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Abstract

Events are typically composed of a sequence of subevents.
Predicting a future subevent of an event is of great impor-
tance for many real-world applications. Most previous work
on event prediction relied on hand-crafted features and can
only predict events that already exist in the training data. In
this paper, we develop an end-to-end model which directly
takes the texts describing previous subevents as input and au-
tomatically generates a short text describing a possible future
subevent. Our model captures the two-level sequential struc-
ture of a subevent sequence, namely, the word sequence for
each subevent and the temporal order of subevents. In addi-
tion, our model incorporates the topics of the past subevents
to make context-aware prediction of future subevents. Exten-
sive experiments on a real-world dataset demonstrate the su-
periority of our model over several state-of-the-art methods.

1 Introduction

As defined in (Allan et al. 1998), an event refers to a partic-
ular thing that happens at a specific time and place. Typ-
ically, an event is composed of a sequence of subevents.
For instance, an earthquake event may consist of sequen-
tial subevents such as omen, quake, damages, rescue efforts,
lack of food and water, chaos and outbreak of epidemics.
A subevent is usually described by a news article. Over
years, tens of thousands of news events have been reported
and archived with the progression of their corresponding
subevents.

As Mark Twain said “the past does not repeat itself, but
it often rhymes”. In the spirit of this reflection, in this pa-
per, given a sequence of a few subevents, we aim to auto-
matically predict the future subevent by leveraging large-
scale historical events. Take the event “Egyptian revolution
of 2011” as an example, given its sequential subevents de-
scribed by the headlines of news articles1, namely, “Con-
flict occurred again in Egypt on 22nd, and people plan to
hold a million-people march’’, “Egypt’s military will de-
liver a speech to respond to the conflict between demon-
strators and police”, our model outputs “protests”, “burst”,
“chaos”, “cause”, “deaths”, “injuries” word by word, which

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The headlines and model outputs are actually in Chinese. We have translated
them into English.

describes a possible future subevent. It is consistent with a
later news report “The Egyptian protest has caused 32 peo-
ple dead and more than 2000 people injured”. This demon-
strates our model can predict a future subevent that has not
yet happened. Clearly, predicting future subevents in ad-
vance is of great importance to governments, companies and
news agencies. Governments can benefit from it by taking
proactive actions to avoid damages and deaths based on pre-
dicted subevents. Companies can better control their poten-
tial crisis of public relations. News agencies can pay their
close attention to news topics that the public are particularly
interested in.

This problem is, however, challenging due to the follow-
ing three challenges. Firstly, it is hard to accurately represent
a subevent. Constructing hand-crafted features for subevent
representation often needs domain knowledge and cannot
be well generalized to other applications. Secondly, events
usually exhibit sequential structures at two levels: 1) words
describing a particular subevent are semantically positioned
in order, and 2) multiple subevents belonging to the same
event temporally progress in a sequential order. It is hard, if
not impossible, to build a unified predictive model to seam-
lessly capture the two-level dependencies. Finally, the topic
of the future subevent is likely to be closely related to the
topics of previous subevents. How can we incorporate the
topics, i.e. context-aware features, in our model?

Although great effort has been dedicated to event detec-
tion using social media (Sakaki, Okazaki, and Matsuo 2010)
and search engines (Ginsberg et al. 2009), a relatively few
work have been proposed to predict future events. Differ-
ent from existing work that focused on target (known) event
prediction (Radinsky, Davidovich, and Markovitch 2012),
we focus on non-targeted (unknown) event prediction. For
example, Radinsky et al. (2012) extracted causality rela-
tions between two events and generalized them using ontol-
ogy for prediction. Granroth-Wilding et al. (2016) extracted
event chains (Chambers and Jurafsky 2008) from texts and
learned the coherence score of two events using a composi-
tional neural network. Manshadi et al. (2008) learned a prob-
abilistic language model of the event sequences. Pichotta
and Mooney (2016) described a model for statistical script
learning using Long Short-Term Memory (LSTM). All these
work need hand-crafted features to represent events and can
only predict the future events from a given set of candidate
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events that exist in the training set. In this work, we predict
future subevents with a generative model. We can generate
subevents which do not exist in the training data. In addi-
tion, we automatically represent subevents by embeddings,
which are generic and can be applied to other applications.

