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In this paper, we consider a formation control problem for leader-follower unmanned aerial
vehicles (UAVs) in a GPS-denied environment. The distance and the azimuth and elevation
angles, defined in a local spherical coordinate frame, are used to describe the relative motion
between two UAVs. A novel deep reinforcement learning (DRL) technique is leveraged to
generate the required control policies thatmaneuver a followerUAV in a desired formationwith
respect to the leader. The effectiveness of the proposed DRL-based leader-follower formation
is demonstrated in a simulated environment.

I. Introduction
Autonomy for robotic systems to accomplish cooperative missions is a challenging and critical field of research

with significant contributions in real-world applications, such as platooning and formation control for ground mobile
robots [1–3] and unmanned aerial vehicles (UAVs) [4, 5] in planetary exploration [6] as well as in search and rescue
operations [7]. A fundamental problem in coordination and control of cooperative robotic systems is the leader-follower
formation control, which has been well studied for two-dimensional (2D) and three-dimensional (3D) configurations
that rely on shared global coordinate information provided by the Global Positioning System (GPS) [8–12]. However,
GPS-based positioning demands a large amount of data transfer subjected to a limited communication bandwidth,
interference, and attack. Thus, leader-follower formation control using a relative dynamic model has drawn researchers’
attention. In a recent work [13], an adaptive formation controller for a 3D leader-follower quadcopter system was
developed based on a nonlinear model representing the formation error dynamics. The model takes into account both
the relative position in the horizontal plane and the relative heading angle in the presence of uncertainties, which turn it
into a 2D controller.

In earlier works [14–16], the Backstepping technique had been used to develop controllers with event-triggering
mechanism by leveraging the Lyapunov theory. A 3D dynamics model provides the relative position and orientation
formation information, in terms of the relative distance, azimuth and elevation angles of the two UAVs, to describe
their positioning in a local spherical coordinate frame. In other words, this 3D relative dynamics model does not rely
on the global position information, such as GPS data. Nevertheless, the derivation of Backstepping-based controllers
in [14–16] still requires full-state feedback, matrix derivatives and inversion, which demands considerable amount of
effort in derivation, state estimation, and resource allocation for on-board implementations.

The research on multi-agent formation control for Unmanned Aerial Vehicles (UAVs) has gained serious attention
over the last decade due to its cooperative way of problem solving capability in diverse applications. The related
theoretical and practical challenges arise from their coordination and control based on the relative state information. The
formation flight control of multiple UAVs in three-dimensional (3D) environments, have been covered in the existing
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literature [10, 11]. However, there is a lack of research towards establishing 3D leader-follower formation control
approaches based on the relative dynamics in GPS denied environments, by exploiting machine learning (ML) techniques.
It is highly non-trivial to design a formation controller by utilizing local information rather than global information.
Such a controller design demands capturing nonlinear input-output (state-to-action) relations involved in the relative
dynamics between UAVs (leader-follower), which becomes more complex in the presence of uncertainties. Towards
achieving this complex goal, we call for an ML technique that can adapt to the environmental changes without requiring
labelled data, hence reinforcement learning (RL) an unsupervised ML technique. Starting with zero knowledge, an RL
agent learns from its mistakes while interacting with the associated environment and finally generates the necessary
actions required to optimally complete a task. After learning an appropriate policy, it can then be implemented on a real
system to succeed in a formation control task.

In this paper, we aim to develop a model-free leader-follower controller using deep reinforcement learning (DRL).
DRL is an unsupervised learning method that teaches an agent from the scratch through properly rewarding it while
interacting with an environment. Specifically, we employ the deep deterministic policy gradient (DDPG) algorithm
[17–19] to tackle the continuous action space involved in the current formation control problem. DDPG is an off-policy
learning algorithm that trains the associated function approximator, i.e. deep neural network (DNN), by sampling
data batch-wise from a replay memory [17, 19]. Once the agent is trained, then it generates the optimal action for the
follower to maintain a formation with the leader.

The contributions of this research are: (i) The strength of DRL is utilized to generate appropriate control commands
required in a leader-follower formation control problem, (ii) The effectiveness of the proposed control approach is
validated in a simulated environment, where an DRL-enabled follower UAV maintains a predefined formation with
a leader UAV. Our result analysis includes an investigation on the basis of converging speed, steady-state tracking
error, overshoot, and computational efficiency. The rest of the paper is organized as follows. The system dynamics and
equations of motion are explained in Section II. Then, our proposed methodology and the achieved simulation results are
presented in Section III and Section IV respectively. Finally, section V concludes the paper with potential future work.

II. System Dynamics

A. Coordinate frames
The key coordinate frames associated with the system dynamics of a UAV, i.e., the inertial frame and the vehicle

frame [20], are introduced below.

