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Abstract—Cost-Sensitive Online Classification is recently pro-
posed to directly online optimize two well-known cost-sensitive
measures: (i) maximization of weighted sum of sensitivity and
specificity, and (ii) minimization of weighted misclassification
cost. However, the previous existing learning algorithms only
utilized the first order information of the data stream. This is
insufficient, as recent studies have proved that incorporating
second order information could yield significant improvements
on the prediction model. Hence, we propose a novel cost-sensitive
online classification algorithm with adaptive regularization. We
theoretically analyzed the proposed algorithm and empirically
validated its effectiveness with extensive experiments. We also
demonstrate the application of the proposed technique for solving
several online anomaly detection tasks, showing that the proposed
technique could be an effective tool to tackle cost-sensitive online
classification tasks in various application domains.

Keywords—Cost-Sensitive Classification; Online Learning;
Adaptive Regularization;

I. I NTRODUCTION

Online learning has been extensively studied for years in
machine learning and data mining literature [1], [2], [3], [4],
[5], [6], [7], whose goal in general is to incrementally learn
prediction models to make correct predictions on a stream
of examples that arrive sequentially. Online learning enjoys
many advantages for real-world large-scale applications.For
example, in some real applications, data often arrives se-
quentially while prediction must be made immediately, such
as, malicious URL detection [8] and portfolio selection [9].
Moreover, online learning is very attractive for large-scale
learning task, e.g., training SVM from billions of data [10].
Although being studied extensively in the literature, most
of the existing online learning algorithms are unsuitable to
solving cost-sensitive classification tasks. Cost-sensitive clas-
sification is an important task for data mining, which differs
with traditional classification by taking the misclassification
costs into consideration [11], [12]. Most traditional online
learning algorithms often concern the performance in terms
of prediction mistake rate or accuracy, which is clearly cost-
insensitive and thus inappropriate for quite a few real-world
applications in data mining, where datasets are often class-
imbalanced and the misclassification costs of instances from
different classes can be significantly different [13], [14], [15],
[16].

To address this issue, researchers have proposed more
meaningful metrics for cost-sensitive classifications, including:
the weighted sum of sensitivity and specificity [17], [18] and
the weighted misclassification cost [11], [19]. Given these

cost-sensitive measures, many batch classification algorithms
are developed to optimize these performance during the past
decades [11], [19]. However, these batch algorithms often
suffer from poor efficiency and scalability for large-scale
tasks, which makes them unsuitable to online classification
applications. Although both cost-sensitive classification and
online learning have been studied extensively in data mining
and machine learning communities, respectively, there were
very few comprehensive studies on cost-sensitive online classi-
fication in both data mining and machine learning literature. As
an attempt to fill the gap between cost-sensitive classification
and online learning in machine learning and data mining, a
new framework of Cost-Sensitive Online Classification [7] is
recently proposed and investigated, which aims to directly
optimize cost-sensitive measures for online classification tasks.
Under this framework, a family of effective Cost-Sensitive
Online Classification algorithms are proposed based on online
gradient descent, which are termed as Cost-Sensitive Online
Gradient Descent (CSOGD). Compared with many traditional
online learning algorithms, encouraging results show thatthe
CSOGD algorithms considerably outperform the traditional
online learning algorithms for cost-sensitive online classifica-
tion tasks [7].

Although CSOGD can solve CSOC better than traditional
online learning algorithms, it only utilizes the first orderinfor-
mation of the examples, i.e., weighted mean of the gradient.
This is obviously insufficient, because recent studies [20], [21],
[22], [5] have shown that the usage of second order informa-
tion, i.e., the correlations between features, can significantly
improve the performance of online learning. Hence, we pro-
pose Adaptively Regularized Cost-Sensitive Online Gradient
Descent (ARCSOGD) based on the state-of-the-art Confidence
Weighted [20], [21], [22], [5] strategy, which not only updates
the model using the first order information but also the second
order information, to further improve the learning efficacy.
Furthermore, we theoretically analyzed its regret bound, which
measures the difference between its cumulative loss and the
one of the best model. To empirically evaluate the proposed
algorithm, we conduct an extensive set of experiments on some
benchmark datasets and several online anomaly detection tasks
from various real-world application domains. Promising exper-
imental results demonstrate the effectiveness and efficiency of
the proposed algorithm, compared with many stat-of-the-art
online learning algorihtms.

The rest of this paper is organized as follows: We first
review related work in section 2, and then present the proposed
algorithm and its theoretical analysis in section 3; we further



discuss the experiments in section 4. Section 5 shows an
application to online anomaly detection tasks, and finally
section 6 concludes the paper.

II. RELATED WORK

Our work is mainly related to two groups of research in
data mining and machine learning: (i) cost-sensitive classifica-
tion in data mining literature, (ii) online learning in machine
learning literature.

A. Cost-sensitive Classification

Cost-sensitive classification has been extensively studied in
data mining and machine learning [23], [24], [25]. Classifica-
tion problems such as fraud detection, medical diagnosis, are
naturally cost sensitive. In these problems the cost of missing
a target is much higher than that of a false-positive, and
classifiers that are optimal under symmetric costs tend to under
perform. To address this problem, researchers have proposed a
variety of cost-sensitive metrics. The well-known examples in-
clude the weighted sum ofsensitivityandspecificity[17], [18],
and the weightedmisclassification costthat takes cost into
consideration when measuring classification performance [11],
[19]. As a special case, when the weights are both equal
to 0.5, the weighted sum of sensitivity and specificity is
reduced to the well-knownbalanced accuracy[18], which
is widely used in anomaly detection tasks. Over the past
decades, various batch learning algorithms have been proposed
for cost-sensitive classification in literature [26], [27], [12],
[11], [28], [29], [16]. However, few studies emphasis the case
when data arrives sequentially, except Perceptron Algorithms
with Uneven Margin(PAUM) [30], the Cost-sensitive Passive
Aggressive(CPA) [3], and the CSOGD algorithm [7].

