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Abstract—Traditional online learning algorithms are designed
for vector data only, which assume that the labels of all the
training examples are provided. In this paper, we study graph
classification where only limited nodes are chosen for labelling
by selective sampling. Particularly, we first adapt a spectral-
based graph regularization technique to derive a novel online
learning linear algorithm which can handle graph data, although
it still queries the labels of all nodes and thus is not preferred,
as labelling is typically time-consuming. To address this issue,
we then propose a new confidence-based query method for
selective sampling. The theoretical result shows that our online
learning algorithm with a fraction of queried labels can achieve a
mistake bound comparable with the one learning on all labels of
the nodes. In addition, the algorithm based on our proposed
query strategy can achieve a mistake bound better than the
one based on other query methods. However, our algorithm is
conservative to update the model whenever error happens, which
obviously wastes training labels that are valuable for the model.
To take advantage of these labels, we further propose a novel
aggressive algorithm, which can update the model aggressively
even if no error occurs. The theoretical analysis shows that our
aggressive approach can achieve a mistake bound better than its
conservative and fully-supervised counterpart, with substantially
fewer queried times. We empirically evaluate our algorithm on
several real-world graph datasets and the experimental results
demonstrate that our method is highly effective.

Keywords—Online Learning, Selective Sampling, Graph Node
Classification

I. INTRODUCTION

Graphs, including social network (e.g. Facebook1), com-
munication network and citation network, have attracted sig-
nificant attention due to their wide range of applications.
Specifically, there are increasing needs to classify the graph
nodes into different classes, e.g. potential customers (positive
class) or non-customers (negative class) in a social network.
To solve these problems, the classification models can be
learned using a set of training examples (i.e. some node-label
pairs) from the graphs, which have been studied in both offline
[8] and online settings [17]. Offline learning algorithms can
query the labels of all stored nodes whenever they need, thus
demanding a high memory and storage space. Online learning,
on the other hand, can query the labels in a sequential order
and only accesses the labels of the current nodes. Additionally,
after updating the models, the current inputs are discarded
and will not be stored for further query. As a result, online
learning algorithms are very efficient and scalable, which are
particularly useful to handle big graph data [17].

1http://www.facebook.com

Nevertheless, online learning typically assumes that the
labels of all the nodes are provided. This clearly limits its
application in many real-world scenarios, as it is costly to
label all the nodes. As such, some active online learning
algorithms, namely selective sampling [12], [15], [7], [6],
[21], [17], [14], have been proposed recently. The objective
of selective sampling is to achieve a good trade-off between
the classification error and query times. Specifically, a selective
sampling will decide not only whether to query the label of
the current input, but also how to update a model after the
true label is revealed. One algorithm is called conservative if
it only updates a model when a prediction error happens, while
an aggressive algorithm can still update with the labels even if
no error occurs. Note currently all existing selective samplings
on graphs are conservative [14], thus they cannot leverage the
correctly predicted labels to improve a prediction model.

Based on above observations, we study a better selective
sampling algorithm on graphs. We first adapt graph kernel
[23] into a Laplacian Regularized Least Square (LapRLS) [3]
to derive an online linear algorithm on graph data (COLA).
The COLA can leverage the update scale, although it has to
query every node during its learning process, which is not
efficient in big graph applications. To make it scalable on
large-scale datasets, we propose a conservative graph-based
selective sampling algorithm (CGS), which queries only a
fraction of the node labels. The algorithm decides to query a
label based on a novel confidence method, which considers not
only the absolute classification margin, but also the prediction
uncertainty. The theoretical analysis demonstrates that the
CGS learning on a fraction of queried labels can achieve,
as expected, a comparable mistake bound with the one of
CGS learning on all the labels. In addition, we prove that
the CGS based on our proposed query method can achieve
a mistake bound better than the one based on other query
strategies [7], [9], which can be treated as a theoretical support
for our proposed query approach. Nevertheless, the CGS is
conservative to update the model when error happens, thus
wasting the correctly predicted labels that are still useful for
the model. To take advantage of these labels, we propose an
aggressive version of graph-based selective sampling algorithm
(AGS). The AGS hybrids the conservative update with the
aggressive one, which can update aggressively even if no error
occurs. Theoretical analysis shows that the AGS can achieve a
mistake bound better than not only the conservative algorithm
CGS but also the fully-supervised online algorithm COLA.
Furthermore, extensive experiments on multiple graph data
demonstrate our proposed algorithm is better than the state-
of-the-art techniques with substantial fewer queries.



The remaining parts of this paper are organized as follows.
First, Section 2 provides the related work and Section 3
introduces the problem settings. Then, the proposed algorithm
and theoretical analysis are presented in section 4. Next,
Section 5 empirically evaluates various algorithms. Finally,
Section 6 concludes the paper, followed by the Appendix.

II. RELATED WORK

In this section, we briefly introduce selective sampling in
the setting of vector data and graph data, respectively.

Vector-based Setting: Selective sampling on vector-based
data is a combination of online learning [28], [27], [18]
and active learning [22], [13], [26], [20]. These algorithms
generally can be categorized into first-order algorithms [10],
[4], [7] and second-order algorithms [21], [6]. First-order
algorithms make a query decision based on a concept of
“margin” [10]. Specifically, these methods query a label when
the input lies near the current hypothesis (a small margin).
However, they are unable to optimize the direction and scale of
model update. To address this issue, we have witnessed several
second-order algorithms [21], [6] in recent years, which track
a spectral structure of observed inputs and decide to query
based on a notation of “uncertainty”. They usually query a
label if the current model has little knowledge in the direction
of the input.

While many studies w.r.t. label selection have been done
in both first-order and second-order setting, few method-
s [7], [21], [9] combine these two quantities to make a
query decision. Unlike the deterministic query in [21], we
propose a randomized query strategy, i.e. confidence-based
query, leveraging these two quantities together. We prove that
selective sampling based our query method can achieve a better
performance than [7], [9].

Graph-based Setting: The setting of selective sampling on
graph is graph Laplacian for transductive learning, where the
whole graph structure is provided, and the learner observes
graph nodes in a streaming order. Unlike the vector-based
setting with i.i.d. assumption on the data, few algorithms are
designed for graphs, among which the pioneering work is GPA,
a first-order fully-supervised online algorithm [16]. Besides,
OLLGC and SSLGC [14], two second-order algorithms, are
the most relevant to our work. They reveal a true label only
when the “uncertainty” of input is above a threshold. Both
two algorithms are conservative to update model, thus they
waste the correct predicted labels. Several recent works focus
on the active-transductive learning [19], [25]. However, these
methods are offline settings where labels are queried from
a pool of observed inputs, while online setting is allowed
to query current inputs, after that, the observed inputs are
discarded and cannot be queried.

