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Abstract
Unsupervised Domain Adaptation (UDA) methods can re-
duce label dependency by mitigating the feature discrep-
ancy between labeled samples in a source domain and unla-
beled samples in a similar yet shifted target domain. Though
achieving good performance, these methods are inapplica-
ble for Multivariate Time-Series (MTS) data. MTS data are
collected from multiple sensors, each of which follows var-
ious distributions. However, most UDA methods solely fo-
cus on aligning global features but cannot consider the dis-
tinct distributions of each sensor. To cope with such con-
cerns, a practical domain adaptation scenario is formulated
as Multivariate Time-Series Unsupervised Domain Adapta-
tion (MTS-UDA). In this paper, we propose SEnsor Align-
ment (SEA) for MTS-UDA to reduce the domain discrep-
ancy at both the local and global sensor levels. At the lo-
cal sensor level, we design the endo-feature alignment to
align sensor features and their correlations across domains,
whose information represents the features of each sensor and
the interactions between sensors. Further, to reduce domain
discrepancy at the global sensor level, we design the exo-
feature alignment to enforce restrictions on the global sen-
sor features. Meanwhile, MTS also incorporates the essen-
tial spatial-temporal dependencies information between sen-
sors, which cannot be transferred by existing UDA meth-
ods. Therefore, we model the spatial-temporal information of
MTS with a multi-branch self-attention mechanism for sim-
ple and effective transfer across domains. Empirical results
demonstrate the state-of-the-art performance of our proposed
SEA on two public MTS datasets for MTS-UDA. The code is
available at https://github.com/Frank-Wang-oss/SEA

Introduction
Time-Series (TS) data have been widely studied thanks to
their applications in various fields. Due to the powerful abil-
ity to model latent dependencies within data, Deep Learn-
ing (DL) methods have made notable advances in TS related
problems (Zhao et al. 2019; Chen et al. 2021a; He et al.
2022). However, they require a vast amount of labeled TS
data for training, which may not be available in real-world
applications due to the high cost of data labeling.

To reduce the cost of labeling, Unsupervised Domain
Adaptation (UDA) methods have been proposed to transfer
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Figure 1: Comparisons between previous UDA methods
and ours, where before and after represent before and af-
ter alignment respectively. Left: Only global sensor features
are aligned, resulting in the poor alignment of the red sensor.
Right: SEA aligns the sensor information between domains,
so the feature discrepancy of each sensor can be reduced.

the knowledge from a labeled source domain to an unlabeled
target domain in the absence of labels of the target domain.
To reduce discrepancy across domains, existing UDA meth-
ods learn domain-invariant features with two paradigms,
which include metric-based methods (Tzeng et al. 2014)
and adversarial-based methods (Ganin et al. 2016). These
methods have achieved decent performance, showing the ef-
fectiveness of UDA in reducing label dependency. Subse-
quently, researchers applied UDA for TS data, aiming to re-
duce the discrepancy across domains by learning domain-
invariant temporal features extracted by Recurrent Neural
Network (RNN) (Purushotham et al. 2017), Long Short-
Term Memory (LSTM) (Cai et al. 2021), and Convolutional
Neural Network (CNN) (Liu and Xue 2021).

While substantial progress has been made, existing TS
UDA methods generally focus on Univariate Time-Series
(UTS) data by assuming that data originate from one sin-
gle source (Cai et al. 2021). Yet, they are inapplicable for
real-world applications where multiple sensors are deployed
simultaneously, e.g. remaining useful life (RUL) prediction
and human activity recognition (HAR). To cope with such
applications, we thus formulate a more challenging yet prac-
tical scenario of Multivariate Time-Series Unsupervised Do-
main Adaptation (MTS-UDA). Different from UTS data,



MTS data originate from multiple sensors where data from
different sensors follow various data distributions. By treat-
ing all sensors as a whole, existing UDA methods can con-
sider the global distributions of sensors (Ragab et al. 2022b).
But they cannot take the sensor-level distributions into ac-
count, leading to the misalignment of each sensor. As pre-
sented in Fig. 1 (Left), previous UDA methods only align
the global features between domains, resulting in the poor
alignment of the features from the red sensor and limiting
the transferability of the models. Further, due to its multiple-
sources nature, MTS contains essential spatial-temporal de-
pendencies information. Specifically, the spatial dependency
refers to sensor correlations, representing the critical inter-
active relations between sensors. For example, the tempera-
ture sensor has strong correlations with the fan speed sensor
in machine RUL prediction. Meanwhile, the temporal infor-
mation represents the temporal dependency between time
steps. Existing UDA methods are incapable of modelling
and transferring both dependencies across domains. Due to
these issues, MTS-UDA is more challenging than UDA for
UTS that only aligns the data from one single source.