B. Online Learning

Online learning has been actively studied in machine
learning community [1], [31], [32], [3], [33], [34], [35], [36],
[37], in which a variety of online learning algorithms have been
proposed, including a number of first-order algorithms [38],
[3]. One of the most well-known first-order online approach-
es is the Perceptron algorithm [1], [39], which updates the
learning function by adding the misclassified example with a
constant weight to the current set of support vectors. Recently
a number of online learning algorithms have been developed
based on the criterion of maximum margin [31], [40], [41],
[3], [2]. One example is the Relaxed Online Maximum Margin
algorithm (ROMMA) [2], which repeatedly chooses the hyper-
planes that correctly classify the existing training examples
with a large margin. Another representative example is the
Passive-Aggressive (PA) algorithm [3]. It updates the classifi-
cation function when a new example is misclassified or its
classification score does not exceed the predefined margin.
Empirical studies showed that the maximum margin based
online learning algorithms are generally more effective than
the Perceptron algorithm. Despite the difference, these online
learning algorithms only update the algorithm based the first-
order information, such as the gradient of the loss. This
constraint could significantly limit the performance of online
learning.

Recent years have seen a surge of studies on the second-
order online learning algorithms [42], [20], [22], [5], which

have shown that parameter confidence information can be
explored to guide and improve online learning performance
[42]. For example, Second Order Perceptron (SOP) [42] is
the first second-order online learning algorithm, which can
be viewed as an online variant of the whitened Perceptron
algorithm, where the whitened effect is achieved by using
online correlation matrices of the previously seen instances.
Later, some second order online learning algorithms with large
margin are proposed. For example, Confidence-weighted (CW)
learning [20], [43] maintains a Gaussian distribution over
some linear classifier hypotheses and applies it to control the
direction and scale of parameter updates [20]. Although CW
learning has formal guarantees in the mistake-bound mod-
el [43], it can overfit in certain situations due to its aggressive
update rules based upon a separable data assumption. Recently,
an improved online algorithm, i.e., Adaptive Regularization of
Weights (AROW) [22], relaxes such separable assumption by
employing an adaptive regularization for each training example
based upon its current confidence. This regularization comes in
the form of minimizing a combination of the Kullback-Leibler
divergence between Gaussian distributed weight vectors and a
confidence penalty of vectors. Although AROW [22] is able
to improve the original CW [43] learning by handling noisy
and non-separable cases, it is not the exact corresponding soft
extending part of CW (Like PA with PA-I and PA-II). In partic-
ular, the directly added loss and confidence regularizationmake
AROW lose an important property of Confidence-weighted
learning, i.e., Adaptive Margin property [43]. Following the
similar idea of soft margin support vector machines, Soft
Confidence-Weighted algorithms [5] algorithms are proposed
to assign adaptive margins for different instances via a proba-
bility formulation, which enables CW to gain extra efficiency
and effectiveness. In general, the second order algorithmsare
more accurate, converge faster.

Most online learning algorithms are cost-insensitive, with
notable exceptions such as the perceptron algorithm with un-
even margin (’PAUM’) [30], the prediction-based PA algorithm
(’CPAPB ’) [3], and the CSOGD algorithm [7].

III. A DAPTIVELY REGULARIZED COST-SENSITIVE
ONLINE CLASSIFICATION

In this section, we first introduce the Cost-Sensitive Online
Classification (CSOC) problem settings, and then present our
proposed Adaptively Regularized Cost-Sensitive Online Gra-
dient Descent Algorithm (ARCSOGD).

A. Problem Settings

Without loss of generality, let us consider an online bi-
nary classification problem. Our goal is to learn a linear
model w ∈ R

d based on a sequence of training examples
{(x1, y1), . . . , (xT , yT )}, wherext ∈ R

d is a d-dimensional
instance andyt ∈ Y = {−1,+1} is the class label assigned to
xt. We usesign(w⊤

x) to predict the class assignment/label
for any instancex.

Online binary classification algorithm learns the model in
rounds. Formally, at thet-th round, the algorithm will receive
the instancext, and make a prediction̂yt = sign(w⊤

t xt),
wherewt is a model learnt using the previoust− 1 examples.
Then the true labelyt ∈ {−1,+1} will be revealed for



comparison. Ifŷt 6= yt, the learner made a mistake; otherwise
it made a correct prediction. For convenience, we denote
M = {t |yt 6= sign(wt · xt), ∀t ∈ [T ]}, Mp = {t |t ∈
M and yt = +1} andMn = {t |t ∈ M and yt = −1},
where [T ] = {1, . . . , T }. In addition, we introduce notation
M = |M|, Mp = |Mp| and Mn = |Mn| to denote the
number of mistakes, false negatives and false positives. Also
we useIpT = {i ∈ [T ]|yi = +1}, InT = {i ∈ [T ]|yi = −1}
andTp = |IpT | andTn = |InT | to denote the number of positive
examples and negative examples.