1. The inertial frame F 8
The inertial coordinate system is an earth-fixed coordinate system with its origin at a pre-defined location. In this

paper, this coordinate system is referred to the North-East-Down (NED) reference frame. It is common for North to be
referred to as the inertial G direction, East to the H direction, and Down to the I direction.

2. The vehicle frame F E
The origin of the vehicle frame is at the center of mass of a UAV. However, the axes of F E are aligned with the axes

of the inertial frame F 8 .

B. Relative Dynamics of Leader-Follower UAV System
The present work adopts the relative dynamics of a leader-follower UAV system as developed in [14, 15]. Figure 1

shows a top-down view and a side view of the relationship between the positions and orientations of the leader and
follower UAVs, respectively. In this paper, the subscript ℓ refers to the leader UAV, while the 5 subscript refers to the
follower UAV.

Let pℓ ∈ R3 and p 5 ∈ R3 be the positions of the leader and the follower UAVs in the inertial frames, respectively.
The Line of Sight (LOS) is defined as the line segment drawn between the center of the leader UAV to the center of the
follower, as highlighted in Fig. 1. Let A ∈ R be the length of the LOS segment, denoting the relative distance between
the leader and follower. Let [ℓ ∈ [0, 2c) and bℓ ∈

[
− c2 ,

c
2
]
be the azimuth and elevation angles of the follower with

respect to the leader in leader’s vehicle-1 frame [20], respectively. The origin of the vehicle-1 frame is identical to that
of the F E , i.e. the center of mass of the aircraft. However, the vehicle-1 frame is rotated in the positive right-handed
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direction about the Down direction by the heading (or yaw) angle k. Similarly, let [ 5 ∈ [0, 2c) and b 5 ∈
[
− c2 ,

c
2
]
be

the azimuth and elevation angles of the leader with respect to the follower in follower’s vehicle-1 frame, respectively.

Fig. 1 The overhead view (left) and the side view (right) of the leader and followerUAVs in the three-dimensional
spherical coordinate frame [15].

The azimuth and elevation angles are measured between an UAV’s airspeed vector and the projection of the LOS
segment onto the horizontal and vertical planes, respectively. The positive direction of the azimuth angle is defined as
the right-handed rotation about the z-axis of the local-level frame of the UAV. The leader is located to the right of the
follower when the azimuth angle [ 5 lies in [0, c), and it is on the left side of the follower when [ 5 lies in (c, 2c). To
have the follower UAV behind the leader, the azimuth angle [ℓ should lie in

(
c
2 ,

3c
2

)
; otherwise, the follower appears in

front of the leader.
Figure 1 gives a side view of the relationship between the leader and follower with concern to the elevation angle (b 5 )

and the flight path angle (W 5 ). The elevation angle reflects whether the leader is below or above the follower. The
elevation angle of an UAV is positive if the LOS segment is above the horizontal plane where the UAV is located. The
follower is below the leader when the elevation angle b 5 lies in

(
0, c2

]
, and it is above the leader when b 5 in

[
− c2 , 0

)
. It

is worth mentioning that bℓ ≡ −b 5 .
Let +0ℓ and +0 5 be the airspeeds of the leader and follower, Wℓ and W 5 be the flight path angles [20] of the leader

and follower, and kℓ and k 5 be the course angles of the leader and follower, respectively. The dynamics of A, [ 5 , [ℓ ,
and b 5 are given by [14]

¤A = −+0ℓ
(
cWℓ c[ℓ cbℓ + sWℓ sbℓ

)
−+0 5

(
cW 5 c[ 5 cb 5 + sW 5 sb 5

)
, (1a)

¤[ 5 =
+0 5 cW 5 s[ 5 ++0ℓcWℓ s[ℓ

Acb 5
− k 5 , (1b)

¤[ℓ =
+0ℓcWℓ s[ℓ ++0 5 cW 5 s[ℓ

Acbℓ
− kℓ , (1c)

¤b 5 =
+0 5

A

(
cW 5 c[ 5 sb 5 − sW 5 cb 5

)
++0ℓ
A

(
sWℓ cbℓ − cWℓ c[ℓ sbℓ

)
. (1d)
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where s∗ , sin ∗ and c∗ , cos ∗. Letting d , 1
A
, we have ¤d = −d2 ¤A and

¤d = d2+0ℓ
(
cWℓ c[ℓ cbℓ + sWℓ sbℓ

)
+d2+0 5

(
cW 5 c[ 5 cb 5 + sW 5 sb 5

)
, (2a)

¤[ 5 =
d

cb 5

(
+0 5 cW 5 s[ 5 ++0ℓcWℓ s[ℓ

)
− ¤j 5 , (2b)

¤[ℓ =
d

cbℓ

(
+0ℓcWℓ s[ℓ ++0 5 cW 5 s[ℓ

)
− ¤jℓ , (2c)

¤b 5 = d+0 5

(
cW 5 c[ 5 sb 5 − sW 5 cb 5

)
+d+0ℓ

(
sWℓ cbℓ − cWℓ c[ℓ sbℓ

)
. (2d)

Fig. 2 A follower UAV is regulating to follow a predefined formation with respect to a leader UAV in simulation.