To cope with the above limitations, we propose SEnsor
Alignment (SEA) for MTS-UDA to reduce domain discrep-
ancy at both the local and global sensor levels. At the lo-
cal sensor level, we design endo-feature alignment to align
sensor-level information between domains. We observe that
the sensor-level information consists of both sensor features
and sensor correlations, which represent the properties of
each single sensor and their interactive information respec-
tively. Therefore, we propose a contrastive sensor alignment
to align the sensor features between domains and design the
sensor correlation alignment to make the correlations be-
tween domains identical. Further, at the global sensor level,
we design exo-feature alignment to reduce global feature
discrepancy. To achieve this, we align the stacked sensor
features by enforcing restrictions. Meanwhile, to transfer the
spatial-temporal dependencies within MTS across domains
in a simple and effective manner, we propose a multi-branch
self-attention mechanism to model such information.

Our contributions can be summarized in three folds: first,
we formulate a challenging scenario of Multivariate Time-
Series Unsupervised Domain Adaptation (MTS-UDA) in ac-
cordance with the characteristics of MTS data. To our best
knowledge, this is the first work to design the UDA method
specifically for MTS data. Second, we analyze the problems
underlying MTS-UDA and design SEA to address these
problems uniformly. SEA reduces domain discrepancy at
both local and global sensor levels and captures the spatial-
temporal dependencies within MTS simultaneously for sim-
ple and effective transfer across domains. Lastly, we demon-
strate the effectiveness of our proposed framework using dif-
ferent real-world MTS datasets, on which we achieve state-
of-the-art performances.

Related Work
Unsupervised domain adaptation. UDA aims to reduce
the cost of labeling by training networks to transfer knowl-
edge in a labeled source domain to an unlabeled target do-
main. To achieve great performance on the target domain,

existing UDA methods are trying to minimize the discrep-
ancy across domains, which can be divided into two cat-
egories. The first category is adversarial based methods,
which utilize domain discriminator networks to force the
feature extractor to learn domain-invariant representations.
The typical models are domain adversarial neural network
(Ganin et al. 2016), conditional domain adversarial network
(Long et al. 2018), adversarial discriminative domain adap-
tation (Tzeng et al. 2017) and so on. The another branch is
metric-based methods, which enable networks to learn in-
variant features by enforcing metric restrictions. The typi-
cal models are deep domain confusion (Tzeng et al. 2014),
correlation alignment via deep neural networks (Sun and
Saenko 2016), domain conditioned adaptation network (Li
et al. 2020) and so on. These UDA methods have shown their
effectiveness in reducing label dependency for DL training.

Unsupervised domain adaptation for time-series data.
Some UDA methods were recently proposed for TS data
(Cai et al. 2021; Liu and Xue 2021), which reduce discrep-
ancy by aligning temporal features across domains. VRADA
(Purushotham et al. 2017) learned temporal features via a
variational RNN and reduced the discrepancy by adversar-
ial based methods. ADATIME (Ragab et al. 2022b) eval-
uated various CNN models to capture temporal dynamics.
However, these works were designed specifically for the
data from one source, i.e., the data from same distributions,
which are inapplicable for the scenarios requiring multiple
sensors. Generally, the data from different sensors follow
various distributions because the sensors are deployed to
measure various physical quantities, e.g., temperature and
fan speed. Although existing works can be applied for MTS
(Yang et al. 2021) by assuming that all sensors follow same
distributions, i.e., treating all sensors as a whole, they still
cannot consider the essential properties within MTS data.