In this paper, we propose a novel model, Context-aware
Hierarchical Long Short-Term Memory (CH-LSTM) for fu-
ture subevent prediction, which takes text descriptions of
previous subevents (e.g. news headlines) as input and gener-
ates a short text describing the future subevent as our output.
Our CH-LSTM model has a two-level hierarchical LSTM
architecture. Its first level is to encode a subevent, which
sequentially consumes the words describing the subevent
one by one and then maps each subevent into an embed-
ding. Its second level, on the other hand, is to encode the ob-
served subevent sequences where we also incorporate con-
textual topic features to enhance the semantic information.
In particular, we represent a subevent with a concatenation
of an embedding vector from words and an embedding vec-
tor from its topic. With the two-level LSTM architecture,
each subevent sequence is mapped into an embedding. Fi-
nally, the embedding is fed into another LSTM for (word by
word) next subevent generation. Our CH-LSTM model, con-
sidering sequential structures at two levels of abstraction and
incorporating additional contextual features, is thus more ca-
pable of predicting the next subevent.

In summary, our contributions are threefold:

1) To our best knowledge, this is the first work on future (un-
known) subevent prediction by automatically generating a
short text (a sequence of words) to describe it.

2) We propose a novel neural CH-LSTM model, which
is able to capture the two-level sequential structures of
subevent sequences and to incorporate additional topic in-
formation for subevent prediction.

3) Experimental results on a large-scale real world dataset
demonstrate our model significantly outperforms several
state-of-the-art methods in future subevent prediction.

2 Our Proposed Methodology

Let us first define some notations. An event E=(s1, ..., sM )
is considered as a sequence of M subevents. Each subevent
sm in E (1 ≤ m ≤ M) is denoted by its description
text (e.g., news headline) which is a sequence of words, i.e.
sm=(wm,1, ..., wm,Nm

), where wm,n ∈ V denotes the n-th
word in the m-th subevent sm, and V is the vocabulary.

Given a sequence of observed subevents (s1, ..., sm−1),
we aim to learn a probability distribution over all possible
texts of the next subevent sm. This can be defined by a lan-
guage model:

P (sm|s1:m−1) = ΠNm
n=1P (wm,n|wm,1:n−1, s1:m−1). (1)

Obviously, a naive method is to address this problem by
considering an event E as a whole word sequence by con-
catenating all its subevents s1, ..., sM together. Then we can
apply traditional n-grams to compute conditional probabil-
ity tables for each word token given its n preceding tokens.
However, it suffers from the curse of dimensionality and is

intractable for realistic vocabulary size (Serban et al. 2016).
Recently, the RNN (Recurrent Neural Network) based lan-
guage models (Mikolov et al., 2010) have been proposed to
learn long n-gram contexts. Nevertheless, RNN suffers from
the problem of vanishing or exploding gradient. To tackle
this problem, variants of RNN, such as LSTM (Hochreiter
and Schmidhuber 1997) and Gated Recurrent Unit (Cho et
al. 2014) were designed, which have been shown to be supe-
rior to RNN models (Kim et al. 2016).

In the light of this, we build our models based on LSTM.
In the following subsections, we first introduce a basic
LSTM prediction model for our future subevent prediction
task and then present our proposed CH-LSTM model. It
captures the two-level sequential structure of a subevent se-
quence (i.e. a sequence of words for each subevent and a
sequence of subevents) and incorporates the topics of the
subevents. Our CH-LSTM model can automatically repre-
sent subevents by embedding vectors, which are generic and
can be applied to different applications.

2.1 LSTM Prediction Model

In this subsection, we first provide a quick review of the
LSTM and then present a basic LSTM prediction model for
our problem of future subevent prediction.