Despite extensive works have been done in both the fields
of selective sampling under vector-based and graph-based
setting, to the best of our knowledge, we are the first to propose
a graph-based selective sampling that hybrids the conservative
update with aggressive one for classification. Specifically, we
first derive a new online linear model based on a spectral graph
regularization technique. Then we propose a confidence-based
query that can effectively make full use of informative labels
in a conservative and aggressive way.

III. PROBLEM SETTING

In this section, we first introduce our notations. Then we
review the Laplacian Regularized Least Squares (LapRLS)
[3] to derive a linear model (i.e. f(x) = w

⊤
x) for graph

classification.

A. Notations

In this paper, we will use lower case letters as scalars (e.g.
x), lower case bold letters as vectors (e.g. f ), upper case letters
as elements of a matrix (e.g. Sij) and bold-face upper letters as
matrices (e.g. S). With an appropriate size, an identity matrix
is defined as I and a vector of all zeros as 0. The transpose
of a vector m is denoted as m⊤, the inverse of a matrix A
as A−1, and the pseudo inverse of A as A†. In addition, a
diagonal matrix is denoted as diag(σ1, . . . , σn) with diagonal
elements σi, i ∈ [1, n]. Finally, the ℓ2-norm of vector w ∈ R

d

is defined as ‖w‖ =
√

∑d

i=1 w
2
i .

B. Laplacian Regularized Least Squares

A graph is defined as G = (V,E) with an vertex set V =
{v1, . . . , vn}, an edge set E = {(vi, vj)|vi, vj ∈ V} and a n×n
adjacency matrix S ∈ R

n×n, where real-valued element Sij is
measured by the affinity of a pair (vi, vj). In this paper, we
assume graph G is connected and undirected. Given that D

is the diagonal matrix with diagonal elements Dii =
∑

k Sik,
we define L = D − S is graph Laplacian, V = [v1, . . . ,vn]
(vi ∈ R

n) are its eigenvectors, and Λ = diag(λ1, . . . , λn) (0
=λ1≤. . .≤λn ≤ 2) are its eigenvalues.

Graph regularization [23] assumes a label smooth over the
graph, which formats as 1

2

∑n

i,j=1 Sij(fi − fj)
2 = f

⊤
Lf ,

where f = [f1, . . . , fn]
⊤ ∈ R

n, fi : vi → R is a predicted
value on the node vi. Intuitively, the regularization suffers from
a loss if neighboring nodes are mapped far part. In the setting
of binary classification, LapRLS solves the following problem
based on graph regularization,

min
f

1

2
‖f− y‖2 +

µ

2
f
⊤
Lf +

γ

2
‖f‖2 (1)

where y = [y1, y2, . . . , yn]
⊤ is a true label vector, µ > 0 is

a regularized parameter for graph Laplacian and γ > 0 for
result generalization. In the setting of graph classification, the
real-valued function should satisfy: 1). the values of function
f for labeled nodes should be close to the given labels for
that nodes; 2). nodes should satisfy label smoothness on the
whole graph, that is, the points nearby in the graph should
have similar labels; 3). function values on all nodes should be
generalized to solve ill-posed problem without overfitting.

Motivated by graph kernel f = L
†β [23] (β ∈ R

n), we
introduce a linear model for graph classification,

Definition 1. Given a graph kernel f = L
†β where L

† =
∑n

i=1
1
λi
viv

⊤
i , the model can turn to a linear regression

function,
f = X

⊤
w, (2)

where w = [ 1
λ1
v1, . . . ,

1
λn

vn]
⊤β and X = [v1, . . . ,vn]

⊤.

We define w ∈ R
n is a weight vector and X = [x1, . . . ,xn] is

a data matrix where node xj = [v1j , . . . , vnj ]
⊤ ∈ R

n, j ≤ n
is one column of X. Equipped with Eq. (2), the graph function
in Eq. (1) can turn to an equivalent formulation,



argmin
w

1

2

n∑

i=1

(x⊤

i w−yi)
2+

µ

2
w

⊤
XLX

⊤
w+

γ

2

n∑

i=1

(x⊤

i w)2. (3)

Lemma 1. L is a positive semidefinite matrix, where
{(vi, λi)}(i ≤ n) is the eigensystem of L. Assume X =
[v1, . . . ,vn]

⊤, then

XLX
⊤

=[v1, . . . ,vn]
⊤
L[v1, . . . ,vn] = diag(λ1, . . . , λn).

As a result, we can turn a Laplacian term to a simple form,

w
⊤
XLX

⊤
w = w

⊤diag(λ1, . . . , λn)w =

n
∑

i=1

λiw
2
i .

Then the optimization problem in Eq. (3) can be rewritten,

argmin
w

1

2

n∑

i=1

(x⊤

i w − yi)
2 +

µ

2
w

⊤
Λnw +

γ

2

n∑

i=1

(x⊤

i w)2, (4)

where we define Λn = diag(λ1, . . . , λn). To make our
algorithm scalable to large graphs, we propose a low-rank ap-
proximation for graph regularization, that is, we employ a low-
dimensional data i.e., a low-rank input Xd = [x1, . . . ,xn] ∈
R

d×n where xi ∈ R
d and graph Laplacian Λd ∈ R

d×d where
d ≪ n, and use the low-rank data representation in next
section.

IV. ALGORITHMS

In this section, we first propose an online learning al-
gorithm on the graph. Then we present the objective of
selective sampling, followed with a conservative algorithm
and an aggressive algorithm. Finally, we introduce a low rank
approximation analysis.

A. Online Learning on Graph

The purpose of online learning is to minimize the cumu-
lative loss over sequential nodes. Let (x1, y1), . . . , (xT , yT )
(T ≤ n) be a sequence of nodes, where xt ∈ R

d is a column
of a low-rank matrix Xd ∈ R

d×n(d≪ n) and yt ∈ {±1} with
t < T , an online version of graph regularization is defined:

G(w) =
1

2

T
∑

t=1

(x⊤
t w − yt)

2 +
µ

2
w

⊤
Λdw +

γ

2

T
∑

t=1

(x⊤
t w)2.