Proposed SEA Framework
Problem Definition
For MTS-UDA, we are given a source domain with Ns la-
beled samples DS = {(xs

i , y
s
i )}

Ns
i=1 and a target domain with

Nt unlabeled samples DT = {xt
i}

Nt
i=1. Each MTS sample xi

(either xs
i or xt

i) originates from N sensors with different
distributions, i.e., xi = {xim}Nm=1 ∈ RN×L, where L rep-
resents the time length. The goal of SEA is to train a network
to transfer the knowledge in the source domain to the target
domain to learn features hi ∈ RF from MTS data xi. Fur-
ther, we omit the index i in the following contents for clarity,
so each sample is simplified as xs and xt, and the data from
the m-th sensor are simplified as xs

m and xt
m.

Furthermore, to retain the temporal dependency in MTS
data, we construct sequential graphs {GT }L̂T=1,GT =
(ZT , ET ) from the sample x, where ZT = {zm,T }Nm=1

and ET = {emn,T }Nm,n=1 represent the sensor features and

correlations, respectively, in the T -th graph. {Gs
T }L̂T=1 and

{Gt
T }L̂T=1 represent the sequential graphs in the source and

target domains respectively.
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Figure 2: The overall structure of SEA. (1) To transfer spatial-temporal dependencies across domains, source and target do-
mains share the same feature extractor, including MSGC, GNN, and LSTM. The samples are cropped as mini-pieces, which are
constructed as sequential graphs. With the combination of GNN and LSTM, the decent sensor information is learned, including
sensor features and their correlations. (2) Except for supervised learning on the source domain, with the sensor information,
endo-feature alignment and exo-feature alignment are designed to reduce domain discrepancy at the local and global sensor
levels. Endo-feature alignment consists of sensor feature alignment and sensor correlation alignment, which align sensor fea-
tures and their correlations between domains. Exo-feature alignment aligns the global features mapped by sensor features.

Overall Structure
The overall structure of SEA is shown in Fig. 2. As the
forward processes in the source and target domains share
the same feature extractor, including Multi-branch Self-
attention based Graph Construction (MSGC), Graph Neu-
ral Network (GNN), and LSTM, the superscripts s and t are
omitted in Section , , and . Firstly, we model the spatial-
temporal dependencies within MTS data for simple trans-
fer across domains. Given the sample x, we crop it as
mini-pieces, which are constructed as sequential graphs by
MSGC. Then, with the sequential graphs, GNN and LSTM
are combined together to capture the spatial-temporal infor-
mation for learning sensor information, i.e., sensor features
and correlations. Secondly, we utilize the sensor information
to reduce the domain discrepancy at the local and global sen-
sor levels. At the local sensor level, we design endo-feature
alignment by leveraging sensor features and their correla-
tions to design sensor feature alignment (SFA) and sensor
correlation alignment (SCA) respectively. At the global sen-
sor level, we stack sensor features and design exo-feature
alignment to align the global features by enforcing restric-
tions. We introduce each module in the following sections.

Multi-Branch Self-Attention-Based Graph
Construction
Sampling. To retain temporal information between time
steps, we divide the original sample x ∈ RN×L into se-
quential features {ZT }L̂T=1 ∈ RN×L̂×d, where L̂ is the time
length representing the time part, and d is the feature dimen-

sion representing the feature part. In this way, we obtain the
sequential features, the T -th of which is ZT ∈ RN×d. For
each time step, the feature of the m-th sensor is zm,T ∈ Rd.
Furthermore, a nonlinear function fL(·) is added to improve
the nonlinear expressiveness as shown in Fig. 2.

Graph construction. We adopt the sequential features to
construct sequential graphs. To fully represent the complex
correlations between sensors, we propose MSGC, aiming to
construct multiple graphs using different initialized weights.

qim,T = zm,TW
i
Q, k

i
n,T = zn,TW

i
K ,

eimn,T =

qim,T (ki
n,T )T

√
d∑N

j=1

qim,T (ki
j,T )T

√
d

.
(1)

In each branch, we adopt query and key to learn the weights
between sensors. Eqn. (1) describes the graph construction
between m and n of the i-th branch, where d is the feature
dimension, and we treat the m-th sensor zm,T as the query
sensor and the n-th sensor zn,T as the key sensor. In this
way, we can learn the edge eimn,T for the i-th branch. Then,
we adopt softmax to make the edge within [0, 1].