We assume the positive class is the rare class, i.e.,Tp ≤ Tn.
Traditional online learning tries to maximize accuracy butthis
may be inappropriate for imbalanced data because a trivial
learner which simply classifies all examples as negative could
still achieve a high accuracy. Thus, a more appropriate metric
is to measure thesumof weightedsensitivityand specificity,
i.e.,

sum = αp ×
Tp −Mp

Tp

+ αn ×
Tn −Mn

Tn

, (1)

whereαp + αn = 1 and0 ≤ αp, αn ≤ 1 are two parameters
to trade off between sensitivity, and specificity. Notably,when
αp = αn = 0.5, the correspondingsum is the well known
balanced accuracy. In general, the higher thesumvalue, the
better the classification performance. An alternative approach
is to measure the total misclassification cost suffered by the
algorithm, defined as:

cost = cp ×Mp + cn ×Mn, (2)

wherecp+cn = 1 and0 ≤ cp, cn ≤ 1 are the misclassification
cost parameters for positive and negative classes, respectively.
The lower thecost value, the better the classification perfor-
mance.

Our objective is to either maximizesum or minimizecost.
As shown in [7], both of these are equivalent to minimizing
the following objective:

∑

yt=+1

ρI(ytw·xt<0) +
∑

yt=−1

I(ytw·xt<0), (3)

where ρ =
αpTn

αnTp
for the maximization of the weighted

sum, andρ =
cp
cn

for the minimization of the weighted
misclassification cost. As the indicator function is not convex,
we replace the indicator function by its convex surrogate:

ℓ(w; (x, y)) = max(0, (ρ ∗ I(y=1) + I(y=−1))− y(w · x)).
We could see that forℓ(w; (x, y)), the required margin for
specific class changed compared to the traditional hinge loss,
causing more “frequent” updating. Now our goal is to find an
online learning solution to minimize the regret of the learning
process:

Regret :=

T
∑

t=1

ℓ(wt; (xt, yt))−
T
∑

t=1

ℓ(w∗; (xt, yt)),

where w
∗ = argminw

∑T

t=1 ℓ(w; (xt, yt)). To solve this
problem, CSOGD [7] was proposed, i.e.,wt+1 = wt −
η∇ℓt(wt) where η is the learning rate andℓt(w) =
ℓ(w; (xt, yt)). However, this algorithm only adopts the first
order information of the data stream to update the model.

This is clearly insufficient, since recent studies have shown the
importance of incorporating the second order information [20],
[43], [22]. Motivated by this observation, we propose to use
adaptive regularization to improve the cost-sensitive online
classification.

B. Algorithms

To solve this cost-sensitive online classification task, we
assume the online model satisfies a Gaussian distribution, i.e.,
w ∼ N (µ,Σ). Given a Gaussian distribution, we would like
to predict the label of an instancex according tosign(w⊤

x).
However, it is more practical to simply use the mean of the
distributionE[w] = µ to make predictions for real-world tasks.
The mean valuesµi represents the model’s knowledge of the
weight for featurei, while Σi,i encodes the confidence in
featurei. Generally, the smallerΣi,i, the more confidence the
learner has in the mean weight valueµi. The covariance terms
Σi,j keeps the correlations between weightsi andj.

At the t-th round, when receiving(xt, yt), a natural rule
to update the model is to minimize the following objective:

DKL(N (µ,Σ)‖N (µt,Σt)) + ηℓt(µ) +
1

2γ
x
⊤
t Σxt,

whereDKL is Kullback-Leibler divergence, i.e.,

DKL(N (µ,Σ)‖N (µt,Σt))

=
1

2
log

(

detΣt

detΣ

)

+
1

2
Tr(Σ−1

t Σ) +
1

2
‖µt − µ‖2

Σ
−1
t

−
d

2
.

Generally, this objective would like to make the least adjust-
ment, such that the loss on the current example is minimized
and the confidence of the model is optimized. However, this
optimization dose not have closed-form solution. To solve
this issue, we replace the lossℓ(µ) with its first-order Taylor
expansionℓ(µt)+g

⊤
t (µ−µt), wheregt = ∂ℓt(µt), to get the

following optimization objective:

ft(µ,Σ) = DKL(N (µ,Σ)‖N (µt,Σt)) + ηg⊤
t µ+

1

2γ
x
⊤
t Σxt,

which is much easier to be solved.

A simple approach to solve this objective is to solve it in
following two steps:

• Update the mean parameter:

µt+1 = argmin
µ

ft(µ,Σ);

• If ℓt(µt) 6= 0, update the covariance matrix:

Σt+1 = argmin
Σ

ft(µ,Σ);

For the first step, setting the derivative of∂µft(µt+1,Σ) as
zero will give

Σ−1
t (µt+1 − µt) + ηgt = 0⇒ µt+1 = µt − ηΣtgt,

and for the second step, setting the derivative of∂Σft(µ,Σt+1)
as zero will give

−Σ−1
t+1 +Σ−1

t +
xtx

⊤
t

γ
= 0⇒ Σt+1 = Σt −

Σtxtx
⊤
t Σt

γ + x
⊤
t Σtxt

,

where the Woodbury identity is used. Furthermore, since the
update of the mean relies on the confidence parameter, we



propose to update the mean based on the updated covariance
matrix, which should be more accurate than the old covariance
matrix, i.e.,

µt+1 = µt − ηΣt+1gt.

This is different from AROW, where the updating rule forµt

relies on the oldΣt. To intuitively explain the above update,
let us assumeΣt+1 is a diagonal matrix. Then, this update
actually assigns different dimensions with different learning
rates, so that more unconfident weights will be updated more
aggressively.

Finally, we can summarize the proposed Adaptive Regu-
larized Cost-Sensitive Online Gradient Descent (ARCSOGD)
in Algorithm 1.