We next solve G(w) over w ∈ R
d in the following lemma,

starting with the notation below,

AT = µΛd +
T
∑

t=1

(1 + γ)xtx
⊤
t , bT =

T
∑

t=1

ytxt. (5)

Lemma 2. For all T ≥ 1, G(w) = 1
2

∑T

t=1(x
⊤
t w − yt)

2 +
µ
2w

⊤
Λdw + γ

2

∑T

t=1(x
⊤
t w)2 is minimal at an unique point

wT ∈ R
d given by,

wT = A
−1
T bT , G(wT ) =

T
∑

t=1

y2t − b
⊤
TA

−1
T bT . (6)

Proof: From

Algorithm 1 COLA: A Conservative Online Linear Model on
Graph for Classification

1: Input: Adjacency matrix S, rank d, and regularization
parameter µ and λ.

2: Output: wT

3: Compute L = D− S and X from L

4: Initialize: A0 = µΛd, b0 = 0 , w0 = 0

5: for t = 1, . . . , T do
6: Receive xt ∈ Rd

7: Compute A
−1
t = (At−1 + (1 + λ)xtx

⊤
t )

−1

8: Predict ŷt = sign (b⊤
t−1A

−1
t xt)

9: Query the actual label yt
10: if ŷt 6= yt then
11: Update At = At−1 + (1 + λ)xtx

⊤
t

12: Update bt = bt−1 + ytxt.
13: else
14: At = At−1,bt = bt−1

15: end if
16: end for
17: wT = A

−1
T bT

G(w) =
1

2

T
∑

t=1

(x⊤
t w − yt)

2 +
µ

2
w

⊤
Λdw +

γ

2

T
∑

t=1

(x⊤
t w)2

=
1

2

T
∑

t=1

(y2t − 2w⊤(ytxt)) +
1

2
w

⊤(µΛd +

T
∑

t=1

(1 + γ)xtx
⊤
t )w

(5)
=

1

2

T
∑

t=1

y2t −w
⊤
bT +

1

2
w

⊤
ATw,

we have∇wG(w) = ATw−bT = 0,∇2
wG(w) = AT . G(w)

is convex in w due to AT ≥ 0, and it achieves a minimal
point if ∇wG(w) = 0, that is, wT = A

−1
T bT . Substituting

the solution back into G(w), and we have

G(wT ) = G(A−1
T bT ) =

T
∑

t=1

y2t − b
⊤
TA

−1
T bT .

In Lemma 2, we obtain an optimal linear solution wT for
online learning on graph. Inspired by [1], we take advantage
of current node to predict its label with ŷt =sign(b⊤

t−1A
−1
t xt).

Moreover, it is inefficient for online algorithm to update in each
iteration. To address this issue, we make use of a conservative
strategy [5] to let model update when an error (yt 6= ŷt) occurs.
We call the algorithm COLA, conservative online linear model
on graph. Note that our update format is different from OLLGC
[14] and SOP [5], since we derive an online linear model that
is more flexible to leverage the update scale with µ and γ:
When γ

µ
→ 0, the COLA reduces to an update model similar

in OLLGC, in particular when µ is very large, yielding A
−1
t =

1
µ
Λ−1
d , which turns the COLA to be a first-order model with

the weight Λ−1
d . When γ

µ
is very large, the learner weakens

the prior graph information Λ
−1
d while the learner w tends to

generalize the predicted values. We summarize the COLA in
Algorithm 1.

B. Selective Sampling on Graph

Unlike online algorithm that queries all labels, selective
sampling has to decide whether to query label or not for each



coming node xt. If true label yt ∈ {±1} is queried of, the
algorithm can update learner with yt; otherwise, no action
is performed and the learner proceeds next one. Query and
update decisions in trial t are defined as binary variables Qt

and Zt, respectively. When Qt = 1 iif label yt is queried
of; Qt = 0, no action performed. Update decision Zt is
under similar setting. Generally, selective sampling is a semi-
supervised online learning. Thus, its optimal solution can be
derived in a form of online learning with query/update decision
in each trial, wt = A

−1
t bt, where At and bt can turn to be a

recursive form,

At=At−1+QtZt(1 + γ)xtx
⊤
t , bt=bt−1+QtZtytxt. (7)

Since A
−1
t is computationally expensive, we derive a non-

inverted recursive form using Woodbury formula [2],

A
−1
t = (At−1 +QtZt(1 + γ)xtx

⊤
t )

−1

= A
−1
t−1 −

QtZtA
−1
t−1xtx

⊤
t A

−1
t−1

1
1+γ

+ x⊤
t A

−1
t−1xt

(8)

The goal of selective sampling is to achieve few mistakes
Σt[yt 6= ŷt] with a small queried number ΣtQt. To reduce the
labeling effort, we propose a novel confidence-based method
to decide whether to query in selective sampling algorithm.

C. Conservative Setting

The COLA assumes that all labels are provided, which
is not efficient in many real-world applications. To save the
labelling cost, we propose a conservative setting of selective
sampling. We call the algorithm CGS, Conservative Graph-
based Selective Sampling, summarized in Algorithm 2. It
maintains two quantities: A

−1
t and bt with initial values

A0 = µΛd and b0 = 0. At round t, the algorithm observes a
node xt and predicts its label with wt = A

−1
t bt−1. Then the

algorithm decides whether to query the true label. If the label
is queried of, the algorithm performs a conservative update,
that is, update is invoked by mistake. If an error (ŷt 6= yt)
occurs, the algorithm updates model parameters A

−1
t and bt

in Eq. (7) and (8); otherwise, the model keeps unchanged and
proceeds next nodes with A

−1
t = A

−1
t−1 and bt = bt−1. To

select the informative labels, we propose a new query approach
for CGS. We begin with additional notations,

rt = x
⊤
t A

−1
t−1xt. (9)

Then an additional notation can be derived,

x
⊤
t A

−1
t xt = x

⊤
t (At−1 + (1 + γ)xtx

⊤
t )

−1
xt

(8)
= x

⊤
t (A

−1
t−1−

A
−1
t−1xtx

⊤
t A

−1
t−1

1
1+γ

+ x⊤
t A

−1
t−1xt

)xt

(9)
=

rt

1 + (1 + γ)rt
.

(10)

Definition 2. Given an input node xt (t < T ), an algorithm
predicts its label with pt = x

⊤
t A

−1
t bt−1. Given h > 0, the

actual label is queried with a probability h
h+max(0,Θt)

, where

Θt is a kind of confidence towards its prediction,

Θt = Θ(pt, rt) = |pt| −
rt

2(1 + (1 + γ)rt)
, (11)

where the parameter γ acts as a scaling factor. When γ
becomes large, the Θt → |pt| is mainly determined by the ab-
solute margin, similar in [7]. When γ = 0, Θt = |pt|−

rt
2(1+rt)

.

