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Abstract: This paper presents a novel reinforcement learning (RL) approach for a teth-
ered drone to follow a predefined three-dimensional trajectory in a GPS-denied environment.
The adoptedQ-learning strategy determines high-level actions using raw observations from the
onoard accelerometers, gyros, and altimeter, which facilitates a low-level proportional-integral-
derivative (PID) controller to drive the drone through the desired waypoints on a reference
trajectory. The effectiveness of the proposed approach is demonstrated in a simulated environ-
ment.

I. Introduction

Multicopter unmanned aerial vehicles (UAVs), or drones, notably rely on accurate knowledge of their locations for
guidance, navigation, and control. UAV localization typically counts on IMUs [1–3], the Global Positioning System

(GPS) [4] (differential GPS [5]), infrared (IR) sensors [6], laser rangefinders [7, 8], and optical and vision systems [9–11].
While all of these sensing systems have successfully supported outdoor applications, extensive investment has been made
to enhance the capability of self-localization for UAVs by improving the GPS infrastructure, utilizing cellular network
infrastructure [12], or integrating both technologies for a wider range of applications. However, UAV self-localization in
indoor environments and street canyons is still very challenging. Also, unlike ground vehicles, UAVs are constrained by
their size and payload. Very limited power and flight endurance have prevented them from carrying high-end sensors for
localization. This poses critical concerns to the safety of UAV operations in populated urban areas and in GPS-denied
areas.

The tremendous improvement in the sensing capabilities of multicopter UAVs has endorsed the utilization of machine
learning techniques and specifically the reinforcement learning (RL) in the guidance, navigation and control (GNC)
field [13–16]. The authors in [17] presented a successful autonomous completion on a real remote-controlled helicopter
of four aerobatic maneuvers using inverse RL. In [18] an improved adaptive RL method is proposed for UAV morphing
control that learns the optimal shape-change policy at different flight conditions and it is integrated with an adaptive
dynamic inversion control trajectory tracking function. In [19], The same authors proposed a Q-Learning algorithm
to teach a UAV to track a ground targets for autonomous surveillance using the learned control policy of the images
captured by the camera.

In outdoor environments, we assume that at any position, the drone can observe its location. If we have full
information about the environment, for instance, the exact distance to the target or the locations of the obstacles, the UAV
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trajectory tracking can be generated based on the model of the environment, and the problem becomes convectional.
Traditional control methods, such as Sliding-mode, Lyapunov based, etc [20–22], are available to solve such problem. In
many realistic cases, and specifically in our problem, localizing the drone in GPS denied environments, self localization
is not possible since the environment is insufficiently known, or the data of the environment is not available or difficult
to obtain. Since RL algorithms can rely only on the data obtained directly from the system, it is a natural option to
consider for our tether problem. Our goal is to control the tethered multicopter to track a predefined path without prior
knowledge of the cable force information nor the system dynamics. The main challenge of controlling a tethered drone
comes from the interaction between the drone and the tether. The cable force variation is determined by the tether type,
the thrust force of the drone motors, and drone dynamics. In our prior research work [23–25], we have been investigating
a solution to self-localizing a multicopter UAV in GPS-denied environments using a tethered system. It has shown the
effectiveness of the EKF by assuming the availability of a constant cable force. Without a cable force sensor, however,
the cable force variation would be nontrivial to identify or model. A smart winch control mechanism would be needed
to maintain the tautness of the tether. All of these challenges motivate us to develop a model-free artificially intelligent
method. In this paper, we proposed to leverage the RL technique to generate a policy of controlling the tethered drone
for waypoint following. The available on-board sensors that can be leveraged include the accelerometers, gyroscopes,
and altimeter. Its also worth noting that since we have conducted the observability analysis in our previous research
work [25], which showed that the multicopter position is observable if the tether is taut,we are confident in utilizing the
RL with the same hypothesis.