Algorithm 1 Adaptive Regularized Cost-Sensitive Online Gra-
dient Descent (ARCSOGD) algorithm.

Input : learning rateη; regularization parameterγ, bias
parameterρ =

αpTn

αnTp
for “sum” andρ =

cp
cn

for “cost”
Initialize : µ1 = 0, Σ1 = I.
for t = 1, . . . , T do

Computeρt = ρ ∗ I(yt=1) + I(yt=−1);
Computeℓt(µt) = [ρt − ytx

⊤
t µt]+;

if ℓt(µt) > 0 then
Σt+1 = Σt − Σtxtx

⊤
t Σt

γ+x
⊤
t Σtxt

;
µt+1 = µt − ηΣt+1gt, wheregt = ∂ℓt(µt);

else
µt+1 = µt, Σt+1 = Σt;

end if
end for

Remark. In Algorithm 1, one practical concern is about
setting the value ofρ when the goal is to optimize the weighted
sum performance. In the algorithm,ρ is formally defined as
ρ =

αpTn

αnTp
. However, the values ofTn and Tp might be

unknown in a real-world online learning task. In practice,
one could try to approximate the ratioTn

Tp
according to the

distribution of online received training data instances over
the past sequence, and adaptively update this ratio during
the online learning process. Another concern is the time
complexity for the update ofΣt+1 andµt+1, which isO(d2).
To reduce this time complexity, we can make the algorithm
keep and maintain a diagonal version ofΣt so that the time
complexity decrease toO(d).

C. Theoretical Analysis

In this subsection, we theoretically analyze the proposed
algorithm in terms of two types of cost-sensitive measures.
To this end, we first prove a key theorem, which gives the
regret bound of the proposed algorithm and will facilitate later
theoretical analysis.

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of
examples, wherext ∈ R

d, yt ∈ {−1,+1}. Then for any
µ ∈ R

d, the proposed ARCSOGD satisfies

Regret ≤ 1

2η
(Dµ)

2Tr(Σ−1
T+1) +

ηγ

2
log(|Σ−1

T+1|).

Settingη =

√

maxt≤T ‖µt−µ‖2Tr(Σ−1

T+1
)

γ log(|Σ−1

T+1
|)

, we will get

Regret ≤ Dµ

√

γTr(Σ−1
T+1) log(|Σ−1

T+1|).
whereDµ = maxt ‖µt − µ‖.

Remark: Suppose‖xt‖ ≤ 1, it is easy to observe
Tr(Σ−1

T+1) ≤ O(T/γ), so the regret is in the order ofO(
√
T ).

This order is optimal, since the loss function is not strongly
convex [44].

Thus, by our proposed method, we can guarantee the fol-
lowing bound on the sum ofαp×sensitive+αn×specificity.

Theorem 2. Under the same assumptions in the Theorem 1,
by settingρ =

αpTn

αnTp
, the proposed ARCSOGD satisfies for any

µ ∈ R
d,

sum ≥ 1− αn

Tn

[

T
∑

t=1

ℓt(µ) +Dµ

√

γTr(Σ−1
T+1) log(|Σ−1

T+1|)
]

.

Remark: It is easy to observe
∑T

t=1 ℓt(µ) is an convex
estimate ofρMp+Mn for µ, so αn

Tn

∑T

t=1 ℓt(µ) is an estimate

of αp
Mp

Tp
+αn

Mn

Tn
. Moreover, please noteαn cannot be set as

zero, sinceρ =
αpTn

αnTp
. One limitation of the above algorithm is

that we may not know the ratioTn

Tp
in advance. To address this

issue, an alternative is to consider the cost of the algorithm for
performance evaluation, which does not needTn

Tp
in advance

since the biasρ is set ascp
cn

.

Theorem 3. Under the same assumptions in the Theorem 1,
by settingρ =

cp
cn

, the proposed ARCSOGD satisfies for any
µ ∈ R

d,

cost ≤ cn

[

T
∑

t=1

ℓt(µ) +Dµ

√

γTr(Σ−1
T+1) log(|Σ−1

T+1|)
]

.

Remark:
∑T

t=1 ℓt(µ) is an convex estimate ofcp
cn
Mp +

Mn for µ, so cn
∑T

t=1 ℓt(µ) is an estimate ofcpMp + cnMn.
Moreover, please notecn cannot be set as zero, sinceρ =

cp
cn

.

IV. EXPERIMENTS

This section evaluates the empirical performance
of the proposed algorithm ARCSOGD and its variant
ARCSOGDdiag . ARCSOGDdiag is a diagonalized version of
ARCSOGD, where only a diagonalΣt is kept and updated
online to save the memory cost and improve the scalability.

A. Experimental Testbed and Setup

We compare ARCSOGD with 2 standard and 3 well-known
online learning algorithms: Perceptron; the Passive-Aggressive
algorithm (“PA-I”) [3]; cost-sensitive algorithms: prediction-
based PA algorithm (’CPAPB ’) [3]; perceptron algorithm with
uneven margin (’PAUM’) [30] and the ’CSOGD-I’ algorithm,
from which ARCSOGD was derived.

The algorithms were tested on 6 benchmark datasets as
listed in Table I, obtained from LIBSVM1. For all datasets, the

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/



instances are normalized, i.e.,xt ← xt/‖xt‖, which is widely
adopted for online learning, since the instances are received
sequentially.

TABLE I. L IST OF BINARY DATASETS IN OUR EXPERIMENTS.

