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Abstract

Keyphrases that efficiently summarize a document’s con-
tent are used in various document processing and retrieval
tasks. Current state-of-the-art techniques for keyphrase ex-
traction operate at a phrase-level and involve scoring can-
didate phrases based on features of their component words.
In this paper, we learn keyphrase taggers for research papers
using token-based features incorporating linguistic, surface-
form, and document-structure information through sequence
labeling. We experimentally illustrate that using within-
document features alone, our tagger trained with Conditional
Random Fields performs on-par with existing state-of-the-art
systems that rely on information from Wikipedia and citation
networks. In addition, we are also able to harness recent work
on feature labeling to seamlessly incorporate expert knowl-
edge and predictions from existing systems to enhance the
extraction performance further. We highlight the modeling
advantages of our keyphrase taggers and show significant per-
formance improvements on two recently-compiled datasets of
keyphrases from Computer Science research papers.

Introduction

Keyphrases (or keywords) that provide a concise represen-
tation of the topical content of a document are used in vari-
ous data mining and web-related tasks (Hammouda, Matute,
and Kamel 2005; Bao et al. 2007; Xu et al. 2008; Li et al.
2010). Keyphrase extraction, the challenging task of auto-
matically extracting a small set of representative keyphrases
continues to garner research interest in AI and natural lan-
guage processing (NLP) communities (Wan and Xiao 2008;
Hasan and Ng 2010).

Various supervised and unsupervised techniques are avail-
able for keyphrase extraction (Hasan and Ng 2014). Most
state-of-the-art systems first extract a set of candidate
phrases for a given document during keyphrase extrac-
tion (Frank et al. 1999; Medelyan, Frank, and Witten
2009; Gollapalli and Caragea 2014). These systems employ
phrase-filtering on the set of all n-grams of an input doc-
ument to remove phrases that are unlikely to be human-
generated keyphrases. For instance, n-grams ending in stop-
words or prepositions are unlikely to be author-specified
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keyphrases. Linguistic filters effectively reduce the num-
ber of possible n-grams that need to be considered by sub-
sequent scoring and classification modules. Typically, the
value of n is set to {1,2,3} based on the observation that
author-specified keyphrases tend to be uni/bi/tri-grams in
practice (Caragea et al. 2014).

In unsupervised models, candidate phrases are scored
based on individual tokens comprising them.1 Various
“goodness” or “interestingness” measures that reflect
document-level, corpus-level, and external statistics are used
in this scoring (Hasan and Ng 2010). For example, the Tex-
tRank algorithm builds a graph based on neighboring words
in a document and computes the score of each word as the
PageRank centrality measure of its corresponding node in
the word graph (Mihalcea and Tarau 2004).

In contrast, supervised models use known (“correct”)
keyphrases to frame keyphrase identification as a binary
classification task. Candidate phrases from the training set
of documents are assigned positive and negative labels and
features such as part-of-speech (POS) tags, phrase length,
occurrence frequency, and position information in the docu-
ment are used for learning keyphrase classifiers (Hasan and
Ng 2014). Ranking approaches which use ordering infor-
mation among candidate phrases to train extraction models
were also investigated previously (Jiang, Hu, and Li 2009).

In this paper, we avoid the candidate phrase extraction
step by formulating keyphrase extraction as a sequence tag-
ging/labeling task. Given a stream of tokens corresponding
to the content of a document,2 a keyphrase tagger assigns to
each token position a tag/label from the set {KP, O} where
the label KP corresponds to a keyphrase token and O refers
to a non-keyphrase token. An example is shown in Table 1.
Unlike phrase-based approaches where candidate phrases
comprise (multiple) training/test instances for a document,
the entire content of the document comprises a single in-
stance for a sequence tagging model.