Long-Short Term Memory (LSTM). LSTM (Hochreiter
and Schmidhuber 1997) is a special kind of RNN, capa-
ble of learning long-term dependencies. It is defined as fol-
lows: given a temporal sequence of inputs (w1,w2, ...,wN ),
LSTM associates each timestep with an input in, memory
cell cn and output gate on. Let hn denote the vector com-
puted by LSTM model at time n, σ denote the sigmoid func-
tion and � denote the element-wise product. The vector rep-
resentation hn for each time-step n is given by:

in = σ(Wiwwn +Wihhn−1 + bi),

fn = σ(Wfwwn +Wfhhn−1 + bf ),

on = σ(Wowwn +Wohhn−1 + bo),

gn = tanh(Wgwwn +Wghhn−1 + bg),

cn = fn � cn−1 + in � gn,

hn = on � tanh(cn),

(2)

where W∗w is the transformation matrix from the input to
LSTM states, W∗h is the recurrent transformation matrix
between the recurrent states hn, and b∗ is the bias vector.
As shown in Eqn.(2), cn is a summation of the previous
memory cell cn−1 modulated by the forget gate fn and gn, a
function of previous hidden state and the current input mod-
ulated by the input gate in. Initially, h0 and c0 are set to zero
vectors. We denoted Eqn.(2) as LSTM(.) function.

LSTM Prediction Model. Our basic LSTM prediction
model based on LSTM for future subevent prediction is il-
lustrated in Figure 1. For an event E, we consider all its
subevents (s1, s2, ..., sM ) as one whole sequence of words
by concatenating their description texts together. Note that
we associate each subevent with a special token 〈end〉 at
its end location. The model takes the word tokens repre-
sented by one-hot encoding as input, converts them to em-
bedding vectors wm,n, and consumes them one at a time
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Figure 1: Illustration of our basic LSTM prediction model
for our problem. The model encodes the input word se-
quence describing previous subevents into an embedding
and decodes a word sequence describing the possible future
subevent out of the embedding.

through LSTM(.) function. After consuming words of m-1
subevents, the model can generate the m-th subevent word
by word. It currently assigns confidence to wm,n that comes
next with a softmax function, which is formally defined as,

P (wm,n|wm,1:n−1, s1:m−1) =
exp(OT

wm,n
hm,n−1)

exp(
∑

v O
T
v hm,n−1)

, (3)

where the matrix O ∈ RD×|V| (D denotes the dimension of
the hidden vectors) represents the output word embeddings.
Therefore, each possible next word is projected into another
dense vector and compared to the hidden state hm,n−1 ∈
RD computed from Eqn.(2). The initial step h1,0={0} and
hm,0=hm−1,Nm−1 .

Once 〈end〉 is predicted, the model accomplishes predic-
tion with the generated text. However, this model does not
learn subevent representations and leads to long-range de-
pendencies of words which are usually difficult to capture
(Sordoni et al. 2015). In addition, it fails to consider the
two-level sequential structure of a subevent sequence and
does not incorporate meaningful contextual topic features of
subevents which are potentially useful for prediction.

2.2 Contextual Hierarchical LSTM Model

To address the limitations of the LSTM prediction model,
we propose CH-LSTM model, illustrated in Figure 2. It con-
siders the sequential structures of events at multiple levels
of abstraction (i.e., word-level sequence and subevent-level
sequence) and incorporates additional contextual features
i.e., the topics of the subevents. It thus alleviates the long-
range dependencies in LSTM prediction model and bet-
ter characterizes the semantic association among subevents.
CH-LSTM model is composed of two LSTM encoders for
subevent-level encoding and event-level encoding respec-
tively, and one LSTM decoder for next subevent predic-
tion. The subevent-level LSTM encoder first maps each
subevent (a sequence of words) to an embedding. The event-
level LSTM encoder then keeps track of the past subevents
by processing each subevent vector iteratively. After pro-
cessing m-1 subevents, the hidden state of the event-level
LSTM represents a summary of the event up to the (m-1)-th
subevent, which is subsequently fed to the decoder LSTM
for predicting the next subevent sm word by word. We pro-
vide its detailed 3-step process as follows.

Figure 2: Illustration of our proposed CH-LSTM model. It
is composed of three turns. Each subevent represented by
a word sequence is first encoded into a dense vector by
subevent-level encoding. Afterwards, it is combined with
its topic embedding vector and fed into the event-level en-
coding which accounts for subevent sequences. At last, a
decoder LSTM is used to decode the words in the next
subevent.