Dataset #Examples #Features #Pos:#Neg

covtype 581012 54 1:1
spambase 4601 57 1:1.5
svmguide3 1243 21 1:3
a9a 48842 123 1:3.2
ijcnn1 141691 22 1:9.4
w8a 64700 300 1:32.5

To make a valid comparison, all algorithms adopted the
same experimental setup. Forsum, we setαp = αn = 1/2 for
all cases, while forcost, we setcp = 0.9 and cn = 0.1; for
PAUM, the uneven margin was set toρ; for CPAPB , ρ(−1, 1)
was set to 1 andρ(1,−1) was set toρ. The parameterC
for PA-I, learning ratesλ of CSOGD-I andη of ARCSOGD
and ARCSOGDdiag were selected by cross validation from
[10−5, 10−4, . . . , 105] for each dataset. Theγ for ARCSOGD
and ARCSOGDdiag was set as 1. The value ofρ was set tocp

cn

for cost and αpTn

αnTp
for sum, respectively. All algorithms were

implemented in MATLAB and run on a 2.00GHz Windows
machine.

All experiments were conducted over20 random permu-
tations for each dataset. Results are reported by averaging
over these 20 runs. Performance was evaluated by 4 metrics:
sensitivity, specificity, the weightedsum of sensitivity and
specificity, and the weightedcostof misclassification.

B. Evaluation of Cost-Sensitive Performance

The left and right parts of Table II summarizes the experi-
mental results onsumandcoston three datasets, respectively.

By examining thesumand cost performance, we can see
that our two proposed second order algorithms (i.e., ARC-
SOGD and ARCSOGDdiag) significantly outperform all the
other online learning algorithms on all the datasets, which
validates the effectiveness of introducing second order infor-
mation.

Furthermore, the proposed algorithms usually result in the
best sensitivity, and produce good specificity performanceun-
der both cost-sensitive measures. This shows that the proposed
algorithms are effective in improving the prediction accuracy
for the rare class.

Finally, while ARCSOGDdiag achieves marginally smaller
sumand largercost than ARCSOGD, its computational com-
plexity is similar to the first order algorithms’ complexities,
indicating that ARCSOGDdiag is able to achieve a better trade-
off between effectiveness and efficiency.

C. Performance Evaluation with Different Cost-Sensitive
Weights

In this subsection, we aim to evaluate the performance of
the proposed algorithms under varying cost-sensitive weights
for both metrics.

Figure 3 shows the evaluation results of the weighted
sum performance under varying weights ofαn, and Figure 4

shows the evaluation results of the weighted cost under varying
weights ofcn. From the results, it is clear that the proposed
algorithms consistently outperform all of the other algorithms
for both metrics under varying weight values. These promising
results further validate the efficacy of the proposed algorithms.

V. A PPLICATION TO ONLINE ANOMALY DETECTION

The proposed cost-sensitive online classification technique
can potentially be applied to a wide range of real-world
applications in data mining. In this section, we demonstrate an
application of the proposed cost-sensitive online classification
algorithms to tackle online anomaly detection tasks. Below
we first introduce the related application domains, and then
present our analysis.

A. Application Domains and Testbeds.

We apply the proposed algorithms to solve problems in the
following domains:

• Medical Imaging: We apply our algorithms to solve a
medical image anomaly detection problem using the
“KDDCUP08” breast cancer dataset2. For this dataset,
the task is to develop a computational method for early
detection of breast cancer from X-ray images of the

2http://www.sigkdd.org/kddcup/

0 1 2 3 4 5 6

x 10
5

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

(a) covtype (b) spambase

0 200 400 600 800 1000 1200
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

0 1 2 3 4 5

x 10
4

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

(c) svmguide3 (d) a9a

0 5 10 15

x 10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

0 1 2 3 4 5 6 7

x 10
4

0.6

0.65

0.7

0.75

0.8

0.85

Number of samples

O
nl

in
e 

av
er

ag
e 

of
 th

e 
su

m

 

 

perceptron
PA−I
PAUM
CPA

PB

CSOGD−I
ARCSOGD
ARCSOGD

diag

(e) ijcnn1 (f) w8a

Fig. 1. Evaluation of online “sum” performance of the proposed algorithms
on public datasets.



TABLE II. E VALUATION OF THE COST-SENSITIVE CLASSIFICATION PERFORMANCE OFARCSOGDAND OTHER EXISTING ALGORITHMS.

Algorithm
“sum” on covtype “cost” on covtype

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 52.626± 0.075 51.451± 0.077 53.801± 0.073 17.470 23.670± 0.028 51.457± 0.058 53.807± 0.055 17.375

PA-I 51.370± 0.059 50.115± 0.055 52.625± 0.072 31.576 24.313± 0.022 50.127± 0.044 52.640± 0.058 29.771

PAUM 53.418± 0.064 52.069± 0.100 54.767± 0.070 18.093 12.532± 0.030 79.855± 0.071 27.949± 0.069 17.682

CPAPB 51.373± 0.059 50.299± 0.054 52.448± 0.071 29.447 20.996± 0.035 58.522± 0.079 45.474± 0.068 27.159

CSOGD-I 56.200± 0.047 41.878± 0.275 70.522± 0.210 15.112 9.883± 0.048 86.648± 0.126 21.489± 0.155 18.074

ARCSOGD 67.950± 0.053 70.318± 0.069 65.583± 0.087 103.222 9.107± 0.073 88.248± 0.187 22.926± 0.189 141.132

ARCSOGDdiag 66.981± 0.382 68.710± 0.550 65.252± 0.229 24.442 8.258± 0.323 90.889± 0.902 16.862± 1.442 37.207