The example in Table 1 refers to the title of a research
paper published in the World Wide Web conference in the
year 2010 and is part of the recently-compiled datasets for
keyphrase extraction described further in the Experiments
section. We highlight some shortcomings of existing sys-

1We use “token” and “word” interchangeably.
2We assume textual content and whitespace tokenization.
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Tokens: Visualizing differences in web search algorithms using the expected weighted Hoeffding distance

POS tags: VBG NNS IN NN NN VBZ VBG DT VBN JJ VBG NN
Phrase tags: NP NP PP NP NP VP VP NP NP NP NP NP
Labels: O O O O O O O O KP KP KP KP

Table 1: (Example) The title of a research paper is shown with its tokens, POS and phrase tags, and keyphrase labels.

tems in handling this example.
Several keyphrase extraction algorithms including the re-

cent ExpandRank, CiteTextRank, and CeKE systems (Wan
and Xiao 2008; Gollapalli and Caragea 2014; Caragea et
al. 2014) employ part-of-speech criteria during phrase filter-
ing. Specifically, these systems only consider phrases com-
prising of nouns and adjectives with POS tags from the set
{NN, NNS, NNP, NNPS, JJ} for scoring.3 In addition, based
on the value for n during n-gram generation, these systems
may not generate candidate phrases with more than three to-
kens. In Table 1, the author-specified keyphrase highlighted
in bold has four words as well as POS tags referring to
verbs4 and is automatically excluded from consideration by
several existing systems (Hasan and Ng 2014).

Indeed, we noticed that about 8% of author-specified
keyphrases in our experimental datasets have tags other than
nouns and adjectives and about 1% of them have more than
three tokens. The keyphrase extraction algorithm based on
sequence tagging described in this paper does not involve
an explicit phrase extraction step and is able to consider all
possible candidate phrases of any arbitrary length by default.
Although concerns related to missing phrases in classifiers
may be addressed by including all possible n-grams, in prac-
tice, such an inclusion results in several noisy phrases that
affect learning algorithms.

Incorporating Expert Knowledge: Several recent state-
of-the-art keyphrase extraction systems incorporate external
sources of evidence and domain-specific knowledge along
with document and corpus-level information while scoring
candidate keyphrases. For example, Maui uses semantic in-
formation based on Wikipedia (Medelyan, Frank, and Wit-
ten 2009) whereas the CeKE system (Caragea et al. 2014)
includes features based on the document-citation network
obtained from CiteSeerx (Li et al. 2006).

In most existing systems specialized knowledge is incor-
porated into the extraction process through complex features
such as “the position of the first occurrence of a phrase di-
vided by the total number of tokens” (Frank et al. 1999;
Hulth 2003), “the distribution of terms among different doc-
ument sections” (Nguyen and Kan 2007), “the distance of
the first occurrence of a phrase from the beginning of a
paper is below some value β” (Caragea et al. 2014), and
“number of links to the Wikipedia article referring to the
phrase” (Medelyan, Frank, and Witten 2009).

In lieu of intricate features such as the above, we har-
ness the recent work on weak supervision to specify ex-
pert hints and external knowledge during keyphrase ex-
traction through simple label-probability distributions. For

3The Penn Treebank list of tags is available at:
https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf.

4We obtain the POS and phrase tags using the Stanford parser.

example, specifying expert knowledge that “a noun word
that occurs in the document’s title is more likely to be
keyphrase” involves simply expressing a label-distribution
preference with the corresponding feature as (“isInTitleAnd-
Noun” {KP:0.9 O:0.1}). We use label distributions to incor-
porate expert hints into model training through the posterior
regularization framework (Mann and McCallum 2008). Our
contributions in this paper are listed below:

1. We study keyphrase extraction as a sequence tagging task
and design features for learning a keyphrase tagger using
Conditional Random Fields or CRFs (Lafferty, McCal-
lum, and Pereira 2001). In contrast with several existing
works, our set of features is minimalistic with all features
representing linguistic, orthographic, and structure infor-
mation extracted from within the document.

2. We investigate feature-labeling and posterior regulariza-
tion as a means to seamlessly integrate expert-knowledge
and domain-specific hints during keyphrase extraction. To
the best of our knowledge, we are the first to study weak
supervision as an alternative to intricate feature design to
achieve this objective.