Subevent-Level Encoding. For a subevent sm =
(wm,1, ..., wm,Nm), the subevent-level LSTM encoder reads
the words within a subevent sequentially and updates its
hidden state according to:

hw
m,n = LSTMw

enc(h
w
m,n−1,wm,n), n = 1, ..., Nm, (4)

where LSTMw
enc denotes the LSTM(.) function (Eqn.(2)) for

encoding word sequences and hw
m,n ∈ RD denotes the re-

current state. Initially, hw
m,0={0}. The last recurrent state

hw
m,Nm

is a vector storing order-sensitive information about
all the words within the subevent sm. We thus can represent
the subevent sm=hw

m,Nm
. In summary, the subevent LSTM

encoder maps a subevent to a fixed-length embedding vec-
tor, without using hand-crafted features.

Event-Level Encoding. The event-level LSTM encoder
takes as input the sequence of subevent embeddings
(s1, s2, ...sm) outputted from the subevent-level encoding
and computes the sequence of event-level recurrent states:

hs
m = LSTMs

enc(h
s
m−1, sm),m = 1, ...,M, (5)

where LSTMs
enc denotes the LSTM(.) function (Eqn.(2))

for encoding subevent sequences, hs
m ∈ RD is the event-

level recurrent state, and the initial time step hs
0={0}. The

event-level recurrent state hs
m summarizes the subevents

(s1, s2, ..., sm) that have occurred so far.
To leverage the semantic association among subevents,

we further incorporate the topics of the subevents as
additional contextual features. We employ the widely
used Latent Dirichlet Allocation (LDA) to generate
topic distributions {θm}m=1:M of the subevents, where
θm={θm,k}k=1:K is a K-dimensional vector. K denotes the
number of topics. We take the topic zm=argmaxk θm,k with
the largest probability as the topic of the subevent sm. The
topic zm is also represented by a one-hot vector and con-
verted to an embedding vector hz

m by the model. Hereafter,
we represent a subevent sm=〈hw

m,Nm
,hz

m〉, which is a con-
catenation of the hidden vectors from words and its topic.
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In this way, we incorporate the contextual features in our
model, which is likely to boost next subevent prediction.

Next-Subevent Prediction. After encoding a subevent se-
quence s1:m−1 with the above two-level LSTM architecture,
a LSTM decoder is applied to predict the next subevent sm
word by word. Formally, we aim to estimate the probability
P (sm|s1, ..., sm−1) using Eqn.(1).

The desired condition on previous subevents is obtained
by initializing the recurrent state of the LSTM decoder with
the event-level encoding, i.e., h′m,0=hs

m−1, where h′m,0 is
the initial recurrent state of the decoder. Similar to encoding,
the decoding is in the form of:

h′m,n = LSTMdec(h
′
m,n−1,wm,n), n = 1, ..., Nm, (6)

where LSTMdec is the LSTM(.) function (Eqn.(2)) for
decoding a word sequence describing the next possible
subevent. In a LSTM decoder, each recurrent state h′m,n−1
is used to compute the probability of the next word wm,n

with a softmax layer as shown in Eqn.(3). Once 〈end〉 is pre-
dicted, the decoder terminates.

2.3 Training and Testing

For both the basic LSTM prediction model and our proposed
CH-LSTM model, their model parameters W are learned by
maximizing the log-likelihood of subevents {sm}m∈{2:M}
given previous ones s1:m−1, defined by the probabilities es-
timated in Eqn.(1) and Eqn.(3),

L =

Etrain∑

e=1

M∑

m=2

logP (sem|se1:m−1)

=

Etrain∑

e=1

M∑

m=2

Ne
m∑

n=1

P (we
m,n|we

m,1:n−1, s
e
1:m−1),

(7)

where the superscript e denotes the e-th event in the training
set. Etrain is the total number of events in the training set.
Batch gradient descent was adopted for optimization.

When dealing with the testing data, we can adopt a beam-
search (Sordoni et al. 2015) for forward prediction until
〈end〉 is predicted in the decoding procedure. Let we assume
that the beam-search size is 1.