To make constructed graph robust, we averagely com-
bine the obtained graphs in all branches, i.e., emn,T =∑nb

i=1

eimn,T

nb
, where nb is the number of branches. We thus

obtain the sensor correlations ET = {emn,T }Nm,n=1 ∈
RN×N in the T -th graph and the sequential correlations
{ET }L̂T=1 ∈ RL̂×N×N .
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domains different. Right: Exo-feature alignment is to reduce the discrepancy between the global features in different domains.

Capturing Spatial-Temporal Information
Prior works have proved the capability of GNN to capture
spatial dependency (Deng and Hooi 2021; Jia et al. 2020).
Therefore, we introduce GNN to capture sensor correlations
in the sequential graphs. We assume that the sensor correla-
tions in each of these graphs are independent, so we adopt
GNN to process each graph, i.e., GT = (ZT , ET ), with
shared GNN. As shown in Eqn. (2), Message Passing Neural
Network (Gilmer et al. 2017), a variant of GNN, is adopted
to process each graph.

hm,T =

N∑
j=1

emj,T zj,T ,

zm,T = ReLU(hm,TWG).

(2)

Further, it is noted that the data from a specific sensor show
temporal dependency between sequential graphs. Therefore,
given the features zm ∈ RL̂×d for a sensor m in sequen-
tial graphs, we learn the temporal dependency for the sen-
sor m with LSTM. With GNN and LSTM, we update se-
quential features as {ZT }L̂T=1 ∈ RL̂×N×d by capturing the
spatial-temporal dependency within MTS data, which can
be then transferred across domains by the alignment at local
and global sensor levels in the following parts.

Alignment for UDA
To reduce the discrepancy between domains for MTS-UDA,
we design endo-feature alignment and exo-feature align-
ment at the local and global sensor levels respectively.

Endo-feature alignment. Existing UDA methods reduce
feature discrepancy between domains by considering only
global features, which is applicable for image and UTS data
as they come from a single source. However, it is noted that
MTS data originate from multiple sensors and the data from
different sensors follow various distributions. When apply-
ing existing UDA methods for MTS data, they only consider
the global distribution by treating all sensors as a whole but
ignore the distribution of each sensor. This will result in the
misalignment of each sensor, restricting the performance of

the learned model transferring from the source domain to
the target domain. Therefore, endo-feature alignment is pro-
posed to align the sensor-level information so that the mis-
alignment for each sensor between domains can be avoided.

To make better endo-feature alignment, it is necessary to
note that the sensor-level information consists of sensor fea-
tures and sensor correlations. Sensor features represent the
properties of each sensor, and sensor correlations represent
the essential interaction information between sensors. For
example, a temperature sensor and a fan speed sensor are
deployed together to detect the status of a machine. The data
from the temperature sensor between source and target do-
mains should follow a similar distribution. Meanwhile, the
correlation of them between domains should be also simi-
lar, as the fan speed usually increases when the temperature
rises. Based on these considerations, we believe it is nec-
essary to align the sensor features and sensor correlations
simultaneously to make endo-feature alignment better.

With learned sequential graphs {GT }L̂T=1 consisting of
sequential features {ZT }L̂T=1 and sequential correlations
{ET }L̂T=1, we can get the sensor information by stacking
the sequential features and correlations through time as P =∑L̂

T=1
ZT

L̂
and E =

∑L̂
T=1

ET

L̂
, where P = {pm}Nm=1 ∈

RN×d and E = {emn}Nm,n=1 ∈ RN×N are the sensor fea-
tures and correlations. We thus obtain P s and Es in the
source domain and P t and Et in the target domain.

We first align the sensor correlations between domains.
To reduce domain discrepancy, we expect the interactions of
sensors to have similar trends between domains. To achieve
this, sensor correlation alignment should make the sensor
correlations between domains identical. Therefore, we pro-
pose to align each edge of the graphs between domains, as
shown in Fig. 3 Left. The process can be denoted as Eqn.
(3), where | · | is absolute value. We compute the expectation
of the discrepancy of sensor correlations between domains.

estmn = esmn − etmn,

minLSCA = E(|estmn|).
(3)

We then align the sensor features between domains. We



assume that the features from the same sensor should have
similar distributions. Meanwhile, compared with the fea-
tures from the same sensor, the features from the different
sensors between domains should have different properties.
For example, as shown in Fig. 3 Middle, the features ps1
should be more similar with pt1 than other sensors in the tar-
get domain, i.e., pt2, pt3, and pt4. To achieve this goal, we
propose a sensor contrastive mechanism as shown in Eqn.
(4) to align the sensor features between domains.

minLSFA = −E(log
eφ(ps

m,pt
m)∑

pt
j∈P t e

φ(ps
m,pt

j)
),

φ(psm, ptm) = psm(ptm)T .