3. We illustrate the performance of our keyphrase taggers
on two recently-compiled datasets of research papers in
Computer Science. Our models are able to perform on-par
with several state-of-the-art systems that make use of ex-
ternal evidence from citations and Wikipedia despite only
using within-document features. Additionally, when ex-
ternal evidence is incorporated through feature labeling,
we significantly out-perform existing baselines on both
the datasets. We show performance benefits with both
expert-specified and automatically-generated labeled fea-
tures on our experimental datasets.

We summarize the features used to train our keyphrase tag-
gers and introduce the feature labeling framework in the
next section (Proposed Methods). Datasets, baselines and
the experimental setup used to evaluate our models are de-
scribed in the Experiments section whereas closely-related
recent work is briefly summarized in the Related Work sec-
tion. Finally, we conclude the paper with a summary and
notes on future directions.

Proposed Methods

Sequence tagging involves the prediction of a sequence of
labels y = <y1 . . . yN> given an input sequence of tokens:
t = <t1 . . . tN> (Sarawagi 2005). Each position i : 1 . . . N
in the input sequence of tokens can be modeled by vectors
of features <x1 . . .xN>. Although various generative and
discriminative models exist for learning sequence taggers,
Conditional Random Fields were shown to obtain state-of-
the-art performance on several IE and NLP related tagging
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tasks that involve several complex, interdependent features
(Sutton and McCallum 2012).

Features for Keyphrase Tagging

We train a keyphrase tagger using CRFs with the following
three types of features.

1. Word, orthographic, and stopword features: We use
whitespace tokenization, convert all tokens to lowercase
after removing punctuation and use the stemmed form
corresponding to the token (obtained using the Porter
stemmer (1997)) for word features. We add a special fea-
ture “allPunct” to capture tokens only comprised of punc-
tuation as well as boolean features “isCapitalized” and
“isStopword” to indicate if the word is capitalized or a
stopword.5 In addition, the end of a sentence is explic-
itly indicated using an “EOL” feature to capture sentence
boundary information.

2. Parse-tree features: We obtain the lexicalized parse of
the document content using the case and punctuation cues
provided by the author of the document. The Stanford
Parser (Finkel, Grenager, and Manning 2005)6 was used
to obtain the level-1 and level-2 parse tags comprising the
part-of-speech (POS) and phrase features at each word
position. Hulth (2003) showed that incorporating linguis-
tic knowledge such as NP-chunking and POS tags dramat-
ically improves extraction performance over using statis-
tical features alone and almost all existing works incorpo-
rate POS tags in their models (Hasan and Ng 2014).

3. Title features: We indicate if a non-stopword is part of the
document’s title using a boolean feature (“isInTitle”). The
title of a document can be considered a summary sentence
describing the document and authors often add discrimi-
native words in their titles. The isInTitle feature depends
on document structure information that is often part of re-
search paper datasets (Kim et al. 2010).

Given the token stream corresponding to a document, let
F, G represent feature-types described above (word, POS
etc.) and i represent a token position. The feature templates
used for training our keyphrase tagger are listed below:

Unigram features Fi

Bigram features Fi−1Fi and FiFi+1

Skipgram features Fi−1Fi+1

Compound features FiGi

Unigram features refer to the features generated at po-
sition i using the token at that position (e.g., POS tag for
the word at position i). The neighborhood information for
a given position is incorporated using the bigram and skip-
gram features that reference tokens at the previous and next
positions relative to i. Intuitively, if a current token is part of
a multiterm phrase, this may be indicated via suitable bigram
and skipgram features (e.g., they may share the same phrase
tags). Compound features are conjunctions combining fea-
tures at a given position. For example, the feature “isInTitle

5We used the stopword list from Maui (Medelyan, Frank, and
Witten 2009).

6http://nlp.stanford.edu/software/lex-parser.shtml

and POS=NN” is stronger evidence to the tagger than each
of these features in isolation.