To the best of our knowledge, using a RL algorithm for a UAV’s guidance and navigation in unknown environments
is still an open area of research. Many works often did not provide details on the practical applications of implementation
of the learning algorithm on heterogeneous systems. In this paper, we provide a novel technique utilizing the Q-Table
for local frame navigation to explore unknown environments. Q-Table is easier to memorize and carry along the
dynamics, where it allows to carry on the knowledge in such complicated environments. Our application in local frame
is extendable to cover future work. The tether drone application is considered a heterogeneous system that consists of
two agents: the ground robot and the multicopter. Choosing the Q-Table based RL technique would give flexibility to
expand the work to augment the work in more complicated environments (i.e. environment with moving obstacles)
and accommodating new features such as (i.e. collision avoidance).The main contribution of the paper is to provide a
framework for applying a Q-Table based RL algorithm to enable complicated heterogeneous systems of autonomous
robot agents to navigate in unknown environments with obstacles.

The remainder of this paper is structured as follows. Key definitions of coordinate frames, the dynamics model of
the tethered multicopter, and the accelerometer principle are introduced in Sections II and II.B.1, respectively. The
proposed RL-based guidance policy is presented in Section III. The simulation results are presented in Section IV and
Section V concludes the paper.

II. Background and Preliminaries

A. Coordinate Frames
In this section, we introduce the key coordinate frames associated with the multicopter movements, i.e., the inertial

frame, the vehicle frame, and the body frame [26].
• The inertial frame, F 8: The inertial coordinate system is an earth-fixed coordinate system with its origin at a
pre-defined location. In this paper, this coordinate system is referred to the North-East-Down (NED) reference
frame. It is common for North to be referred to as the inertial G direction, East to the H direction, and Down to the
I direction.

• The vehicle frame, F E : The origin of the vehicle frame is at the center of mass of a multicopter. However, the
axes of F E are aligned with the axes of the inertial frame F 8 . In other words, the unit vector iE points toward
North, jE toward East, and kE toward the center of the earth.

• The body frame, F 1: The body frame is obtained by rotating the vehicle frame in a right-handed rotation about iE
by the roll angle, q and about the jE axis by the pitch angle \ and about the kE axis by the yaw angle k.

The transformation from F E to F 1 is given by

p1 = '1E (q, \, k) pE , (1)
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where pEand p1are the multicopter position in the vehicle frame and body frame respectively and the transformation
matrix, '1E (q, \, k), is given by:

'1E (q, \, k) =
©­­«

c\ck c\sk −s\
sqs\ck − cqsk sqs\sk + cqck sqc\
cqs\ck + sqsk cqs\sk − sqck cqc\

ª®®¬ . (2)

where c∗ , cos(∗) and s∗ , sin(∗).

B. Tethered Multicopter Dynamics
In this section, we introduce the equations of motion of a multicopter tethered to a stationary station. The 6 d-o-f

model for a multicopter dynamics relies on 12 states as follows.
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where (?=, ?4, ?3)) ∈ R3 is defined as the multicopter position in the North-East-Down (NED) inertial frame; (D, E, F)
is the vehicle velocity vector in the body frame; < is the vehicle mass; (?, @, A) is the rotational velocity in the body
frame; and ( 5G , 5H , 5I) , (g; , g<, g=) are the total external forces and torques applied to the multicopter in the body frame
respectively; �G , �H and �I are moments of inertia of the multicopter.

1. Force and Acceleration
Commercial-of-the-shelf (COTS) Inertial Measurement Units (IMUs), such as accelerometers, are widely used

in multicopter navigation tasks. From a controller design perspective, different terms associated with the output of
such accelerometers need to be analyzed carefully. In view of this, the normalized kinematic accelerations and specific
forces [27] are explained in the following.

Let [ = (D, E, F)) be the linear velocity vector, S = (?, @, A)) be the rotational velocity vector of the multicopter in
the body frame and f1 =

(
5G , 5H , 5I

)
be the total external force vector in the body frame. Assume that the accelerometer

is mounted at the center of gravity of a multicopter and define the kinematic acceleration vector a1
:
=
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))
in the body frame as
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The constituents of a1
:
are given by 
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where 6 is the gravitational acceleration on Earth. Note that a1
:
and 6 have the same unit. The output of an accelerometer

used in the multicopter autopilot is referred to as the specific force (or g-force or mass-specific force), a1
(�

, which is
defined as

a1(� =
f1 − f16
<6

= a1: −
f16
<6

, (9)

and the associated components are given by
a1
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= a1
:,G
+ sin \,

a1
(�,H

= a1
:,H
− cos \ sin q,

a1
(�,I

= a1
:,I
− cos \ cos q.