Algorithm 2 CGS: Conservative Graph-based Selective Sam-
pling for Classification

1: Input: Adjacency matrix S, rank d, regularization param-
eter µ and γ, and query ratio parameter h.

2: Output: wT

3: Compute L = D− S and X from L

4: Initialize: A0 = µΛd, b0 = 0 ,w0 = 0

5: for t = 1, . . . , T do
6: Receive xt ∈ Rd

7: Update A
−1
t = (At−1 + (1 + γ)xtx

⊤
t )

−1 as in (8)
8: Compute pt = x

⊤
t A

−1
t bt−1 and rt = x

⊤
t A

−1
t−1xt

9: Calculate Θt = |pt| −
rt

2(1+(1+γ)rt)

10: Generate Qt ∼
h

h+max(0,Θt)
11: if Qt = 1 then
12: Query true label yt and ŷt =sign(pt)
13: if yt 6= ŷt then
14: Set Zt = 1 (Zt = 0 otherwise)
15: end if
16: end if
17: Update bt = bt−1 + Ztytxt

18: Update A
−1
t = A

−1
t−1 −

ZtA
−1

t−1
xtx

⊤

t A
−1

t−1

1
1+γ

+x⊤

t A
−1

t−1
xt

19: end for
20: wT = A

−1
T bT

By tuning the γ, we can achieve a trade-off in the range of
these two confidence values.

Intuitively, a query method is effective if it can control the
probability of making a mistake whenever the method does
not query this label. In the following theorem and corollary,
we prove that the CGS learning on these randomly queried
labels {t : Qt = 1, Qt ∼

h
h+max(0,Θt)

} achieves a comparable

mistake bound with that learns on all the labels.

Let UT = {t ≤ T : QtZt = 1} be a set of update trials, h > 0
is a parameter acting as a scaling factor in the randomized
rule, and ℓ(ytu

⊤
xt) be a hinge loss over xt. We start with the

lemma below.

Lemma 3. For all t ≥ 1, a selective sampling predicts with
pt = x

⊤
t A

−1
t bt−1, and make a query and update decision Qt

and Zt at round t, then given h > 0 the following inequality
holds for any u ∈ R

d,

T
∑

t=1

E[ZtQt(|pt| −
rt

2(1 + (1 + γ)rt)
+ h)]

≤
h2

2
u
⊤
E[AUT

]u+ hE[
∑

t∈UT

ℓ(ytu
⊤
xt)].

(12)

Note that labels are selected randomly. Thus, the expectation
occurring in Lemma 3 are w.r.t this randomization.

We leave the proof in the Appendix.

In the proposed randomized query, the mistake trials can be
partitioned into two disjoint sets, set S = {t : h

h+max(0,Θt)
<

1} contains instances on which a stochastic query is conduct,
while set D = {t : h

h+max(0,Θt)
= 1} includes instances when

there is a deterministic query. M = {t : yt 6= ŷt} is denoted
as the set of mistake trials and let M = |M|.



Theorem 1. The CGS (in Alg. 2) runs an arbitrary node-label
sequence (x1, y1) . . . (xT , yT ) (T ≥ 1) with a query probabil-

ity of h
h+max(0,Θt)

(h > 0), then the following inequality holds

for any u ∈ R
d,

E[M ] ≤
h

2
u
⊤
E[AUT

]u

+ E[
∑

t∈UT

ℓ(ytu
⊤
xt)] +

1

2h
E[

∑

t∈UT∩D

rt

1 + (1 + γ)rt
].

The expectation of queried label is upper bound by
E[|D|+

∑

t∈S
h

h+max(0,Θt)
].

Remark. In this bound, u
⊤
E[AUT

]u always lines between
mink λk and maxk λk. For example, u⊤

AUT
u = λk whenever

u lies in the direction of the eigenvector related to λk.

Additionally,
∑

t
rt

1+(1+γ)rt
=

∑

t x
⊤
t A

−1
t xt 6 log det(AT )

det(A0)
=

d log(1+T ) is substantially smaller than d log T whenever the
spectrum AUT

is decreased rapidly. Finally,
∑

t∈UT
ℓ(ytu

⊤
xt)

is a cumulative hinge loss over the update trials.

Proof: When an error incurs at trial t ∈M, the function
Θt can be positive (t ∈ M ∩ S) or negative (t ∈ M ∩ D):
In the former subcase, Qt is random variable with expectation
E[Qt] =

h
h+Θt

and based on Lemma 3 we bound,

E[ZtQt(Θt + h)] = E[Zt]E[Qt(Θt + h)] = hE[Zt];

In the later subcase, E[Qt] = 1. We bound

E[ZtQt(|pt| −
rt

2(1 + (1 + γ)rt)
+ h)]

≥ E[Zt(−
rt

2(1 + (1 + γ)rt)
+h)] ≥ hE[Zt]−

1

2
E[

rt

1+(1 + γ)rt
].

To summarize,

T
∑

t=1

E[ZtQt(Θt + h)]

≥
∑

t∈M∩D

(hE[Zt]−
1

2
E[

rt

1 + (1 + γ)rt
]) +

∑

t∈M∩S

hE[Zt]

= hE[M ]−
1

2
E[

∑

t∈UT∩D

rt

1 + (1 + γ)rt
].

Equipped with Eq. (12), we complete our proof.

Remark. The CGS runs on these randomly queried la-
bels achieves, in expectation, a comparable mistake bound
with the fully-supervised algorithm OLLGC ([14], Corol-
lary 5) due to two reasons. First,

∑

t∈UT∩D
rt

1+(1+γ)rt
≤

∑

t∈UT
xtA

−1
t xt ≤

∑d

i=1 log(1 +
λi

µ
) ≤ log T (refer to [14]

Lemma 2), where λi, i ∈ [1, d]) are eigenvalues of matrix AUT

and T is trial number. Second, u⊤AUT
u =

∑

t∈UT
(u⊤

xt)
2 ≤

µ‖u‖2 = µf⊤Lf , assuming ‖xt‖
2 ≤ B and µ = MB ( refer

to [14] Lemma 3). Generally, the mistake bound of the CGS
is comparable with the OLLCG learning on all the labels.

When the CGS queries all labels, it reduces to the proposed
fully-supervised online algorithm COLA.