3 Experiments

3.1 Dataset

There is no benchmark dataset for our future subevent pre-
diction task. We therefore crawled a large-scale Chinese
news event dataset containing 15,254 news series from Sina
News2. Each news series consists of a sequence of news ar-
ticles in temporal order reporting on the same event, and the
average number of articles for all news series is 50. We only
used headlines of articles in our experiments as they sum-
marize the key content and main idea of the articles.

We further processed the data as follows: 1) We used a
window of size 5 to segment each new series with more than
five articles into non-overlapping events (partitions) where
news articles inside an event are treated as subevents. We

2http://news.sina.com.cn/zt/

choose window size 5, as we observe from the data, there is
little dependency beyond more than 5 continuous subevents.
After segmentation, we obtained 155,358 events in total. 2)
We then used ICTCLAS3 to perform tokenization for our
event data and subsequently removed the stopwords and the
words that occur in less than 100 documents to reduce data
sparsity. We finally got a vocabulary of 4,515 unique words
including a special end-of-subevent symbol 〈end〉. On aver-
age, each subevent contains about five words.

After preprocessing, we randomly split all the events into
three parts: 80% for training, 10% for validation and the re-
maining 10% for test. The statistics of our final dataset for
experiments are summarized in Table 1.

Table 1: Statistics of Dataset.

Training Validation Test
Events 124,288 15,535 15,535
Subevents 607,090 75,802 75,957

3.2 Experimental Setting and Evaluation Metrics

We determined the hyper-parameters in our models through
experiments on the training set and validation set. Particu-
larly, we chose the parameter values which led to the best
results on validation set and apply these optimal values in
our model to evaluate our proposed method in the indepen-
dent test set. The optimal parameter values are given as fol-
lows.

1) LSTM parameters and word embedding were initial-
ized from a uniform distribution between [-0.08, 0.08]; 2)
Learning rate = 0.1; 3) Batch size = 32; 4) Dropout rate =
0.2; 5) The dimension of word embeddings and topic em-
beddings = 100, and the dimension of hidden vector D =
400; 6) The number of hidden layers of the LSTM networks
= 2; 7) The topic number = 1,000.

Evaluation Metrics. Two criteria, namely perplexity and
word error-rate, were employed to measure the performance
of our models. Perplexity is a standard metric in informa-
tion theory (Shannon 2001). It measures how well a model
fits the data and thus can perform better prediction. Lower
perplexity indicates a better model. Formally, the per-word
perplexity of a model is defined as follows:

Perp = exp(− 1

Nw

Etest∑

e=1

logP (seM |se1:M−1)) , (8)

where Nw is the total number of words in the test set, Etest

is the number of events in the test set, seM is the M -th, i.e.
the last subevent to be predicted in the e-th event.

Following (Serban et al. 2016), we also employed the
word classification error (also known as word error-rate).
This is defined as the number of words that are predicted
incorrectly divided by the total number of words in the

3http://ictclas.nlpir.org/
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(National Day) (more than half) (East China) (North China) (direction)

   
(railway Station) (computer) (system) (failure)

   
(reach) (peak) (railway) (air ticket)

    
(railway) (peak) (civil aviation) (air ticket) (scarcity)

      
(civil aviation) (administration) (request) (local authorities) 
(do well with) (preparation) (work)   

CH-LSTM Output

Ground Truth

LSTM Output

HLSTM Output

   
(reach) (railway) (civil aviation) (peak)  

 
(Labor Day) (golden week)   

  
(railway) (reach) (peak)

Figure 3: An example of model outputs. The left shows the observed previous four subevents. The right shows the ground truth
and predicted next subevents of different models.

dataset4:

Error Rate =
1

Nw

Etest∑

e=1

Ne
M∑

n=1

I(w
′e
M,n �= we

M,n), (9)

where I is an indicator function – it equals to 1 when a pre-
dicted word is not true, i.e., w

′e
M,n �= we

M,n; otherwise 0.
w
′e
M,n denotes the predicted n-th word in the subevent seM

and we
M,n denotes the true n-th word in the subevent. Ne

M is
the total number of words in seM . As we aim to predict more
accurate words for the future subevent, we prefer a model
with low word classification error.