(4)

With the proposed sensor feature alignment and sensor cor-
relation alignment, we can get the endo-feature alignment as
Eqn. (5), where λSCA and λSCA are the hyperparameters to
tune the effect of SFA and SCA respectively.

minLEndo = λSCALSCA + λSFALSFA. (5)

Exo-feature alignment. To reduce the domain discrep-
ancy at the global level, we enforce restrictions on the global
features mapped by sensor features between domains. As
shown in Fig. 3 Right, we stack the sensor features and map
the stacked features to the global features, which are then
aligned by Deep Coral (Sun and Saenko 2016). The exo-
feature alignment can be shown as Eqn. (6):

hs = fexo(p
s
1, ..., p

s
N ) = σ(cat(ps1, ..., p

s
N )Wexo) ∈ RF ,

ht = fexo(p
t
1, ..., p

t
N ) = σ(cat(pt1, ..., p

t
N )Wexo) ∈ RF ,

Cs =
(hs)Ths − 1

Bs (1
Ths)(1Ths)

Bs − 1
,

Ct =
(ht)Tht − 1

Bt (1
Tht)(1Tht)

Bt − 1
,

minLEXO =
1

4F 2
||Cs − Ct||2F ,

(6)

where cat(·) represents concatenation. || · ||2F is the squared
matrix Frobenius norm. Bs and Bt are the number of sam-
ples in the source and target domains. Finally, the overall
loss function (7) is minimized to train SEA:

minL = LC + λEXOLEXO + LEndo,

LEndo = λSCALSCA + λSFALSFA,
(7)

where λEXO represents the hyperparameter to tune the ef-
fect of exo-feature alignment. LC is the cost function (i.e.,
Mean Square Error loss or Cross Entropy loss, depending on
the specific tasks) computed by the source data and labels.

Experimental Results
To evaluate the effectiveness of SEA, we test our model on
two public datasets, C-MAPSS for remaining useful life pre-
diction (Saxena et al. 2008) and Opportunity HAR for hu-
man activity recognition (Roggen et al. 2010).

Datasets and Setup
C-MAPSS describes the degradation process of aircraft en-
gines. This dataset includes four sub-datasets collected in
different working conditions and fault modes, where each
sub-dataset represents one domain. The MTS data in C-
MAPSS originate from 14 sensors deployed in different
locations to measure various physical quantities. Follow-
ing the data preparation in the previous work (Ragab et al.
2021), we process the datasets, where data annotations rep-
resent the remaining useful life circle of engines.
Opportunity HAR describes the human activities collected
from four subjects, each of which represents one domain.
The data annotations include two levels: 1). locomotion rep-
resenting the low-level tasks including four categories, sit-
ting, standing, walking, and lying down; 2). gestures rep-
resenting the high-level tasks including 17 various actions.
Following the experimental setting in the previous work
(Ragab et al. 2022a), we adopt the low-level tasks. Mean-
while, only the sensors attached to the body are used (i.e.,
113 sensors in total). As some values in the data are miss-
ing, we adopt the linear interpolation approach to fill in the
missing positions. To construct the training dataset, we adopt
a sliding window with a size of 128 and an overlapping of
50% as (Ragab et al. 2022a) did.

The experiments include three parts, the comparisons
with state-of-the-art, the ablation study, and the sensitivity
analysis. All experiments run ten times and the average re-
sults are shown to prevent the effect of random initialization.
Besides, we set batch size as 50, optimizer as Adam, learn-
ing rate as 0.001, and training epoch as 10 for training our
model. Furthermore, we built and trained our model based
on Pytorch 1.9 and NVIDIA GeForce RTX 3080Ti GPU.