Corollary 1. Assuming labels are provided for all the nodes,
the CGS querying all labels (i.e. Qt = 1 for all t ≤ T ) reduces

to the fully-supervised algorithm COLA, then the following
inequality holds for any u ∈ R

d,

E[M ] ≤
h

2
u
⊤
E[AUT

]u

+ E[
∑

t∈UT

ℓ(ytu
⊤
xt)] +

1

2h
E[

∑

t∈UT

rt

1 + (1 + γ)rt
].

We leave the proof in the Appendix.

Remark. The theoretical results show that the CGS learning
on a fraction of queried labels (refer to Theorem 1) can achieve
a mistake bound comparable with the one of CGS learning
on all labels (the CGS reduces to the COLA) in expectation,
since the term E[

∑

t∈Ut∩D
rt

1+(1+γ)rt
] is comparable with

E[
∑

t∈Ut

rt
1+(1+γ)rt

]. In other word, our selective sampling

can achieve a similar performance with its online learning
counterpart, with a substantially small number of queried
labels. Thus, we conclude that the proposed query approach is
effective to control the probability of making a mistake when
it decides not to query this label.

Discussion. Several works combine two quantities to make
a randomized query,and can achieve a comparable mistake
bound with the fully-supervised methods [7], [9]. Unlike these
query competitors, we can tune the parameter γ to leverage a
good trade-off for score Θt in the range (|pt| −

rt
2(1+rt)

, |pt|),
which is more flexible to optimize the query rate. In addition,
the query method in our algorithm can derive a tiger mistake
bound than these query methods [7], [9]. If we consider the
impact of the term −(1 + rt)p

2
t to the right side of inequality

in Lemma 3 ( refer to proof in Appendix), we can derive a
tighter mistake bound for the CGS based on our proposed
query method,

E[M ] ≤
h

2
u
⊤
E[AUT

]u+ E[
∑

t∈UT

ℓ(ytu
⊤
xt)]

+
1

2h
E[

∑

t∈UT∩D

rt

1+(1+γ)rt
]−

1

2h
E[

∑

t∈UT

(1+rt)p
2
t ],

(13)

which is strictly lower than the bounds in (refer to Thm. 2
in [7] and [9]) due to the deduction of E[

∑

t∈UT
(1 + rt)p

2
t ]

from the bound. It indicates that a selective sampling based on
our query method can achieve a better performance than these
query methods in [7], [9] in expectation.

D. Aggressive Setting

The CGS is conservative to update only if an error occurs,
thus it discards the labels whenever they are predicted correct-
ly. To take advantage of these labels, we propose an aggressive
version of selective sampling on graph. We call our algorithm
AGS, the Aggressive Graph-based Selective Sampling, sum-
marized in Algorithm 3. After observing a node xt at round
t, the AGS predicts its label with wt = A

−1
t bt−1 and then

queries true label yt with a probability of h
h+max(0,Θt)

. It yields

to stochastic query and deterministic query. When stochastic
query (i.e. h

h+max(0,Θt)
< 1) is issued, it is conservative

to update morel when an error occurs (ŷt 6= yt). While a
deterministic query is issued whenever h

h+max(0,Θt)
= 1, in

this case, we adopt an aggressive learning strategy, that is we
update the model even though no error occurs. Note that the



Algorithm 3 AGS: Aggressive Graph-based Selective Sam-
pling for Classification

1: Input: Adjacency matrix S, rank d, regularization param-
eter µ and γ, and query ratio parameter h.

2: Output: wT

3: Compute L = D− S and X from L

4: Initialize: A0 = µΛd, b0 = 0

5: for t = 1, . . . , T do
6: Receive xt ∈ Rd

7: Compute pt = x
⊤
t A

−1
t bt−1 and rt = x

⊤
t A

−1
t−1xt

8: Calculate Θt = |pt| −
rt

2(1+(1+γ)rt)

9: if h
h+max(0,Θt)

= 1 then

10: Set Qt = 1 and Zt = 1
11: Query label yt
12: end if
13: if h

h+max(0,Θt)
< 1 then

14: Generate Qt ∼
h

h+max(0,Θt)
15: if Qt = 1 then
16: Query label yt
17: Set Zt = 1 if yt 6= ŷt (Zt = 0 otherwise)
18: end if
19: end if
20: Update bt = bt−1 + Ztytxt

21: Update A
−1
t = A

−1
t−1 −

ZtA
−1

t−1
xtx

⊤

t A
−1

t−1

1
1+γ

+x⊤

t A
−1

t−1
xt

22: end for
23: wT = A

−1
T bT

AGS is different from the conservative algorithm CGS and
SSLGC [14], since we can make use of the correctly predicted
labels to update model through an aggressive method. The
AGS is different from DAGGER-ridge [9] either, since we
propose a more general method to build the model and a
better randomized query method to leverage the conservative
update with the aggressive one, which can achieve a better
performance in expectation. Next we theoretically show the
superiority of our aggressive learning algorithm compared to
its conservative [14] and fully-supervised counterpart [5].

Besides the stochastic query trials S and deterministic
query trials D, we denote by V the set of nodes for which
there is an aggressive update but not a mistake (0 < ytpt and
Θt < 0) and let V =| V |. Similar, Ut is the set of update
trials (i.e. Ut = {i ≤ t : ZiQi = 1})

Theorem 2. The algorithm AGS (in Alg. 2) runs on an
arbitrary sequential nodes, then given h > 0, the following
inequality holds for all u ∈ R

d,

E[M ] ≤
1

2
hu⊤

E(AUT
)u+ E[

∑

t∈UT

ℓ(ytu
⊤
xt)]

+
1

2h
E[
∑

t∈D

rt

1+(1 + γ)rt
]−E[V ].

(14)

In addition, the expected number of queries is upper bounded
by E[|D|+

∑

t∈S
h

h+max(0,Θt)
].

Proof: When an error occurs t ∈ M, it either belongs
to stochastic query (t ∈ M ∩ S) or deterministic query (t ∈
M ∩ D). In the former subcase, Qt is random variable with
E[Qt] =

h
h+Θt

and thus

E[ZtQt(|pt| −
rt

2(1 + (1 + γ)rt)
) + h] = hE[Zt].

In the later subcase, Qt = 1, we bound

E[ZtQt(|pt| −
rt

2(1 + (1 + γ)rt)
) + h]

= E[Zt(|pt|−
1

2

rt

1 + (1 + γ)rt
+ h] ≥ hE[Zt]−

1

2

rt

1 + (1 + γ)rt
.