(10)

External Forces on Tethered Multicopter: The total external force vector for a tethered multicopter in the body frame is
given by

f1 = f1CℎADBC + f16 + f1201;4, (11)

where f1
CℎADBC

is the thrust force, f16 is the gravity force, and f1
201;4

is the cable tension force, all in the body frame. The
gravity force vector of the multicopter in the vehicle frame is: fE6 = [0, 0, <6]) . Next, the gravity force in the body
frame is given by

f16 = '1E fE6 =
©­­«
−<6 sin \

<6 cos \ sin q
<6 cos \ sin \

ª®®¬ . (12)

The thrust force vector in the body frame is given by
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where subscripts �, ', �, and ! denote the thrust forces provided by the front, right, back, and left motors, respectively.
The individual thrust forces can be calculated using the PWM (Pulse Width Modulation) signals commanded to the
motors, i.e.,

5∗ = :<>C>A · pwm∗, (14)

where ∗ ∈ {�, ', �, !} and :<>C>A is the electric motor coefficient and pwm∗ is the PWM motor control signal. The
specific force can then be expressed as
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By considering the tether to be taut, f1
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Next, Equation (15) can be rewritten as
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III. Problem Statement and Solution Methodology
In a GPS-denied environment, the goal is to optimally drive a tethered multicopter through the predefined waypoints

on a reference trajectory. Here, RL is adopted to steer the tethered multicopter towards the destination waypoints
in minimum time. A high-level Q-learning based planner is leveraged to find the optimal route between source and
destination waypoints, while a low-level PID controller is used to generate stable movements of the multicopter flying
into the intermediate coordinates determined by Q-learning.

Consider a multicopter tethered to a ground robot, as shown in Figure 1. For simplicity, in this work, the ground
robot is assumed to be stationary and located at the origin (0, 0) of the inertial frame. Unlike a free multicopter, a
tethered multicopter dynamics gets restricted since it needs to pay additional efforts to compensate the cable tension.
Therefore, finding an optimal route for a tethered multicopter is a challenging problem to solve. The proposed solution
method is explained in the following.

Fig. 1 Tethered multicopter to a ground robot scenario.

A. High Level Planning with Q-Learning
RL is an artificial-intelligence method that teaches an agent to tackle sequential decision-making tasks by maximizing

the rewards received from its interactions with the surrounding environment. A typical sequential decision making
process can be characterized by a finite and discrete time Markov Decision Process (MDP). In principle, the state
transitions associated with an MDP satisfy the Markov Property [28], according to which, all the future states pursued
by an agent can be fully determined by its current state and action. As a consequence, the expected cumulative reward
gathered by it also becomes a function of its current state and action [29]. Precisely, an MDP can be represented by a
tuple: <current state (BC ), action (0C ), next state (BC+1), reward (AC )>. The sum of the discounted rewards over a finite
time-horizon ()) is called the cumulative reward or return at time C, i.e. 'C . The goal of an RL agent is to maximize the
expected cumulative reward, called as the value: + (BC ) = E

[
'C =

∑)
8=C W

8−CAC
]
of a state BC at time C, where W ∈ [0, 1]

denotes a discount factor and E stands for the expectation operator.
In the current set up, an agent intends to learn a sequence of appropriate actions to reach a destination optimally.

The associated states are the three-dimensional position coordinates (G, H and I) and the heading attitude (yaw) of the
multicopter. Using these raw observations, an RL agent tries to steer the multicopter towards the optimal direction. The
underlying action space is discrete and four-dimensional with possibilities: a step moving forward, backward, left, or
right. Figure 2 shows the interaction between an agent and the environment in the adopted RL framework. Note that all
the sequences of actions are assumed to terminate in a finite number of time-steps. This formalism gives rise to a large
yet finite MDP. A Q-learning algorithm is adopted here since it has proven to be stable and efficient in solving dynamic
problems with discrete action spaces [30]. Usually, a classical Q update is carried out in a sample-by-sample manner,
which indicates that the value function changes every time a new transition is made. The associated iterative update rule
is given by

&(BC , 0C ) ← &(BC , 0C ) + U{A (BC , 0C ) + Wmax
0C+1

&(BC+1, 0C+1) −&(BC , 0C )} , (18)
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where BC denotes the current state where a transition starts, 0C is the action applied onto BC , and BC+1 is the resulting
future state after the transition; W is the discounting factor, and U is the learning rate.