Algorithm
“sum” on spambase “cost” on spambase

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 59.766± 0.837 51.269± 1.006 68.264± 0.668 0.128 19.231± 0.565 51.202± 1.434 68.228± 0.942 0.115

PA-I 56.415± 0.692 47.303± 0.916 65.527± 0.524 0.232 20.718± 0.358 47.441± 0.932 65.707± 0.543 0.216

PAUM 58.819± 0.775 50.292± 0.780 67.346± 1.088 0.143 13.655± 0.416 70.177± 1.186 49.204± 0.769 0.132

CPAPB 56.611± 0.738 48.958± 1.149 64.265± 0.397 0.235 18.086± 0.404 55.888± 1.084 59.695± 0.523 0.200

CSOGD-I 60.055± 0.820 51.627± 0.981 68.483± 0.659 0.154 13.655± 0.416 70.177± 1.186 49.204± 0.769 0.135

ARCSOGD 81.860± 0.357 86.751± 0.780 76.969± 0.769 0.739 4.402± 0.356 94.647± 1.174 58.684± 1.760 0.966

ARCSOGDdiag 80.766± 0.598 84.435± 1.015 77.098± 1.094 0.211 4.248± 0.192 95.761± 0.716 54.709± 1.818 0.227

Algorithm
“sum” on svmguide3 “cost” on svmguide3

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 54.835± 1.354 31.149± 2.038 78.522± 0.672 0.030 16.401± 0.431 31.115± 1.811 78.506± 0.571 0.034

PA-I 53.902± 1.615 29.493± 2.533 78.310± 0.798 0.051 16.842± 0.464 29.172± 1.977 78.178± 0.685 0.065

PAUM 54.637± 1.253 25.811± 3.097 83.464± 0.966 0.032 16.665± 0.425 28.615± 2.123 82.075± 0.771 0.042

CPAPB 54.802± 1.671 35.676± 2.442 73.928± 1.139 0.053 15.060± 0.442 40.220± 1.803 70.491± 1.098 0.063

CSOGD-I 54.986± 1.061 31.419± 1.593 78.553± 0.537 0.037 15.778± 0.364 34.848± 1.634 76.188± 0.828 0.042

ARCSOGD 61.582± 1.167 40.101± 2.213 83.062± 0.942 0.064 13.244± 0.401 44.105± 2.008 83.400± 0.888 0.087

ARCSOGDdiag 60.231± 1.358 39.122± 2.487 81.341± 0.952 0.048 13.697± 0.470 43.074± 2.385 80.359± 0.835 0.061

Algorithm
“sum” on a9a “cost” on a9a

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 71.255± 0.177 56.269± 0.268 86.241± 0.085 1.389 10.462± 0.068 56.277± 0.285 86.244± 0.090 1.491

PA-I 71.048± 0.149 55.949± 0.224 86.147± 0.122 2.221 10.521± 0.064 56.031± 0.274 86.170± 0.108 2.504

PAUM 76.842± 0.157 68.121± 0.266 85.562± 0.101 1.485 6.260± 0.033 77.486± 0.150 81.441± 0.093 1.705

CPAPB 72.432± 0.207 62.417± 0.350 82.446± 0.191 2.252 8.773± 0.082 66.485± 0.362 79.549± 0.119 2.409

CSOGD-I 78.161± 0.153 69.098± 0.391 87.223± 0.134 1.604 5.995± 0.061 78.832± 0.298 81.120± 0.109 1.756

ARCSOGD 79.831± 0.096 73.385± 0.264 86.277± 0.096 17.937 5.476± 0.055 81.163± 0.288 81.347± 0.152 19.509

ARCSOGDdiag 79.727± 0.086 73.236± 0.191 86.217± 0.114 2.122 5.470± 0.058 81.617± 0.351 80.141± 0.299 2.466

Algorithm
“sum” on ijcnn1 “cost” on ijcnn1

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 70.298± 0.123 46.285± 0.222 94.311± 0.024 3.285 5.139± 0.018 46.319± 0.189 94.314± 0.020 3.863

PA-I 69.241± 0.143 43.872± 0.271 94.610± 0.038 4.916 5.324± 0.027 43.865± 0.299 94.607± 0.033 6.104

PAUM 81.410± 0.120 68.851± 0.243 93.970± 0.038 3.710 3.256± 0.024 68.489± 0.281 94.022± 0.039 4.446

CPAPB 73.003± 0.170 55.937± 0.286 90.070± 0.066 5.173 4.704± 0.026 55.718± 0.263 90.176± 0.056 5.870

CSOGD-I 81.410± 0.120 68.851± 0.243 93.970± 0.038 4.357 3.176± 0.030 68.837± 0.370 94.569± 0.043 4.795

ARCSOGD 86.048± 0.132 77.298± 0.278 94.798± 0.072 5.973 2.410± 0.015 77.729± 0.207 94.569± 0.051 6.604

ARCSOGDdiag 85.307± 0.300 76.304± 0.646 94.310± 0.068 4.632 2.414± 0.014 77.668± 0.213 94.584± 0.070 5.200

Algorithm
“sum” on w8a “cost” on w8a

Sum(%) Sensitivity(%) Specificity (%) Time (s) Cost(%) Sensitivity(%) Specificity (%) Time (s)

Perceptron 76.549± 0.314 54.501± 0.609 98.597± 0.019 1.886 1.367± 0.020 54.240± 0.676 98.589± 0.021 1.721