Now we consider the update with correct prediction, that is
ytpt ≥ 0 and Θt ≤ 0. Such cases occur when t ∈ D∩V , thus

E[ZtQt(|pt| −
1

2

rt

1 + (1 + γ)rt
) + h]

≥
1

2
E[Zt(−

rt

1 + (1 + γ)rt
+ h)] ≥ hE[Zt]−

1

2

rt

1 + (1 + γ)rt
.

To summarize,
T
∑

t=1

E[ZtQt(|pt| −
rt

2(1 + (1 + γ)rt)
) + h]

≥
∑

t∈M∩S

hE[Zt] +
∑

t∈M∩D

(hE[Zt]−
1

2
E[

rt

1 + (1 + γ)rt
])

+
∑

t∈V∩D

(hE[Zt]−
1

2
E[

rt

1 + (1 + γ)rt
])

≥ hE[M ] + hE[V ]−
1

2

∑

t∈D

E[
rt

1 + (1 + γ)rt
].

Equipped with Eq. (12), we complete our proof.

Remark. It is obvious that the upper mistake bound of the
aggressive algorithm AGS is strictly lower than the conserva-
tive algorithm CGS, due to the deduction of E[V ] from the
bound. In addition, its mistake bound is also better than a
conservative algorithm ([7], Thm. 3), since

∑

t
rt

1+(1+γ)rt
=

∑

t x
⊤
t A

−1
t xt ≤

∑

i log(1+
λi

µ
), where λi is an eigenvalue of

matrix At. Moreover, this result shows that AGS can achieve
a better expected performance than its fully-supervised coun-
terpart COLA, which is proven in Corollary 1. In summary,
the theoretical analysis shows that the proposed algorithm
AGS, in expectation, can achieve a better performance than its
conservative and fully-supervised counterparts, which regards
as a theoretical support for the aggressive learning model.

Remark. h > 0 is a parameter of the algorithm acting as
a scaling factor in the randomized rule. The parameter h in
the bound (14) is affected by graph structure and order of
the inputs. If we would know in advance, by setting a proper
choice

h =

√

E[
∑

t∈D
rt

1+(1+γ)rt
]

u⊤E[AUT
]u

,

we would minimize the bound and get

E[M ]≤

√

E[
∑

t∈D

rt

1 + (1 + γ)rt
]u⊤E[Au]u+E[

∑

t∈UT

ℓ(ytu
⊤
xt)]

− E[V ].
(15)

The first two terms of this optimized bound is an expectation
version of the mistake bound for the standard second-order
Perceptron algorithm, proved in [5]. As it turn out, our bound
in Eq. (15) would be sharper than its fully supervised com-
petitor, since the set of update UT is formed by a randomized



sampling rule, which is typically smaller than the mistake trials
in the deterministic algorithm. This tends to shrink the three
terms 1

2hu
⊤AUT

u,
∑

t∈UT
ℓ(ytu

⊤
xt), and

∑

t∈D
rt

1+(1+γ)rt
,

the main components of our proposed bound.

Remark.
∑

t∈UT
ℓ(ytu

⊤
xt) is a cumulative hinge loss over

the update trials. We rewrite the mistake bound as one by
which the number of mistakes exceeds a cumulative loss of the
best linear model u on update trials,

E[M ]− inf
u

E[
∑

t∈UT

ℓ(ytu
⊤
xt)]

≤
1

2
hu⊤

E[AUT
]u+

1

2h
E[
∑

t∈D

rt

1 + (1 + γ)rt
]− E[V ].

(16)

Since u⊤
E[AUT

]u always lines between mink λk and maxk λk

and
∑

t
rt

1+(1+γ)rt
=

∑

t x
⊤
t A

−1
t xt 6 log det(AT )

det(A0)
=

d log(1 + T ), our bound in Eq. (16) can achieve a regret of
O(log T ) with respect to the best linear model, where T is the
number of the trials.

Discussion: To further understand the query rule, we compute
under what condition a query will be issued aggressively. An
aggressive query is issued when Θt ≤ 0. By solving for |pt|,
we get,

Θt ≤ 0⇒ |pt| ≤ θ(rt) =
1

2

rt

1 + (1 + γ)rt
, (17)

If absolute margin value |pt| is less than θ(rt), a query must be
issued, while margin value |pt| is above θ(rt), a label is queried
with a probability strictly less than 1. And the upper bound of
θ(rt) increases with rt. When rt = 0, it indicates the algorithm
observes same samples many times. An input will be queried
only if its margin is zero (|pt| ≤ θ(rt = 0) = 0), that is, current
hypothesis is unable to predict its label. However, if rt = 1 i.e.
little knowledge to current input, learner will update its label
if its absolute margin |pt| is no higher than θγ(1) = 1

4+2γ ,

far from the boundary. In particular when γ = 0, the query
is issued whenever |pt| ≤ θγ=0(1) = 0.25, while γ is large
the query is issued if |pt| ≤ θγ≫0(1) ≈ 0. We empirically
evaluate the proposed algorithms in Section V.

E. Low Rank Approximation

Recall that X = [v1, . . . ,vn]
⊤, the graph kernel f is built

exactly, but the time complexity of our algorithm becomes
O(n2), which is computationally expensive for large graphs.

In order to make our online algorithm scalable to large
graphs, we propose to choose X as follows,

X̂ = [v1, . . . ,vd]
⊤, ŵ = [

1

λ1
v1, . . . ,

1

λd

vd]β

where d ≪ n. Thus f̂ = (
∑d

i=1
1
λi
viv

⊤
i )β is a rank-d

approximation of the f . And the time complexity of our
algorithm is O(d2)≪ O(n2).

We analyze the impact of such low-rank approximation on

the kernel f̂ . We have f̂ = L̂
†β, where we denote L̂

† =
∑d

i=1
1
λi
viv

⊤
i . Given that 1

λ1
≥ . . . ≥ 1

λn
, L̂

† contains

the top d largest eigenvalues of L
†. According to Eckart-

Young-Mirsky theorem [11], we claim that L̂
† is the best

rank-d approximation of L
†. Thus, the f̂ is the best rank-d

approximation of the f .

Equipped with X̂ = [x̂1, . . . , x̂n] = [v1, . . . ,vd]
⊤ ∈ R

d×n,
the regularized Laplacian term in Eq. (3) can turn to a sparse
form,

w
⊤
X̂LX̂

⊤
w

Lemma 1
= w

⊤diag(λ1, . . . , λd)w.