Illustrative Example: A partial list of features extracted
for the token “expected” from the anecdotal example in Ta-
ble 1 are shown in Table 2 for illustration. The unigram fea-
tures comprise of the stemmed token, the POS and phrase
tags, and boolean features indicating the lack of capitaliza-
tion, presence in the title as well as a feature indicating that
this token is not a stopword. The “big1” and “big-1” pre-
fixes indicate bigrams involving the current token with its
next and previous token positions respectively. For exam-
ple, the feature “big1 notStopword notStopword” captures
the information that both the current token (“expected”) as
well as the next token (“weighted”) are not stopwords. The
“cmpd-L1-VBN isInTitle” feature captures the information
that the token is both a verb as well as in the title, while
“skip-1-L1-DT L1-JJ” captures the adjacent POS tag fea-
tures of the tokens “the” and “weighted” respectively.

We train our CRF tagger using unigram features corre-
sponding to all feature types and bigram, skipgram, and
compound features corresponding to orthographic, stop-
word, parse-tree, and title features. In experiments, we
commonly refer to “bigram, skipgram, and compound fea-
tures” as neighborhood features. Note that in contrast with
some of the intricate features mentioned in the Introduc-
tion section, our features are fairly simple in design and
are also commonly employed in other IE and NLP tagging
tasks (Sarawagi 2005; Indurkhya and Damerau 2010).

Baselines: We compare our tagger with recent state-of-
the-art systems: Kea, Maui, and CeKE. The Kea system
originally proposed in (Frank et al. 1999) has been sig-
nificantly enhanced since and forms a competitive base-
line using document, thesaurus, and corpus-based features
such as TFIDF, length of the phrase, and first occurrence.
Maui augments features in Kea with several novel fea-
tures such as spread of the phrase and keyphraseness. In
addition, phrases are mapped to specific Wikipedia article
pages and features such as node-degree of the page in the
Wikipedia graph and occurrence of the phrase in the link
of the page are used in Maui (Medelyan, Frank, and Wit-
ten 2009). The CeKE system, designed for research papers,
augments features from Kea with several additional features
based on term occurrence in citation contexts and citation-
based TFIDF (Caragea et al. 2014).

All the above baseline systems are phrase-based super-
vised techniques and have publicly-available implementa-
tions. Unlike Kea, Maui and CeKE use external evidence
from Wikipedia and citation network respectively. To the
best of our knowledge, these systems comprise the most re-
cent algorithms involving supervised techniques. Addition-
ally, for the research paper datasets used in this paper, CeKE
was shown to outperform both Kea and the TextRank-family
of unsupervised techniques (Caragea et al. 2014).

Feature Labeling and Posterior Regularization

Mann, Druck and McCallum proposed the feature labeling
framework as a means to incorporate expert-provided hints
into CRF-based taggers (2008). For example, to capture the
expert intuition that noun words occurring in the paper titles
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Type of feature Partial list of features

Unigrams expect, L1-VBN, L2-NP, isInTitle, notCapitalized, notStopword
Bigrams big1 notStopword notStopword, big-1-L1-DT L1-VBN, big-1-L2-NP L2-NP
Skipgrams skip-1-L1-DT L1-JJ, skip-1-L2-NP L2-NP , skip-1-isStopword notStopword
Compounds cmpd-L1-VBN L2-NP, cmpd-L1-VBN isInTitle, cpmd-L1-VBN notStopword

Table 2: Sample features are shown for the token “expected” in the example from Table 1.

are more likely to be keyphrases, the feature “cmpd-L1-NN-
isInTitle” (using our previous notation) can be assigned a
label distribution: {KP: 0.9 O:0.1} indicating a preference
for tokens with the above feature to be marked with the la-
bel ‘KP’ with very high probability (90% of the time). Un-
like standard CRF models that are trained on fully-annotated
training instances (supervised models), the Posterior Reg-
ularization (PR) framework incorporates information from
individual labeled features such as the above into the CRF
parameter estimation process thus allowing for “weak su-
pervision” into the learning process.

