM model, features used in BLSTM
including word embedding and CMR features are semantic, without consider-
ing orthographic and syntactic features, which could potentially more effectively
address the challenge of informal clinical texts.

4.5 Comparison with Previous Systems

Our evaluation show that the performance of NER significantly improves after
adding our new CMR features. However, how much it contributes toward im-
proving the state-of-the-art determines the practical significance of the improve-
ment. Thus, we compare the performance of our method to the top systems
in the i2b2/VA 2010 concept extraction task and ShARe/CLEF eHealth 2013
Shared Task.

F
1
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Fig. 3. Comparison with top 6 systems in two shared tasks.



Fig.3 shows the results of the top 6 systems in these two tasks. Almost all
systems use hybrid models integrating several models such as CRF and SSVM
with a set of rich features. Furthermore, all systems leverage the output of exist-
ing annotation tools such as cTAKEs, MetaMap and rely lexicons derived from
UMLS to improve the NER performance. Our best method (BLSTM + 4 CMR)
is better than system 3 and equal to system 2 in i2b2 and ranks the third in
ShARe. The results suggest that by integrating CMR features derived from a
large scaled unlabeled corpus into one single model our work can achieve state-
of-the-art without leveraging any outside lexicons and any existing annotated
tools. In addition, our CMR features can easily integrate with other models
such as discriminative semi-Markov HMM Models used by the best system in
i2b2. It may further improve the performance of these systems.

5 Related Works

Most early existing NER techniques in medical domain typically focus on tradi-
tional machine learning methods such as Support Vector Machine (SVM) [24],
Hidden Markov Model (HMM) [22] and Conditional Random Fields (CRF) [21]
integrating a set of complicated hand-crafted features. Some other methods lever-
age hybrid models [6, 10] to improve the performance of NER. However, their
performance may be affected by some common drawbacks: 1) with the change
of corpora and languages, the process to reconstruct feature set is difficult; 2)
some complex features with syntactic information rely on the performance of
other NLP modules; 3) these features with expert knowledge are expensive to
acquire.

There also exist some well-known annotation tools in clinical texts such as
cTAKEs [20], MetaMap [2] and ConText [7]. Most of them can extract various
types of named entities from clinical texts and link them to concepts in UMLS.
However, these tools heavily rely on external dictionaries such as SNOMED-
CT [9] and are only suitable for English. A large amount of works [6, 10, 5]
usually leverage the annotating results of these tools as a part of features to feed
into their models and achieve further improvement of performance.

Another thread of NER in medical domain focuses on recognizing one single
named entity, such as [27] finding anatomies from discharge summaries, [19,
14, 28] recognizing drug names and [26] extracting disease names from clinical
texts. Different with these clinical NER works addressing single entity type, we
are addressing a comprehensive set of challenges in identifying multiple named
entities to analysis the clinical texts.

Recently, some attempts [29, 13, 8] focus on applying deep neural network to
NER in clinical texts. Most of these concatenate word-level embedding, character-
level embedding and lexicon embedding as input. Then multiple convolutional
layers are stacked over the input to extract useful features automatically and
then fed into RNN models. Although these methods claim no feature engineering,
their performance are heavily rely on the training dataset (also rely on lexicons)
and usually not satisfied when the training set is small. Since our proposed CMR
features are derived from large scale unannotated corpus, our method reduce the



limitation of small training set and is easy to be adapted to new domains while
large scale unannotated corpora are often readily available.

6 Conclusion and Future Work

The existing CNER systems simply follow the traditional NER methods used in
general domain which usually leverage the linguistic features including syntactic
and lexicon features. Compared with successful performance of NER in general
domain, CNER achieves relatively pool performance due to the issues of Limited
Availability of Annotated Data and Informal clinical texts. In this paper, we
propose a novel unified method for CNER without considering any linguistic
features. It learned multiple representations for each category to capture the
semantic similarity between words and categories from 4 different perspectives
In the future, we will evaluate our method in other domains, such as biomedical
domain. In addition, we will explore new unsupervised methods that is useful
when training dataset is not available.
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named-entity extraction system for medical text. In: Working Notes for CLEF
Conference (2013)
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