Fig. 2 The agent and the environment relationship in reinforcement learning

Fig. 3 Depiction of the set of actions available to the agent

1. Q-table Update
A Q-table is simply a matrix that keeps record of all the Q-values of various state-action pairs encountered while

training an RL agent. The number of rows of this matrix equals to the number of states, and the number of columns is
same as the number of possible actions. The associated Q-tables evolve as per the three basic steps: (i) To maintain
a balance between the exploration and the exploitation of a search space, an agent chooses actions using an epsilon
(n)-greedy strategy. Based on the n rate, the agent either takes a random action or it takes an action corresponding to the
maximum Q-value of the latest Q-table. The n rates are higher in the beginning episodes to promote more exploration
of the environment, however, the same decreases gradually with training episodes to encourage exploitation; (ii) The
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agent makes a state-transition using the selected action and receives a reward; and (iii) All the Q-values of the Q-table
are updated according to Equation (18) towards satisfying the Bellman optimality criteria. The updates occur after each
state-transition and ends when an episode is done. Here, a Done episode means that the agent has reached the desired
terminal state.

2. Reward Shaping
The design challenge lies in shaping an effective reward function that facilitates the RL agent to learn adaptive/optimal

actions leading to the desired goal waypoint location(�). A flow chart of the logic behind the current reward scheme is
depicted in Figure 4. The goals can be different based on the scenario-specific requirements. For instance, when the
drone is flying freely and the tether is not taut but used for safety and power feeding, then the objective is to reach the
desired Goal waypoint (�) with minimal number of actions. The rewards are assigned to meet this objective while
encouraging the tethered drone to fly within a boundary (�), which is computed by the algorithm based on the set of
desired waypoints, see Figure 7. The reward function for this scenario is given by

' =


10 - C*Actions if sC+1 ≡ G
-1 if sC+1 . G & ≡ B
-5 if sC+1 . G & . B

(19)

Fig. 4 Flowchart depicting the selected reward scheme for the task.
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Fig. 5 Tether flight test for data collection and training

It is worth noting that the representative waypoints are picked from the inertial (global) frame while training an RL
agent, and during the Q-learning phase, each pair of source (current) and destination (next) waypoints is considered in
the vehicle frame, i.e. the local coordinate frames visualized in Figure 6 and Figure 7. Precisely, the coordinate of
a destination waypoint is converted from the inertial frame to the vehicle frame with reference to the corresponding
departed waypoint placed at the origin, as shown in Table 1. By adopting a local coordinate frame rather than a global
coordinate frame, the search space for Q-learning gets reduced due to a restricted boundary. Consequently, the size of
the associated Q-table becomes tractable. For example, as depicted in Figure 7, the multicopter flies within a boundary
of (3G3) space using the local coordinate frame; however, the same would have been a four times bigger space (6G6)
using the global coordinate frame.

Fig. 6 Global-Local Frames:Blue-Gloabl, Red-Local
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Fig. 7 Global Vs Local Coordinates

B. Low Level Control
The multicopter model in Gazebo subscribes command signals generated from the low-level PID position controller.

This position controller intends to help the multicopter UAV performing an action 0: to move from current location BC
(state) to the new location B:+1, or within its small neighborhood defined by an absolute distance error of d. Given that
?C is the real-time position of the multicopter, the PID controller suffices to ensure the dynamic stability of the drone.