Thus, a low-rank optimization problem can be rewritten as
follows,

argmin
w

1

2

n
∑

i=1

(x̂⊤
i w − yi)

2 +
µ

2
w

⊤
Λ̂dw +

γ

2

n
∑

i=1

(x̂⊤
i w)2,

where Λ̂d = diag(λ1, . . . , λd) and w ∈ R
d.

V. EXPERIMENTAL RESULTS

In this section, we first introduce data sets and experimental
evaluation metrics. Then we present the experimental results
to evaluate the proposed algorithms.

A. Data Sets and Evaluation Metrics

Data Sets: We introduce four real-world graph data sets used
in this paper to evaluate our approaches, which are summarized
in Table I.

TABLE I. DESCRIPTION OF THE DATA SETS

Dataset Coauthor Cora IMDB PubMed

#nodes 1,711 2,485 17,046 19,717

#links 7,507 10,138 993,528 88,651

#classes 4 7 4 3

Coauthor2 is an undirected co-author graph dataset ex-
tracted from DBLP database in four areas: “data mining”,
“machine learning”, “databases” and “information retrieval”.
A total number of 1711 Authors are denoted as nodes while
their co-authored relationships are treated as the edges.
Cora2 contains seven classes of 2485 scientific publications
with 5429 citation links. The node is categorized into one of
seven classes: “Case based”, “Genetic Algorithms”, “Neural
Networks”, “Probabilistic Methods”, “Reinforcement Learn-
ing”, “Rule Learning” and “Theory”.
IMDB3 is an organization that provides up-to-date movie
information. The graph is built on co-actor relationship among
17046 movies from four genres: “Romance”, “Action”, “Ani-
mation” and “Thriller”.
PubMed4 contains 19717 scientific publications pertaining to
diabetes categorized by one of three types. Publication citation
in PubMed consists of 44338 links.
Graphs are supposed to be undirected and connected (the
results can be applied to disconnected graphs). If they are
directed, we transform them into undirected graphs via S ←
max(S,S⊤). If they are disconnected, we choose the biggest
connected subgraph for study.

Evaluation Measures: We evaluate the performance of base-
lines and our proposed algorithms with two measures:
(i) cumulative error rate, reflecting the prediction accuracy of
online learning algorithm;
(ii) number of queried labels, reflecting the label efficiency of

2http://www.cs.umd.edu/ sen/lbc-proj/data/
3http://www.imdb.com/
4http://www.cs.umd.edu/projects/linqs/projects/lbc/



an algorithm. Note that the smaller the above measures, the
better the performance of an algorithm.
Baselines and Parameter Setting: We compare the proposed
algorithms with three baselines that are discussed in Section
2. The algorithms we study and their parameter settings are
summarized as follows.
GPA[16]: This is the state-of-the-art first order online learning
algorithm on graph. There is no required parameter for this
algorithm. Note that the Perceptron algorithm is not affected
by the step-size.
OLLGC and SSLGC5 [14]: Both two methods are second-
order online learning algorithms on graphs. The OLLGC is a
fully-supervised algorithm while SSLGC is a semi-supervised
online algorithm (called selective sampling) that queries a
fraction of labels for modeling. All parameters are tuned with
grid search on a held-out random shuffle.
COLA, CGS and AGS: COLA is an online learning algorithm
while CGS and AGS are selective sampling algorithms. Note
that CGS is a conservative algorithm that updates model
whenever an error occurs, while AGS is an aggressive al-
gorithm that can make use of correctly predicted labels to
improve model. We set parameter γ = 1 to avoid overfiiting
in all experiments, while the parameter µ is tuned with the
grid {10−3, 10−2, . . . , 10} on a held-out random shuffle. The
low-rank parameter d is set to 100 since the corresponding
performance is good enough while the computational cost is
low. For query ratio, we set h = 0.01 for Cora and Coauthor,
h = 0.001 for IMDB and PubMed.
In order to compare these algorithms fairly, we randomly
shuffle the ordering of samples for each dataset. We repeat
each experiment 20 times and calculate the average results.
In addition, the above algorithms are naturally designed for
binary classification, while the data sets have more than two
classes. In order to apply the algorithms to those data sets,
we use one-vs-rest scheme, which is a standard technique for
adapting binary classifiers to the multi-class scenario.

B. Results of Selective Sampling Algorithm

The experimental results are presented in Table II. We
found that AGS outperforms all baselines consistently across
all four data sets. We also show the results with respect to
the round of online learning in Figure 1. In all subfigures, the
horizontal-axis represents the rounds of online learning, while
the vertical-axis is the cumulative error rate and queried nodes,
averaging over 20 times of shuffling order.

We can see the improvement of CGS and AGS over GPA
are always significant on every dataset. The reason is that
second-order algorithms AGS and CGS updates the linear
model wt with a covariance matrix At =

∑

t xtx
⊤
t which has

a spectral structure to correlate with a best linear estimator
for observed data instances[5][24]. We also observe that CGS
is slightly better than OLLGC and SSLGC, the reason is that
CGS employs a query rule that considers both margin (pt) and
uncertainty (rt), which can query more informative labels to
improve the model.

Since AGS uses fewer labels than OLLGC and SSLGC, so
intuitively its performance should be no better than OLLGC
and SSLGC. However, we can observe that on all graph
datasets, AGS always enjoys smaller error rates than SSLGC
with much fewer queried nodes, which are crucial to save

5we thank authors for kindly sharing the experiential data and code
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Fig. 1. Cumulative error rate and Number of label query with respective to
online learning rounds on four datasets.

labeling efforts while maintain the high quality classification
results. The reason is that SSLGC is a mistake-driven algo-
rithm, thus wasting some samples that are correctly predicted,
while these samples are properly utilized to improve the model
in AGS. Although AGS would aggressively query label in an
early learning stage, its model can reach a convergence stage
quickly, which further reduces the query number.

C. Sensitivity Study on Low-rank Approximation

The low-rank graph node representation x ∈ R
d is used to

build the classification model in our experiments. To analyze
the impact of low-rank approximation on our algorithms,
we set the rank d using the grid {10, 100, 250, 500, 750,
1000}. We use Cora and Coauthor as a case study as similar
observations are obtained on other data sets. The results in



TABLE II. COMPARISON OF SELECTIVE SAMPLING ALGORITHMS. GPA, OLLGC AND COLA ARE ONLINE ALGORITHMS.