In the PR framework, the specified feature-label distribu-
tions are converted to a set of linear constraints on model
posterior expectations for the features. The objective func-
tion of the CRF is suitably modified to include an ad-
ditional factor capturing the KL-divergence between pos-
teriors based on labeled features and the original model-
estimated posteriors for the same features (Mann and Mc-
Callum 2010; Ganchev et al. 2010). Mann and McCallum
showed that given limited annotation time, expert-specified
labeled features can be used to improve discriminative mod-
els over other semi-supervised approaches that use fully-
labeled instances. In addition, given sufficient annotated
data, various techniques were studied to automatically es-
timate feature-label distributions for specific tagging prob-
lems (Haghighi and Klein 2006; Druck, Mann, and McCal-
lum 2008; Gollapalli et al. 2014).

The standard model training process in CRF also esti-
mates label distributions for features based on the (feature,
label) co-occurrence counts in training data during likeli-
hood computation (Sutton and McCallum 2012). Labeled
features are useful when such an estimation is not accu-
rately possible due to lack of sufficient number of training
instances capturing (feature, label) co-occurrence. Conse-
quently, this information when specified explicitly using an
‘expert’ label-distribution (e.g., {KP:0.9 O:0.1}) comprises
additional information for the learning algorithm.

Expert Features: We capture observations based on pre-
vious research in keyphrase extraction using three sets of
“expert” labeled features and enforce them using the poste-
rior regularization framework in experiments.

The first set of features in Table 3 captures predictions
from baseline systems CeKE and Maui (described in the pre-
vious section). That is, when a given phrase is identified by
known supervised techniques (CeKE and Maui), we indicate
the high likelihood of this word indeed being a keyphrase
through the corresponding labeled features. Thus, we fold in
predictions from phrase-based classifiers within the tagger
in a two-step setting with this set of labeled features.

The second set of features captures preferences for noun

Set 1 (Predictions from Phrase-based Classifiers)
cmpd-CeKEKP MauiKP KP:0.9 O:0.1
CeKEKP KP:0.8 O:0.2
MauiKP KP:0.8 O:0.2
Set 2 (Presence in Document Title and Citation Contexts)
cmpd-L2-NP isInCitingContexts KP:0.8 O:0.2
cmpd-L2-NP isInCitedContexts KP:0.8 O:0.2
cmpd-L2-NP isInTitle KP:0.8 O:0.2
Set 3 (Predictions from Unsupervised Models)
cmpd-L2-NP OneUKP KP:0.7 O:0.3
cmpd-L2-NP TwoUKP KP:0.8 O:0.2
cmpd-L2-NP AllUKP KP:0.9 O:0.1

Table 3: Sample ‘expert’ features and label distributions

phrases occurring in document titles and citation contexts.
Previous studies related to keyphrase extraction in research
papers have found these features to be highly indicative of
keyphrases (Kim et al. 2010; Gollapalli and Caragea 2014).

Finally, for the third set of labeled features, we incor-
porate information from existing unsupervised keyphrase
(UKP) extraction algorithms: TFIDF, TextRank, SingleR-
ank, and ExpandRank (Mihalcea and Tarau 2004; Wan and
Xiao 2008). We indicate preferences for words in noun-
phrases that were marked among the top-10 predictions from
at least one, two and all the unsupervised methods indicated
by OneUKP, TwoUKP, and AllUKP respectively.

Labeled Features through Feature Selection: We also
study automatic techniques to extract labeled features by
applying standard feature selection measures on instances
in the training data. Similar to prior works (Haghighi and
Klein 2006; Druck, Mann, and McCallum 2008; Gollapalli
et al. 2014), we extract the features that co-occur with the
‘KP’ label with larger than average frequency. The autoPMI
list refers to features having larger Pointwise Mutual Infor-
mation with the label ‘KP’ than with the label ‘O’ ranked
based on PMI values whereas autoFreq refers to features
ranked based on their occurrence frequency. The top-10 fea-
tures from these two rankings are assigned a heuristic label
distribution {KP:0.9 O:0.1} to form labeled feature sets.