PA-I 76.622± 0.368 54.361± 0.737 98.884± 0.036 2.678 1.345± 0.024 54.027± 0.850 98.878± 0.030 2.342

PAUM 80.371± 0.416 62.297± 0.865 98.445± 0.047 2.141 1.137± 0.015 61.868± 0.567 98.849± 0.029 1.802

CPAPB 80.949± 0.290 65.354± 0.586 96.544± 0.060 2.683 1.252± 0.022 62.636± 0.768 97.450± 0.032 2.184

CSOGD-I 82.170± 0.307 66.244± 0.617 98.095± 0.025 2.298 1.106± 0.014 64.315± 0.513 98.489± 0.036 1.842

ARCSOGD 84.692± 0.279 70.869± 0.566 98.515± 0.025 10.615 0.911± 0.013 70.173± 0.508 98.877± 0.039 9.959

ARCSOGDdiag 85.456± 0.303 72.742± 0.627 98.170± 0.045 2.236 0.898± 0.014 70.846± 0.533 98.826± 0.030 1.988
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Fig. 2. Evaluation of online average “cost” of the proposed algorithms on
public datasets.

breast. For this task, the class “benign” is assigned
as the normal class, and the class “malignant” is the
anomaly class.

• Finance: We apply our algorithms to a credit card
approval problem in finance domain. In particular,
we work on a data set with 690 instances from an
Australian credit company, in which the task is to
distinguish credit-worthy customers from non credit-
worthy ones.

• Bioinformatics: We apply our algorithms to solve
a bioinformatics problem using the “Code-RNA”
dataset [45]. The goal of this task is to develop
a computational method to detect novel non-coding
RNAs from some large sequenced genomes. Non-
coding RNAs are defined as anomalies and others are
considered as normal instances.

• Nuclear: The “magic04” dataset [46] are MC gener-
ated to simulate registration of high energy gamma
particles in a ground-based atmospheric Cherenkov
gamma telescope using the imaging technique. The
gamma signal instances are treated as normal data and
the hadrons are seen as outliers.

Table III summarizes the details of the data sets for online
anomaly detection.
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Fig. 3. Evaluation of the weighted “sum” under varying weights of sensitivity
and specificity.

TABLE III. D ATA SETS FORONLINE ANOMALY DETECTION.

Dataset Name #Examples #Features #Outlier:#Normal
KDDCUP08 102294 117 1:163.19
Australian 690 14 1:1.25
Cod-RNA 271617 8 1:2.00
Magic04 19020 10 1:1.8

B. Empirical Evaluation Results.

We apply our algorithms to solve anomaly detection tasks
on the real-world datasets as shown in Table III and evaluate
the anomaly detection performance usingbalanced accuracy,
which is able to avoid inflated performance estimates on
imbalanced datasets. The experimental results are summarized
in Table IV.

From the results, we can draw several observations as
follows. First of all, among all the existing algorithms, the
two cost-sensitive algorithms (PAUM and CPAPB) generally
perform better than their regular versions (Perceptron andPA-I,
respectively), which implies the necessity of introducingcost-
sensitiveness for online learning. In addition, all the first four
algorithms are outperformed by the CSOGD algorithm on most
of the datasets, which demonstrates that is effective to directly
optimize cost-sensitive measures. Furthermore, the proposed
ARCSOGD significantly outperforms the other algorithms for
all the datasets. Because ARCSOGD is a variant of CSOGD
with adaptive regularization using second order information,
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Fig. 4. Evaluation of weighted “cost” measure under varying weights for
False Positives and False Negatives.

TABLE IV. EVALUATION OF BALANCED ACCURACY
PERFORMANCE FOR ONLINE ANOMALY DETECTION.

Algorithm KDDCUP08 Australian

Perceptron 58.583± 0.586 57.543± 1.944
PA-I 56.810± 0.546 57.367± 2.182
PAUM 56.464± 0.686 60.657± 2.012
CPAPB 65.382± 0.698 57.643± 2.311
CSOGD-I 61.980± 0.624 65.892± 0.570
ARCOSGD 67.169± 0.581 68.163± 0.843
ARCOSGDdiag 66.639 ± 0.542 68.070± 0.956

Algorithm Cod-RNA Magic04

Perceptron 75.742± 0.355 59.146± 0.260
PA-I 73.654± 0.147 57.336± 0.200
PAUM 80.943± 0.104 61.242± 0.254
CPAPB 74.473± 0.115 57.906± 0.289
CSOGD-I 81.095± 0.149 65.869± 0.193
ARCOSGD 86.539± 0.075 72.310± 0.187
ARCOSGDdiag 86.118± 0.042 71.448± 0.589

this implies the effectiveness of introducing second orderin-
formation for improving cost-sensitive online learning efficacy.

It can also be observed that the diagonal version of
ARCSOGD performs comparably with ARCSOGD. Since the
computational complexity of ARCSOGDdiag is the same as
those of the first order algorithms, it can be a good choice for
high dimension problems, when it is too expensive to maintain
and update a full matrix. In all, the promising results validate
the advantages of the proposed algorithms for solving real-
world online anomaly detection tasks which are often highly
class-imbalanced.

VI. CONCLUSION

In this paper, to overcome the limitation of first order cost-
sensitive online learning algorithms, we studied cost-sensitive
online classification with adaptive regularization. Specifically,
we proposed a second order cost-sensitive online classification
algorithm, i.e., ARCSOGD, and theoretically analyzed its
regret bound. We further empirically evaluate the proposed
algorithm on several public real-world datasets. The promis-
ing experimental results demonstrate the effectiveness ofthe
proposed algorithm.