We adopt different indicators to evaluate our method on
two datasets. For the experiments on C-MAPSS, we adopt
Root MSE (RMSE) and Score (Ragab et al. 2021; Chen et al.
2021b; Xu et al. 2022), as it is a prediction task, i.e., predict-
ing the RUL of an engine. The lower the two indicators are,
the better the model is. For the experiments on Opportunity
HAR, we adopt accuracy (Acc.), as it is a classification task.
The higher the indicator is, the better the model is.

Comparisons with State-of-the-Art
We compare SEA with SOTA UDA methods, including
DDC (Tzeng et al. 2014), Coral (Sun, Feng, and Saenko
2017), DANN (Ganin et al. 2017), BNM (Cui et al. 2020),
LMMD (Zhu et al. 2021), CtsADA (Ragab et al. 2021),
SLARDA (Ragab et al. 2022a), CLUDA (Vayyat et al.
2022), and SDAT (Rangwani et al. 2022). For fair com-
parisons, we adopt the same feature extractor (i.e., GNN-
LSTM) for these methods, each of which runs ten times
to show average results. Notably, as LMMD and SLARDA
were designed specifically for multi-class classification
UDA, they only have results on Opportunity HAR. Further,
the results of source only (Source) are also compared.

Table 1 shows the results in 12 cross-domain scenarios
for RUL prediction. From the results, we observe that SEA
achieves the best performance in 10 cross-domain scenarios
and the second best in 2 cross-domain scenarios for both



Models 1→2 1→3 1→4 2→1 2→3 2→4 3→1 3→2 3→4 4→1 4→2 4→3 Avg.

Source 36.06 42.43 38.91 32.22 41.01 31.29 46.69 45.84 25.82 35.49 32.56 21.68 35.83
DDC 43.25 39.48 42.99 40.07 39.46 43.01 40.93 43.43 43.72 41.58 43.38 39.61 41.74
Coral 16.73 33.86 26.21 14.17 32.76 30.07 29.22 25.80 23.29 30.70 23.27 16.54 25.22
DANN 17.69 36.73 33.76 17.83 39.28 31.39 28.35 36.62 22.16 30.83 22.68 30.63 29.00
BNM 48.18 41.61 46.45 56.66 48.40 62.02 49.39 48.89 42.98 40.76 43.71 41.89 47.58
CtsADA 17.95 27.74 27.92 19.47 51.32 38.99 36.01 24.43 19.24 31.05 25.25 23.16 28.54
CLUDA 25.47 37.48 32.59 22.58 33.44 33.14 25.36 23.42 26.60 25.05 25.73 22.23 27.76
SDAT 17.97 32.77 25.34 16.78 33.91 26.48 26.24 27.67 22.55 22.27 20.72 27.65 25.03

SEA 15.83 20.03 25.67 13.00 25.40 27.43 21.75 19.36 18.49 18.51 16.16 15.59 19.77

Source 12349 7868 27449 5440 10410 7803 96166 163951 10349 17411 28953 1356 32459
DDC 23323 6164 34891 11581 6578 35122 22236 59400 80774 29592 58029 15239 31911
Coral 1239 4473 5004 378 3497 6509 10637 25612 17668 6166 5159 497 7237
DANN 1355 65652 12133 897 18660 29828 4891 14923 9393 11359 3790 13846 15561
BNM 24265 44650 19017 526203 56769 29689 46262 29188 39559 11618 20566 65807 76133
CtsADA 1424 1682 5756 2619 22657 18315 41127 19285 1953 9844 11377 1425 11455
CLUDA 2704 4617 6181 919 3224 6384 1846 3243 3300 1963 6715 1036 3511
SDAT 1106 8352 3962 689 19477 6519 5736 19280 11620 1401 2294 6803 7270

SEA 1023 783 4807 298 1412 5416 1720 2995 2181 863 1606 451 1963

Table 1: The Comparisons with State-of-the-art Models on C-MAPSS (Up: RMSE; Down: Score)

Models 1→2 1→3 1→4 2→1 2→3 2→4 3→1 3→2 3→4 4→1 4→2 4→3 Avg.