III. Methodology

A. Simulated Environment and RL Architecture
In our proposed method, we apply reinforcement learning to generate appropriate control commands for the follower

UAV such that it can fly in a formation with the leader UAV, as shown in Figure 2. Reinforcement learning teaches an
agent to adapt and take necessary decisions (actions) to achieve a target, by rewarding its good moves and penalizing its
bad moves with respect to a goal-oriented task. In the current RL framework, we have five inputs describing the relative
distance (d), the azimuth and elevation angles of the two UAVs ([; and [ 5 ), and the airspeeds of the two UAVs (+0; and
+0 5 ). We assume that the relative distance between the leader and follower UAVs is determined using onboard sensors,
such as a stereo camera or a LiDAR. The output of RL are the control commands to the follower UAV, i.e. airspeed and
roll angle.

Figure 3 shows the proposed block diagram of the leader follower formation control. In our case, the environment
includes two UAV as shown in Figure 2, where both the movement and position for the leader and the follower UAVs are
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Fig. 3 Block diagram of the proposed reinforcement learning based method for the leader-follower formation
control problem.

defined in the polar coordinate frame. The observation made by the follower is the relative distance, the azimuth and
elevation angles of the two UAVs. The follower, or agent, performs an action in the environment, and based on the
action, a reward is given.

B. Deep Deterministic Policy Gradient (DDPG) Method
Consider a Markov decision process (MDP) with continuous state and action spaces, S and A, respectively. The

states are sampled from a density function ?(B) and the actions are sampled from a policy distribution c\ (0 |B), where
the policy c is parameterized by a deep neural network (Actor) parameter \. At time instant C, an RL agent in the current
state BC ∼ ?(B) takes an action 0C ∼ c\ (0 |BC ) to reach the future state BC+1 ∼ ?(.|BC , 0C ), and the reward obtained for
this state transition is AC (BC , 0C ). A trajectory (B1, 01, A1, B2, ...) comprising many state transitions, gives the cumulative
reward defined as return 'C =

∑∞
C=1 W

C−1AC . Here, W ∈ (0, 1) is the discount factor that assigns different weights to the
rewards obtained at different time steps [17, 18]. The expected return by following a policy c is given by

& c (B, 0) = Ec (0C |BC ) , ? (BC+1 |BC ,0C ) [
∞∑
C=1

WC−1AC |B1 = B, 01 = 0] (3)

Reinforcement learning aims to determine an optimal policy that maximizes the expected return. Towards this, an
Actor network parameterizes c with a parameter \, such that the expected return E? (B) , c\ (0 |B)& c\ (B, 0) gets maximized.
However, the vanilla estimator [18] of the action-value function suffers from high variance leading to a slow convergence.
To mitigate this issue, the action-value function is estimated by a Critic network denoted by &̂(B, 0), whose parameters
are learned to maintain &̂(B, 0) ≈ & c\ (B, 0). The optimization problem becomes

\∗ = arg max
\
E? (B) , c\ (0 |B)&̂(B, 0) . (4)

Here, the Critic network parameters q are estimated by minimizing a mean-square Bellman loss function, as follows.

! (q) = E(BC ,0C ,AC ,BC+1)∼D [{&̂q (BC , 0C ) − (AC + Wmax
0C+1

&̂q (BC+1, 0C+1))}2] , (5)

where D denotes the replay buffer that stores state transition tuple information to pass past experiences during training
data sampling. The class of Actor-Critic (AC) methods solve the optimization problem (4) by using the gradient of the
expected return, as follows.

\ ← \ + UE? (B) , c\ (0 |B) [∇\ log c\ (0 |B)&̂(B, 0)] . (6)
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The DDPG algorithm belongs to the class of AC methods, which utilizes the first order information of the Critic while
training the Actor. The associated deterministic policies are updated along the gradient ascent, given as:

\ ← \ + UE? (B) [∇\c\ (B)∇0&̂(B, 0) |0=c\ (B) ] . (7)

Note that DDPG trains a deterministic policy in an off-policy manner so that sufficient state transition information can
be passed for proper network training [18, 19].
Reward Shaping: The reward function design is crucial in training/teaching an RL agent so that it can act and adapt
according to the desire. The reward is defined as the difference between the control commands to the follower UAV,
given by

AC = −(d − d3)2 − ([; − [3; )
2 . (8)

According to the definition (8), the reward values become more negative when the follower UAV is far away from the
formation with respect to the leader, and the same tend to zero as the follower approaches the desired formation. We
intend to penalize the RL agent with a lower score when its outputs are deviated from the desired parameters, i.e., d3
and [3

;
. The learning objective is to maximize the reward over episodes.