3.3 Experimental Results

We benchmarked our proposed CH-LSTM models against
both state-of-the-art language models and neural network
baselines based on the same dataset as illustrated in Table
1. Particularly, we compared with three well-established n-
gram language models (we set n=5 in this paper), including
backoff n-gram, Modified Kneser-Ney and Witten-Bell Dis-
counting n-gram model, which were implemented based on
SRILM tool (Stolcke and others 2002). We also compared
our model with LSTM prediction model and HLSTM model
(namely our proposed CH-LSTM model without additional
topic features) under the same parameter setting.

Table 2: The average perplexity and word error-rate of five
runs on test set.

Model Perp Error Rate
Backoff N-Gram 264.07 93.03%

Modified Kneser-Ney 257.24 93.06%
Witten-Bell Discounting N-Gram 255.48 92.60%

LSTM 201.59 ± 0.38 75.22% ± 0.02%
HLSTM 129.44 ± 0.23 71.06% ± 0.02%

CH-LSTM 127.74 ± 0.21 70.02% ± 0.01%

Our results are presented in Table 2. All neural mod-
els outperform state-of-the-art n-gram models substantially
w.r.t. both word perplexity and word classification error. The
extremely high word error rate of n-gram models demon-
strate it is not capable for future subevent prediction. Com-
paratively, the neural models can better deal with it. The last
two lines of Table 2 confirm that considering two-level se-
quential structures of events achieves significant gains in

4For a word prediction to be counted as correct, both the word and its position
must be correct.

both measures. It allows a gain of around 70 perplexity
points and 5 percentage points of word error-rate compared
to the LSTM prediction model, demonstrating the effective-
ness of our proposed methods. From Table 2, we also ob-
serve that CH-LSTM model further improves the perfor-
mance of HLSTM w.r.t. both metrics, indicating the impor-
tance of incorporating subevent topics for next subevent pre-
diction, as the topic of the future subevent is likely to be
closely related to the topics of previous subevents.

We used beam-search for our neural models to approxi-
mate the most probable next subevent, sM , given the pre-
vious subevents s1:M−1. As a case study on travel issues
on China’s National day (around 5 hundred million people
travel during this holiday season), we show the outputs of
3 different models in Figure 3. We observe that the output
of LSTM is totally not relevant. While HLSTM can achieve
better results (it still varies from the true output), our pro-
posed CH-LSTM model generates almost same output with
the ground truth.

Finally, we visualized the intermediate results (i.e., em-
beddings of all the subevents in the test dataset) based on our
CH-LSTM model. The visualization is implemented with
t-sne (Maaten and Hinton 2008). We observe from Figure
4, topically similar subevents are close in the embedding
space. The embedding representation can generalize to test
subevents very well even if they have not been seen in the
training data, as long as their words appear in the model vo-
cabulary. This equips our model with capability for subevent
representation which could be further used for other appli-
cations such as subevent similarity computation.

Figure 4: Visualization of subevent embedding. Topically
similar subevents are close in the embedding space.
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3.4 Next Subevent Ranking

In this section, we focus on comparisons of our models on
the next subevent ranking task, where we are given a se-
quence of subevents and the goal is to find the most probable
next subevent from a set of candidate subevents. Formally,
given a sequence of subevents s1:M−1, we aim to find the
most likely next subevent sM from a candidate set of next
subevents S, such that:

sM = argmax
s∈S

logP (s|s1:M−1), (10)

We ran next subevent ranking experiments with a dataset
generated from our test set. Particularly, following (Ghosh
et al. 2016), we randomly divided the test dataset (15,535
events) into 311 non-overlapping subsets with each contain-
ing 50 events except the last one which contains remaining
35 events (i.e. 15,535=311*50+35). For each event (consist-
ing of a few subevents) in a subset, we aim to choose the
best last subevent given its previous subevents. We treated
the last subevents of all the events in the corresponding sub-
set as candidate subevents. The metric hits@n, i.e. the pro-
portion of correct subevents ranked in the top n candidate
subevents is used to evaluate different models. Table 3 shows
the performance of different models on this task.

Table 3: Performance comparison among models for next
subevent ranking.