Experiments

Datasets

We evaluate our models using the research paper datasets
collected by recent works on keyphrase extraction (Golla-
palli and Caragea 2014). To the best of our knowledge, these
datasets comprise the largest, publicly-available benchmark
datasets of research paper abstracts containing both author-
specified keyphrases and citation network information. Ab-
stracts from these datasets are from papers published in two
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Venue #Abs/#KPs (Org) #Abs/#KPs (Locatable) Number of keyphrases with different lengths

KDD 365/1467 315/717 {#unigrams 221, #bigrams 404, #trigrams 80, #>trigrams 12}
WWW 425/2065 388/905 {#unigrams 368, #bigrams 451, #trigrams 79, #>trigrams 7}

Table 4: Summary of Datasets. The total numbers of abstracts and keyphrases in the original dataset are shown with the numbers
of abstracts for which at least one author-specified keyphrase could be located along with the total number of keyphrases located.

premier conferences: the World Wide Web (WWW) Con-
ference and the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD). The incoming and out-
going citation contexts for each paper were obtained from
CiteSeerx, the digital library portal for Computer Science
related literature (Li et al. 2006).

Similar to previous works, we evaluate the predictions
of each extraction algorithm against the author-specified
keyphrases that can be located in the corresponding paper
abstracts in the dataset (“gold standard”). We employ 10-
fold cross-validation and present (micro) averaged results
for all our experiments using the precision, recall, and F1
measures. For comparing two methods, we choose the F1
measure that represents a balance between precision and re-
call (Manning, Raghavan, and Schütze 2008).

The datasets are summarized in Table 4 along with the
number of keyphrases originally specified with each paper
and the number of keyphrases locatable in the paper ab-
stracts.7 We also indicate the number of keyphrases with
one, two, three, and more than three tokens found in these
abstracts. As observed previously (Caragea et al. 2014),
very few (only about 1%) author-specified keyphrases have
greater than three tokens. We found that about 8-9% of the
gold keyphrases do not satisfy the noun or adjective POS
filters used in previous works.

We used the CRF and posterior regularization implemen-
tations provided as part of the Mallet toolkit (McCallum
2002). Default parameter settings were used while training
the standard CRF models. For posterior regularization, we
set the constraint weights to 50 and the number of iterations
for the EM-style optimization algorithm to 100.8 Publicly-
available implementations for Kea,9 Maui,10 and CeKE11

were used in baseline experiments.12

Results and Discussion

Tagging compared with baselines The results of ten-fold
cross-validation experiments with CRF taggers trained us-
ing unigram and neighborhood features are compared with
the baselines in Figure 1 (a). Our CRF taggers significantly
outperform Kea which only use document and corpus-level
features and also perform on-par with CeKE and Maui
that incorporate features from CiteSeerx and Wikipedia
respectively. We did not directly use the CeKE numbers

7Some gold keyphrases probably part of fulltext are missing
from the abstracts.

8http://mallet.cs.umass.edu/semi-sup-fst.php
9http://www.nzdl.org/Kea/index.html

10https://github.com/zelandiya/maui
11http://www.cse.unt.edu/∼ccaragea/keyphrases.html
12Processed datasets and code are available upon request.

from (Caragea et al. 2014) since they are only computed
on phrases that satisfy the POS filters mentioned in the In-
troduction section. Based on the results from this table, we
conclude that sequence tagging models are more effective
for keyphrase extraction than phrase-based classifiers. How-
ever, phrase-based models obtain higher recall compared to
the CRF taggers that achieve higher precision and an overall
better F1 score. In a later experiment, we incorporate predic-
tions from phrase-based models using Set-1 labeled features
and PR to further improve extraction performance.