Fig. 4 Reinforcement learning architecture in MATLAB/Simulink for the leader-follower formation control
problem. Note: (U − U3)2 , (U − U3)) (U − U3)

Network Architecture: The actor-network is composed of twelve total layers. The first layer takes in the observation
data with an input size of five. The input layer is followed by five fully connected layers, with a Relu activation in
between each layer. The first fully connected layer contains 256 nodes, while the other layers contain 400 nodes. At
the end of the fully connected layers, a sigmoid activation is used to bound the input within an interval of (0, 1). The
actor-network is concluded with a scaling layer that shifts the result to the range of the specified actions. We set the +2

0 5

signal between 2 m/s to 30 m/s, and the q2
5
control signal range between -45 degrees and 45 degrees. A set of actions

will be obtained from the network and be used by the follower UAV as control commands.
An DDPG-based RL framework employs a critic-network and an actor-network to estimate the value function and

the policy distribution, respectively. As shown in Figs. 4 and 5, the critic network uses the observation and action to
evaluate how well the actor network performs. The actor side of the network contains a single fully connected layer of
400 nodes, while the observation side has two fully connected layers with a Relu activation in between. The first and
second fully connected layers of the observation side contain 256 and 400 nodes, respectively. The outputs of the two
layers are combined before feeding into a final Relu activation.
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Fig. 5 Actor architecture showing each of the layers.

IV. Simulation Results
We trained the RL agent on a Dell desktop computer with an octa-core Intel i7 processor operating at 3.40 GHz per

processor and 16-GB dual-channel (RAM). The RL training process undergoes 400 episodes with each one comprising
1000 iteration. We carried out several simulations with 25 different combinations of the learning rates, ranging from
1× 10−6 to 1× 10−10, of the actor and critic networks. The best overall performing pair of the learning rates are 1× 10−7

for the actor and 1× 10−5 for the critic. At each time step of the training, the follower UAV receives a set of observations
from the environment that contains the velocities (+0; and +0 5 ), roll angles ([; and [ 5 ) of the two UAVs, along with
the inverse of their relative distance (d). Based on the observation, the RL agent chooses an action for the follower
UAV to take, which is the velocity (+2

0 5
) and roll angle (q2

5
) commands. After training for 400 episodes, the RL agents

received a reward of −133.7053, as shown in Fig. 6.
The learned policy is then used to generate the control commands to the follower UAV to perform the desired

behavior. Fig. 7 shows that the follower UAV succeeds in maintaining the desired formation with respect to the leader.
The proposed control approach is validated on a simulated environment where the follower UAV is commanded to
follow a predefined formation with respect to a leader UAV moving along a planar circular orbit with constant airspeed
and orbit radius.

To further test the proposed technique, noisy observations were generated by using the ground-truth values
of (d, [; , [ 5 , +0; , +0 5 ) added with the Gaussian noise of N(0, f2

∗ ), ∗ = {d, [; , [ 5 , +0; , +0 5 }, where fd = 0.01,
f[; = f[ 5 = 0.01, and f+0; = f+0 5 = 0.1. Figure 8 shows the roll angle action generated using the ground-truth and
noisy observations of the environment. The resulting trajectories of the follower UAV in two cases are very close to the
one shown in Fig 7. It can be seen that the learned RL policy is able to drive the follower UAV to fly towards the desired
formation with noisy observations.

V. Conclusion
In this paper, we leverage a reinforcement learning technique that generates appropriate control commands, airspeed

and roll angle, to a follower UAV for maintaining a desired formation with a leader. The proposed RL-based approach
does not require any global information and only utilizes local vehicle-frame information. The impact of this non-
conventional approach is demonstrated using simulations with 6-dof UAV dynamics, where the follower UAV succeeds
in flying in a formation with the leader moving along a planar circle. Further, the leader-follower formation is achieved
even in the presence of observation noise, which justifies the robustness of the proposed RL-based controller.

From an ML perspective, an agent learns the desired behavior by maximizing rewards over episodes; therefore,
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Fig. 6 Episode reward evolution for the follower UAV during a training process.

reward shaping plays an important role in RL. In future, we plan to improve the reward definition by normalizing it
so that the leader-follower formation control can be achieved under various leader trajectories (not only a 2D circle).
To this end, the present research highlights the use of reinforcement learning for leader-follower formation control in
GPS-denied environments, which has potential to open doors to exciting research on multi-agent cooperative control.
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Fig. 8 The velocity and roll angle of follower UAV generated by the learned RL policy.
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