Model hits@1 hits@5 hits@10
Random 2.00%±0.10 10.00%±0.15 20.00%±0.20
LSTM 21.96%± 0.12 49.73%±0.16 66.31%±0.21
HLSTM 25.11%±0.10 54.49%±0.17 70.22%±0.18
CH-LSTM 25.79 %± 0.10 55.68%±0.18 71.57%±0.20

As we can see from Table 3, all the models significantly
outperform the random method for subevent ranking task.
In addition, our proposed HLSTM model and CH-LSTM
model achieve significant improvements consistently, com-
pared to LSTM prediction model, which further validates the
importance of considering hierarchical structure and topic
information for predicting related future subevents.

4 Related Work

Our work is mainly related to event prediction and RNN lan-
guage modeling. We compare with them as follows.

4.1 Event Prediction

Event prediction aims to predict in advance of the occur-
rence of a future event. Some work focused on learning re-
lations of two events for prediction. For example, Radinsky
et al. (2012) extracted generalized causality relations of two
events in the form of “x causes y” from past news and ap-
plied the templates on a present news event to predict the
next possible event. Granroth-Wilding et al. (2016) extract
event knowledge about typical sequences of events from text
(2008) and learned the coherence score of two events us-
ing a compositional neural network. They aim to predict the
strength of association between two events, which could be

used for predicting whether an event is likely to be the next
event.

Other work focused on learning event sequences for next
subevent prediction. Radinsky et al. (2013) mined chains
of events from a large-scale news articles to predict in ad-
vance of the occurrence of target events. In this work, we fo-
cus on non-targeted event prediction. Manshadi et al. (2008)
learned a probabilistic model of event sequences from In-
ternet Web log stories based on n-gram language models.
Pichotta and Mooney (2016) described a model for statisti-
cal script learning using LSTM, whereby a script encodes
knowledge of prototypical sequences of events. They repre-
sent an event by a predicate with several arguments and can
only predict the future events from a given set of candidate
events which already exist in the training set. Different from
existing work, in this work, we propose an end-to-end gen-
erative model which does not need hand-crafted features and
can generate new events that have not been seen in the train-
ing set. It embeds both word sequence inside subevents and
subevent sequences automatically for next subevent predic-
tion.

4.2 RNN Language Models

Neural language models encompass a rich family of neural
network architectures for language modeling. Some exam-
ple architectures include feed-forward (Bengio et al. 2006),
and RNN (Mikolov et al. 2010). Due to the vanishing gra-
dient problem of RNN, it is difficult for RNN to learn long-
term dependencies. To address the problem, variants such as
LSTM (Hochreiter and Schmidhuber 1997) and Gated Re-
current Unit (GRU) (Cho et al. 2014) were presented and
widely applied in language modeling. Recent research ef-
forts further improved the RNN models by exploiting hier-
archical structures (Li, Luong, and Jurafsky 2015) for a wide
range of applications such as web query suggestion (Sordoni
et al. 2015), movie dialogue modeling (Serban et al. 2016)
and video representation (Pan et al. 2016). Some other ef-
forts focused on improving the RNN models using an at-
tention mechanism (Xu et al. 2015; Li, Luong, and Jurafsky
2015) and additional contextual features (Ghosh et al. 2016;
Mikolov and Zweig 2012). Differently, we present a novel
hierarchical LSTM network combining topic information of
subevents for future subevent prediction, which is different
from the proposed models in the above work.

5 Conclusion and Future Work

In this paper, we propose to predict a future subevent by gen-
erating a short text describing it and present a novel model,
CH-LSTM, which is an end-to-end solution that takes the
texts describing previous subevents as input and outputs the
text describing the next possible subevent. Our model does
not need hand-crafted features and well represent subevents
by embeddings, which are generic and can be applied to
other domains. Our experiments have demonstrated that CH-
LSTM model outperforms state-of-the-art n-gram language
models and neural models, as it can capture two-level se-
quential structures of a subevent sequence and enhance the
semantics by incorporating the topics of subevents. In future
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work, we will explore the extensions of our model such as
using an attention mechanism for improving future subevent
prediction.
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