Source 47.50 64.50 60.83 73.00 71.00 65.67 64.83 56.67 72.17 66.67 65.50 74.67 65.25
DDC 40.50 58.50 55.50 43.35 58.30 55.50 45.00 40.50 55.50 45.00 40.50 58.50 49.72
Coral 78.55 82.71 78.17 81.58 79.93 79.07 78.50 75.40 84.88 78.56 80.38 87.88 80.47
DANN 69.62 85.12 79.00 85.62 81.62 74.88 76.50 75.75 86.12 84.25 74.12 86.62 79.94
BNM 44.00 61.00 52.00 45.00 61.00 52.00 45.00 44.00 52.00 45.50 44.00 61.00 50.54
LMMD 56.25 61.17 59.08 45.33 58.50 55.50 49.42 46.83 57.33 59.00 44.75 61.75 54.58
CtsADA 80.00 73.67 76.08 69.75 78.17 79.08 67.75 77.33 64.75 74.58 52.17 75.00 72.36
SLARDA 80.38 80.50 79.50 82.75 78.88 79.25 75.88 78.62 70.12 80.62 84.00 77.25 78.98
CLUDA 77.60 79.45 76.00 73.20 79.25 76.15 61.75 61.95 67.70 61.90 61.05 75.80 70.98
SDAT 84.92 72.42 77.00 87.25 83.00 76.17 87.75 84.25 87.25 74.58 66.75 91.50 81.07

SEA 86.35 86.15 86.00 86.35 84.35 81.75 87.25 83.05 88.70 84.90 84.25 92.25 85.42

Table 2: The Comparisons with State-of-the-art Models on Opportunity HAR (%)

RMSE and Score. In the scenarios where we are the best,
we achieve significant improvements, e.g., 27.7% and 22.4%
better than the second best method in 1 → 3 and 2 → 3
for RMSE respectively. In the scenarios where we are the
second best, the gaps between the best methods and ours are
quite narrow, e.g., only 1.3% weaker than SDAT in 1 → 4
for RMSE. Further, in terms of the average improvements,
we observe that SEA is 21.0% and 44.1% better than the
second best methods for RMSE and Score respectively.

Similar improvements can be observed in the experiments
for HAR in Table 2, which records the comparisons in 12
cross-domain scenarios. We observe that SEA achieves the
best performance in nine cross-domain scenarios and the
second best in three cross-domain scenarios. In the scenarios
where we achieve the best performance, we obtain signifi-
cant improvements. For example, we are 6.5% better than
the second best in 1 → 4. Further, in the scenarios where we
are the second best, the gaps between the best methods and
ours are still very narrow, e.g., only 0.9%, 0.5%, and 1.2%.
Besides, in terms of the average improvements, we observe

that SEA is 4.35% better than the second best method.
The results of the two datasets show that our SEA is ef-

fective for MTS-UDA. By reducing the domain discrepancy
at the local and global sensor levels, our method can achieve
state-of-the-art performance.

Ablation Study
To evaluate whether each alignment in SEA is effective, we
conduct ablation study in 24 cross-domain scenarios of two
datasets. We first evaluate the variant LC w/o endo, describ-
ing the model with exo-feature alignment only. The second
variant is LC w/o LSCA, which introduces the endo-feature
alignment, while sensor correlation alignment is excluded.
The third variant is LC w/o LSFA, which introduces the
endo-feature alignment while sensor feature alignment is ex-
cluded. The final one is our complete SEA.

Table 3 and Table 4 show the ablation study on C-MAPSS
and Opportunity HAR respectively. From the results, we ob-
serve that the models with additional SFA or SCA achieve
better performance than the model with exo-feature align-



Variants 1→2 1→3 1→4 2→1 2→3 2→4 3→1 3→2 3→4 4→1 4→2 4→3 Avg.

LC w/o endo 16.73 33.86 26.21 14.17 32.76 30.07 29.22 25.80 23.29 30.70 23.27 16.54 25.22
LC w/o LSCA 15.92 22.89 26.08 13.11 26.49 28.14 24.11 21.54 18.72 28.20 22.05 16.36 21.97
LC w/o LSFA 16.34 23.64 26.74 13.88 28.12 28.4 29.17 23.12 19.41 26.89 21.14 16.38 22.77

SEA 15.83 20.03 25.67 13.00 25.40 27.43 21.75 19.36 18.49 18.51 16.16 15.59 19.77

LC w/o endo 1239 4472 5004 377 3496 6509 10636 25612 17668 6166 5159 496 7237
LC w/o LSCA 1124 1408 7426 296 2018 8057 3739 5184 1590 6235 4343 708 3511
LC w/o LSFA 1067 1157 4473 375 2230 5741 8696 10132 3431 5578 4190 539 3968

SEA 1022 783 4807 297 1411 5416 1719 2995 2181 862 1606 451 1963

Table 3: The Results of Ablation Study on C-MAPSS (Up: RMSE; Down: Score)

Variants 1→2 1→3 1→4 2→1 2→3 2→4 3→1 3→2 3→4 4→1 4→2 4→3 Avg.