APPENDIX

This section presents the proofs for all the theorems.

A. Proof of Theorem 1

Proof: It is easy to verify thatµt+1 = argminµ ht(µ)
whereht(µ) =

1
2‖µt−µ‖2

Σ−1

t+1

+ηg⊤
t µ. Becauseht is convex,

we have

∂ht(µt+1)
⊤(µ− µt+1)

= [(µt+1 − µt)
⊤Σ−1

t+1 + ηg⊤
t ](µ− µt+1) ≥ 0, ∀µ.

Re-arranging the above inequality will result in

(ηgt)
⊤(µt+1 − µ) ≤ (µt+1 − µt)

⊤Σ−1
t+1(µ− µt+1)

=
1

2
[‖µt − µ‖2

Σ−1

t+1

− ‖µt+1 − µ‖2
Σ−1

t+1

−‖µt − µt+1‖2Σ−1

t+1

].

Sinceℓt(µ) is convex, we have

g
⊤
t (µt+1 − µ) = g

⊤
t (µt − µ+ µt+1 − µt)

≥ ℓt(µt)− ℓt(µ) + g
⊤
t (µt+1 − µt).

Combining the above two inequalities, will give the following
important inequality

ℓt(µt)− ℓt(µ) ≤
1

2η
[‖µt − µ‖2

Σ−1

t+1

− ‖µt+1 − µ‖2
Σ−1

t+1

−‖µt − µt+1‖2Σ−1

t+1

]− g
⊤
t (µt+1 − µt).

Summing the above inequality overt = 1, 2, . . . , T , gives

T
∑

t=1

[ℓt(µt)− ℓt(µ)]

≤ 1

2η

T
∑

t=1
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‖µt − µ‖2
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Σ−1

t+1

]

− 1
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t=1

‖µt − µt+1‖2Σ−1

t+1

−
T
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t=1

g
⊤
t (µt+1 − µt). (4)



Now, we would like to bound the right hand side of the
above inequality. Firstly, we bound the first term as

T
∑

t=1

[

‖µt − µ‖2
Σ−1

t+1

− ‖µt+1 − µ‖2
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2
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t )
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−1
2 ) +

T
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t=2

‖µt−µ‖2λmax(Σ
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t )
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2 ) +

T
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t )

= max
t≤T
‖µt − µ‖2Tr(Σ−1

T+1), (5)

whereλmax(Σ) is the largest eigenvalue ofΣ.

Next, we will bound the remaining terms. To this end,
we notice that the following inequality holds according to the
update rule ofµ

(µt+1 − µt)
⊤Σ−1

t+1 + ηg⊤
t = 0,

so that

‖µt − µt+1‖2Σ−1

t+1

= (µt+1 − µt)
⊤Σ−1

t+1Σt+1Σ
−1
t+1(µt+1 − µt)

= η2g⊤
t Σt+1gt,

and

g
⊤
t (µt+1 − µt) = −ηg⊤

t Σt+1gt.

Combining the above two inequalities results in

− 1
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2
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⊤
t Σt+1gt

=
η

2

T
∑

t=1

g
⊤
t Σt+1gt. (6)

Plugging the above two upper bounds (5) and (6) into the
inequality (4), we can get

T
∑

t=1

[ℓt(µt)− ℓt(µ)] ≤
1

2η
max
t≤T
‖µt − µ‖2Tr(Σ−1

T+1)

+
η

2

T
∑

t=1

g
⊤
t Σt+1gt (7)

As we know
gt = Ltytxt

whereLt = 1, if ℓt(µt) > 0, andLt = 0, otherwise, we can
bound

∑T

t=1 g
⊤
t Σt+1gt as follows,

T
∑

t=1

g
⊤
t Σt+1gt =

T
∑

t=1

Ltx
⊤
t Σt+1xt = γ

T
∑

t=1

(1− |Σ
−1
t |

|Σ−1
t+1|

)

≤ −γ
T
∑

t=1

log(
|Σ−1

t |
|Σ−1

t+1|
) ≤ γ log(|Σ−1

T+1|), (8)

where we used

Σ−1
t+1 = Σ−1

t +
Ltxtx

⊤
t

γ
⇒ Lt

γ
x
⊤
t Σt+1xt = 1− |Σ

−1
t |

|Σ−1
t+1|

.

Plugging (8) into the inequality (7) concludes the proof.

B. Proof of Theorem 2

Proof: For ARCSOGD, ift ∈ Mp, ℓt(µt) ≥ ρ and t ∈
Mn, ℓt(µt) ≥ 1, we have

ρMp +Mn ≤
T
∑

t=1

ℓt(µt). (9)

From the definition ofsum, we know that

sum =1− ηn
Tn

[ηpTn

ηnTp

∑

yt=+1

I(ytµ·xt<0) +
∑

yt=−1

I(ytµ·xt<0)

]

= 1− ηn
Tn

(
ηpTn

ηnTp

Mp +Mn).

Settingρ =
ηpTn

ηnTp
and combining the above inequality with the

regret bound in theorem 1 concludes the proof.

C. Proof of Theorem 3

Proof: From the definition ofcost, we know that

cost = cn

[ cp
cn

∑

yt=+1

I(ytµ·xt<0) +
∑

yt=−1

I(ytµ·xt<0)

]

= cn(
cp
cn

Mp +Mn)

Settingρ =
cp
cn

and combining it with inequality(9), we have

cn(ρMp +Mn) ≤ cn

T
∑

t=1

ℓt(µt)

Combining the above inequality with theorem 1 will prove this
theorem.
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