Effect of neighborhood and title features The ten-fold
CV tagging performance is shown on the WWW dataset us-
ing unigram features (UF) alone, both unigram and neigh-
borhood features (UF+NF), and without the title features
(noTitle) in Figure 1 (b). When predicting tags at a given
token position, neighborhood information incorporated via
bigrams, skipgrams, and conjunctions are effectively har-
nessed via edge-transition parameters (Sutton and McCal-
lum 2012) in a CRF resulting in better performance with
UF+NF features. Similarly, as seen in the noticeable dip in
the performance measures when title-based features are ex-
cluded, we conclude that content words present in the titles
of research papers are very likely to be part of keyphrases.

Performance with expert-labeled features For these ex-
periments, we first train the standard CRF tagger on the
train split of data (as before). Next, posterior regularization
is applied on the test instances in transductive mode (Bishop
2006). The extraction performance using the different sets of
expert labeled features listed in Table 3 as well as the labeled
features extracted automatically (autoFreq and autoPMI set-
tings) are shown in Figure 1 (a). As the numbers indicate, the
PR framework is extremely effective in incorporating the ex-
ternal knowledge specified as labeled features into the model
estimation process for both the datasets. All sets of labeled
features including the automatically extracted ones result in
performance benefits over using CRF alone. In particular,
the best performance (rows marked in bold) is obtained with
Set-1 that incorporates predictions from CeKE and Maui.

In Figure 2 (c), we illustrate PR with Set-1 for the WWW
dataset. By employing predictions from Maui and CeKE
as labeled features (CRF+Set-1 w PR), we are able to do
significantly better than both these systems (Maui is the
best performing baseline method on the WWW dataset) as
well as the original CRF tagger. Specifically, we are able
to improve the tagger’s recall highlighted in the previous
discussion. The CRF+Set-1 bars indicate tagging perfor-
mance when CeKE and Maui predictions are incorporated
as regular features in the CRF. Note that these additional
features yield no additional performance benefits. As de-
scribed previously, a potential reason for this behaviour is
the lack of sufficient evidence in the training data for accu-
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(a)
KDD WWW

Setting Precision Recall F1 Precision Recall F1

Kea 0.1551 0.3278 0.2105 0.1549 0.3182 0.2084
CeKE 0.2174 0.3905 0.2793 0.2251 0.2519 0.2377
Maui 0.1695 0.3724 0.2329 0.1837 0.3934 0.2504
CRF 0.4068 0.2162 0.2823 0.3689 0.1945 0.2547

CRF with labeled features and PR
Set 1 0.2777 0.4407 0.3407 0.2668 0.3558 0.3049
Set 2 0.3130 0.3013 0.3070 0.2995 0.2575 0.2768
Set 3 0.3091 0.3026 0.3058 0.2969 0.2674 0.2814
Top-10 PMI 0.2469 0.4114 0.3085∗ 0.2511 0.3282 0.2845∗

Top-10 Frequency 0.3282 0.2649 0.2932 0.3323 0.2298 0.2717  0
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Precision Recall F1
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(b)

UF
UF+NF
noTitle

Figure 1: (a) Ten-fold CV performance of the baseline methods, CRF, and posterior regularization; (b) Performance of the CRF
tagger with different feature sets on the WWW dataset

(a)
Top-10 features (PMI)

big-1-isInTitle isInTitle
cmpd-isInTitle isCapitalized
cmpd-isInTitle oneUKP
cmpd-isInTitle AllUKP
cmpd-isInTitle TwoUKP
big1-isInTitle isInTitle
cmpd-L2-NP isInTitle
cmpd-L1-NN isInTitle
cmpd-isInTitle isInCitingContext
cmpd-isInTitle isInCitedContext

(b)
Top-10 features (Frequency)

big-1-L2-NP L2-NP
big1-isInCitedContext isInCitedContext
big1-isInCitingContext isInCitingContext
big1-L2-NP L2-NP
big-1-isInCitedContext isInCitedContext
big-1-isInCitingContext isInCitingContext
cmpd-isInCitingContext isInCitedContext
cmpd-L2-NP isInCitingContext
cmpd-L2-NP isInCitedContext
cmpd-isInTitle isInCitingContext  0
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 0.4
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(c)

Maui
CRF

CRF+Set-1
CRF+Set-1 w PR

Figure 2: (a) and (b) Top-10 features based on PMI and frequency; (c) Ten-fold CV tagging performance with PR (WWW
dataset)

rate model parameter estimation thus requiring explicit pref-
erence specification via labeled features.