Algorithm
Coauthor Cora

Error rate # Queried nodes Error rate # Queried nodes

GPA 0.2326±0.0048 1711 0.1169±0.0022 2485

OLLGC 0.1839±0.0035 1711 0.0755±0.0013 2485

SSLGC 0.1856±0.0030 1275.30±21.90 0.0832±0.0018 1525.49±19.32

COLA 0.1815±0.0033 1711 0.0760±0.0018 2485

CGS 0.1764±0.0031 762.94±68.03 0.0687±0.0028 1077.6±116.28

AGS 0.1447±0.0031 249.32±37.450 0.0566±0.0023 274.70±19.390

Algorithm
IMDB PubMed

Error rate # Queried nodes Error rate # Queried nodes

GPA 0.3362±0.0025 17046 0.2256±0.0025 19717

OLLGC 0.2737±0.0039 17046 0.1803±0.0013 19717

SSLGC 0.2711±0.0061 3453.98±91.30 0.1721±0.0051 5311.53±178.93

COLA 0.2710±0.0051 17046 0.1795±0.0011 19717

CGS 0.2468±0.0085 2736.3±137.28 0.1540±0.0021 1612.7±115.01

AGS 0.2293±0.0087 709.00±52.290 0.1492±0.0021 529.95±75.280
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Fig. 2. A case study of low rank impact on performance.

Figure 2 show that AGS and CGS achieve better or comparable
performance than all baselines consistently under different rank
approximation. Obviously with a higher rank, the prediction
accuracy becomes better in terms of error rate. However, to
achieve a low error rate, algorithms need a high number of
queries, which demands a more labeling cost. It motivates us
to select a proper rank d to achieve a balance. Therefore, we
chose d = 100 in the rest of experiments, since in this setting
the algorithms achieve a low error rate while number of queries
is small.

D. Study on the Impact of Query Ratio

We study the impact of h w.r.t query ratio in the selective
sampling algorithms CGS and AGS. Basically, the smaller h
is, the fewer the number of queries is. Specifically, we set h to
{10−4, 10−3, . . . , 1}, and run CGS and AGS 20 times under
each h. We calculate the average ratio of queried nodes under
different values of h. We show comparison results in Figure 3.

We observe that AGS and CGS achieves the better or
comparable performance consistently under different ratios
of queried nodes. This validates the label-efficiency of our
proposed confidence score Θt that can adaptively select use-
ful labels to optimize the model. We also observe that the
performance of CGS tends to be similar with SSLGC with
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Fig. 3. A comparison among CGS, AGS and SSLGC with respect to different
ratios of queried nodes.

query ratio increased. The reason is that while algorithms can
query more labels, CGS and SSLGC only use error trials to
update model, thus some valuable labels are discard since
they are correctly predicted. The better performance in AGS
demonstrates that these correct predicted labels are effective
to improve the model.

VI. CONCLUSION

In this paper, we present better selective sampling algo-
rithms for graph classification. The algorithms are derived
from a new online learning linear model on graph and can
query labels in both conservative and aggressive ways based
on our designed confidence score. We theoretically analyze
the mistake bound of proposed algorithms, suggesting that
our selective sampling algorithms, with fewer query times,
can achieve, on average, a better accuracy than that of its
fully supervised setting and other relevant query methods.
Additionally, we show the aggressive algorithm can achieve
a better mistake bound than the conservative setting, which
is considered as a theoretical guarantee for our proposed
aggressive method. Finally, our extensive experimental results
demonstrate that the proposed algorithms are much better than
the state-of-the-arts across multiple real-world graph data.
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APPENDIX

A. Proof of Lemma 3

Proof: We first define the objective function Rt(u),

Rt(u) =

t∑

i=1

(yi − u
⊤
xi)

2 + µu
⊤
Λdu+ γ

t∑

t=1

(x⊤

t u)
2
.

According to [7] Theorem 2 states,

(yt − pt)
2 = inf

u

Rt(u)− inf
u

Rt−1(u) + x
⊤

t A
−1

t xt − p
2

t (x
⊤

t A
−1

t−1xt).

In the setting of selective sampling, if the trial is such that ZtQt = 0,
then Ut = Ut−1 with no update, which yields infu Rt(u) =
infu Rt−1(u). Hence the equality,

ZtQt(yt − pt)
2 = inf

u

Rt(u)− inf
u

Rt−1(u) +
ZtQtrt

1 + rt
− ZtQtrtp

2

t ,

holds for all trials t. We sum over t = 1, . . . , T . Note that
infu R1(u) = 0, Expanding the squares in both sides and performing
manipulation, we obtain

∑

t

ZtQt(y
2

t − 2ytpt −
rt

1 + rt
)

= inf
u

RT (u)− inf
u

R1(u)−
∑

t

ZtQt(rt + 1)p2t

≤
T∑

t=1

ZtQt(yi − u
⊤
xt)

2 + µu
⊤
Λdu+ γ

T∑

t=1

ZtQt(x
⊤

t u)
2

≤ u
⊤(µΛd+(1+γ)

T∑

t=1

ZtQtxtx
⊤

t )u+
∑

t

ZtQt(y
2

t−2ytu
⊤
xt),

holding for any u ∈ R
d. We drop the term −ZtQt(rt +1)p2t , which

is negative ( rt ≥ 0 and p2t ≥ 0) and do not affect the upper bound.
Note that we reconsider the impact of −ZtQt(rt + 1)p2t in Eq. (13)
to compare other query methods.
Since u is a random variable, we use hu to replace u where h > 0.
Using inequality 1− x ≤ max{1− x, 0} yields

hZtQt − hZtQtytu
⊤
xt ≤ hZtQtℓ(ytu

⊤
xt).

Observing −ytpt = |pt| whenever an error ZtQt = 1, we simplify
with the notations At and Θt,

T∑

t=1

E[ZtQt(Θt + h)] ≤
h2

2
u
⊤
E[AUT

]u+ hE[
∑

t∈UT

ℓ(ytu
⊤
xt)].

B. Proof of Corollary 1

Proof: We have E[Qt] = 1 due to Qt = 1 for all trials. We
invoke an update when an mistake occurs, thus we have M =

∑
t
Zt.

We bound

T∑

t=1

E[Qt]E[Zt(Θt + h)] ≥
1

2

T∑

t=1

E[Zt(−
rt

1 + (1 + γ)rt
+ 2h)]

≥ hE[M ]−
1

2

∑

t∈UT

E[
rt

1 + (1 + γ)rt
].

Equipped with Eq. (12), we complete our proof.
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