D(C) =  ?4(C) +  8
∫

4(C)3C +  3
34

3C
(20)

where the tracking error 4(C) is defined as:
4(C) = ?(C) − B:+1 (21)

IV. Tethered Drone Simulation Environment and Results
Simulated environment: The tethered drone simulation environment includes three softwares: Gazebo, Robot
Operating System (ROS), and OpenAI Gym. Gazebo is a 3D dynamic simulator that helps simulating robots in the
virtual environments. To simulate a real multicopter (Parrot AR-Drone2.0 quadcopter) in Gazebo, we used the ROS
driver: ARdrone autonomy [31]. This driver provides the quadcopter POSE: G, H, I and k, fed as state inputs to the
RL agent. The adopted Q-Learning framework for waypoint navigation control problem, is shown in Figure 8. At
the current POSE, the trained RL agent predicts the optimal flight direction that leads the tethered quadcopter to the
destination waypoint in minimum time. Once the optimal direction is decided, then the ARdrone model in Gazebo
subscribes command signals generated by the low-level PID controller to stably move a step in that direction. After
completing a step-movement, the RL agent’s prediction is leveraged again for the next step-movement, and this process
continues until the quadcopter arrives at the desired waypoint. Algorithm 1 and Figure 8show the (Q-learning+PID)
algorithm used in this paper.
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Algorithm 1 PID +Q-Learning
Inputs:

Learning parameters: Discount factor W, learning rate U, number of episode #
Control Parameters: Control gains  ? ,  8 ,  3

1: Initialize Q0 (s, a) ← 0,∀s0 ∈ S,∀a0 ∈ A;
2: for episode = 1, N do
3: Acquire the Initial state B0
4: while BC+1 . G
5: With probability n select a random action 0C
6: otherwise select 0: arg max0 &(q(B: ), 0; \)
7: for t=0,1,2,... do
8: u(t)=K?4(C) +  8

∫
4(C)3C +  3 343C

9:
10: until ‖ 4(C) = ?(C) − B:+1 ‖≤ 3
11: Observe reward A:+1
12: Update Q-Table
13: Increment time step
14: end while
15: end for

Fig. 8 The framework of Q-Learning for path following and waypoint navigation control

Performance evaluation: The task here to develop an efficient control strategy so that the tethered multicopter can fly
through 4 predefined waypoints as fast as possible. These waypoints in the global coordinate frame are visualized in
Figure 9. Table 1 shows the local coordinates conversion done in the given the global coordinates provided by the user.
Note that the initial location of the drone in each waypoint navigaiton pair is (0, 0). That reduces the number of possible
(State-Action) pair in the Q-Table and hence having a smaller size Q-Table. The obtained results indicate that the RL
agent learns effective flight directions quickly and it starts receiving high rewards after around 50 episodes only, as
shown in Figure 10. The optimal high-level decisions or flight directions are learned well after 100 episodes, and the
associated rewards do not improve much afterwards. When Q-learning is completed, the multicopter takes nearly 3
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seconds to navigate through the 4 waypoints. Figure 12 shows the paths explored by the multicopter during the early
episodes of Q-learning (blue trail) and the final path learned after episode 500 (red trail).

Fig. 9 Drone navigating in a closed environment, showing the actions, boundaries, sample goal waypoints.

Table 1 Waypoints coordinates in the Global and Local Frames

WP Index Global Coordinates Local Coordinates
,%0→,%1 (0, 0)→(3, 0) (0, 0)→(3, 0)
,%1→,%2 (3, 0)→(0, 3) (0, 0)→(−3, 3)
,%2→,%3 (0, 3)→(−3, 0) (0, 0)→(−3,−3)
,%3→,%4 (−3, 0)→(0,−3) (0, 0)→(3,−3)
,%4→,%1 (0,−3)→(3, 0) (0, 0)→(3, 3)
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Fig. 10 Rewards and Total Time for 4 Waypoints Navigation

Fig. 11 Q-Table size for 4 Waypoints Navigation
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Fig. 12 2D and 3D plots for 4 Waypoints Navigation

V. Conclusion
The proposed Q-learning+PID based control technique enables a tethered drone to track a predefined trajectory in

a GPS-denied environment. The implementation is carried out by leveraging the strengths of Python language and
ROS-Gazebo environment. The ROS-Gazebo environment provides a realistic platform that can easily be translated
into real-world applications, while Python language provides flexibility in simulating the tethered drone dynamics and
sending the appropriate control commands. Simulation results justify that the tethered drone succeeds in waypoint
tracking without requiring prior knowledge of the environment.
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