LC w/o endo 78.55 82.71 78.17 81.58 79.93 79.07 78.50 75.40 84.88 78.56 80.38 87.88 80.47
LC w/o LSCA 82.94 83.62 80.38 84.25 83.45 80.55 78.80 75.38 86.20 79.05 81.90 87.50 82.00
LC w/o LSFA 84.45 84.90 82.20 84.00 81.95 81.00 81.50 75.81 86.95 81.80 81.60 87.35 82.79

SEA 86.35 86.15 86.00 86.35 84.35 81.75 83.25 80.70 88.70 84.90 84.25 92.25 84.89

Table 4: The Results of Ablation Study on Opportunity HAR (%)

ment only. For example, regarding the average improve-
ments of RMSE on C-MAPSS, the models with additional
LSFA and LSCA are 12.8% and 9.7% better than the model
only with LEXO. However, the single perspective of sensor
information is insufficient. From the results, we find that it
is difficult for the model with a single perspective of endo-
feature alignment (i.e., SFA or SCA) to achieve the best per-
formance in each case. For example, the model with LSFA

achieves better performance than that with LSCA in 1 → 2
for RUL prediction, while the model with LSCA achieves
better performance than that with LSFA in 1 → 2 for HAR.
Compared with these variants, SEA achieves better perfor-
mance in each cross-domain scenario and obtains significant
improvements. For example, regarding the average RMSE
on C-MAPSS, SEA is 21.6%, 10.0%, and 13.1% better
than the model only with LEXO, the model with additional
LSFA, and the model with additional LSCA, respectively.
These results further show that our endo-feature alignment
is effective, and it is necessary to consider both sensor fea-
ture and correlation alignment for endo-feature alignment.
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Figure 4: The sensitivity analysis for different λSCA and
λSFA on C-MAPSS.

Sensitivity Analysis
We further analyze λSCA and λSFA to see how the hyper-
parameters will affect MTS-UDA. We have conducted ex-
periments with various λSCA and λSFA varying 0.001 from
10 with the interval of 10×. Fig. 4 shows the analysis on C-
MAPSS. From the results, we observe that SEA is stable in
most cross-domain scenarios. Further, we also observe that
SEA tends to achieve poor performance when λSCA is too
small or λSFA is too large. For example, in 1 → 2 of Fig. 4
(a), SEA shows the worst performance when λSCA is 0.001,
while it is stable in other cases. Meanwhile, in 1 → 4 of Fig.
4 (b), SEA shows the worse performance than other cases
when λSFA is 10. Therefore, to achieve stable and decent
performance, we recommend that the values of λSCA and
λSFA should be set as 0.1 or 1.

Conclusion and Future Work
In this paper, we formulate the unsupervised domain adap-
tation for multivariate time-series data (MTS-UDA). We an-
alyze the problems underlying this task and propose SEn-
sor Alignment (SEA) to address these issues. To reduce the
domain discrepancy at both the local and global sensor lev-
els, we design endo-feature alignment and exo-feature align-
ment. At the local sensor level, we align the sensor features
and correlations between domains to prevent the misalign-
ment of each sensor. Furthermore, we enforce restrictions
on the global sensor features to reduce domain discrepancy
at the global sensor level. Meanwhile, we model the spatial-
temporal dependencies within MTS data for simple transfer
across domains. Our extensive experiments demonstrate the
effectiveness of SEA for MTS-UDA.

However, dirty data caused by sampling rate jitter and
timestamp misalignment across sensors may affect the per-
formance. Therefore, we will focus on introducing self-
supervised module into our method so that our method will
be able to learn robust representations even facing dirty data.
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