Performance with automatically-extracted labeled fea-
tures We incorporate ‘isInCitedContexts’, ‘isInCitingCon-
texts’, ‘OneUKP’, ‘TwoUKP’ and ‘AllUKP’ as regular fea-
tures into the training data and apply feature selection us-
ing frequency and PMI information. The top-10 features
extracted by these methods are assigned the heuristic dis-
tribution ‘{KP:0.9 O:0.1}’ to form labeled features for the
autoFreq and autoPMI runs respectively. The top-10 fea-
tures extracted from the WWW dataset using this process
are shown in Figures 2 (a) and (b).

From the results in Figure 1 (a), it can be seen that PMI-
based features are better performing of the two sets and also
among all sets other than Set-1 (rows marked with ‘∗’). The
automatically-extracted PMI features in Figure 2 (a) also
make intuitive sense despite no ‘expert’ guidance.

We note that the observations and trends shown with the
WWW datasets also hold for the KDD dataset the plots of
which are not included due to space limitations.

Anecdotes Our best-performing models correctly iden-
tified 37% of the gold keyphrases with more than three
tokens from the experimental datasets. Examples of these
keyphrases that also include POS tags not considered in
phrase filtering based approaches are “learning to rank re-
lational objects” (L1-NNP L1-TO L1-VB L1-JJ L1-NNS),

“end-user quality of experience” (L1-JJ L1-NN L1-IN L1-
NN), and “quadratically constrained quadratic program-
ming” (L1-RB L1-VBN L1-JJ L1-NN).

Related Work

Keyphrase extraction is widely studied in various do-
mains (Frank et al. 1999; Kim et al. 2010; Bong and Hwang
2011), for different document-types (Liu et al. 2009; Marujo
et al. 2013) and for tag recommendation (Bao et al. 2007;
Xu et al. 2008). Supervised techniques for keyphrase ex-
traction are often phrase-based models trained using docu-
ment and corpus-level features such as POS tags, position
of the word and TFIDF information (Frank et al. 1999; Wit-
ten et al. 1999; Turney 2000; Hulth 2003). Recent systems
also incorporate external features based on citation networks
as well as Wikipedia into keyphrase extraction (Caragea et
al. 2014; Medelyan, Frank, and Witten 2009). In contrast,
several unsupervised extraction techniques score keyphrases
based on “goodness” measures of words comprising them
using graphs constructed from documents (Mihalcea and
Tarau 2004; Boudin 2013; Gollapalli and Caragea 2014;
Wang, Liu, and McDonald 2015).

Bhaskar et al. (2012) employ CRFs trained on features
such as word presence in document sections such as abstract
and title as well as linguistic features such as POS, chunk-
ing, and named-entity tags for keyphrase extraction in sci-
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entific articles. Similar features were employed by Zhang
et al. for documents in Chinese (2008). We investigated
CRFs for their modeling advantages as well as their abil-
ity to incorporate expert knowledge via weak supervision.
Weak supervision was previously studied for several clas-
sification, and information extraction problems using tech-
niques such as feature labeling (Haghighi and Klein 2006;
Druck, Mann, and McCallum 2008) and based on known
knowledge-bases (Hoffmann et al. 2011).

Conclusions

We studied keyphrase extraction as a tagging task with
Conditional Random Fields using simple token, parse, and
orthographic features. We showed experimentally that CRFs
show both modeling and performance advantages over the
current state-of-the-art, phrase-based models on research
paper datasets. In addition, we are able to incorporate
domain knowledge into the extraction process via the
feature labeling framework for CRFs to further enhance
extraction performance. In future, we would like to explore
weak supervision for other types of documents (such as
news articles and product reviews) as well as in parallel
corpora (Arcan et al. 2014).
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