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Abstract—Remaining useful life (RUL) prediction is a key
task for realizing predictive maintenance for industrial ma-
chines/assets. Accurate RUL prediction enables prior mainte-
nance scheduling that can reduce downtime, reduce maintenance
costs, and increase machine availability. Data-driven approaches
have a widely acclaimed performance on RUL prediction of
industrial machines. Usually, they assume that data used in
training and testing phases are drawn from the same distri-
bution. However, machines may work under different condi-
tions (i.e., data distribution) for training and testing phases.
As a result, the model performing well during training can
deteriorate significantly during testing. Naive recollection and
re-annotation of data for each new working condition can be
very expensive and obviously not a viable solution. To alleviate
this problem, we rely on a transfer learning approach called
domain adaptation to transfer the knowledge learned from one
labelled operating condition (source domain) to another operating
condition (target domain) without labels. Particularly, we propose
a novel adversarial domain adaption approach for remaining
useful life prediction, named ADARUL, which can work on the
data from different working conditions or different fault modes.
This approach is built on top of a bidirectional deep long short-
term memory (LSTM) network that can model the temporal
dependency and extract representative features. Moreover, it
derives invariant representation among the working conditions
by removing the domain-specific information while keeping the
task-specific information. We have conducted comprehensive
experiments among four different datasets of turbofan engines.
The experiments show that our proposed method significantly
outperforms the state-of-the-art methods..

Index Terms—Remaining useful life, Domain Adaptation,
Transfer Learning, Deep Learning

I. INTRODUCTION

Predictive maintenance or condition-based monitoring
(CBM) enables industries to have prior maintenance planning
and thus prevent catastrophic failures. Realizing predictive
maintenance, can lessen downtime, reduce maintenance ex-
penses, increase reliability, and increase machine availability.
Remaining useful life (RUL) prediction aims to forecast the
exact failure time of an industrial asset, which is a key task
in predictive maintenance. Three main approaches have been
developed to estimate the RUL of industrial machines, namely,
model-driven approaches [1], data-driven approaches [2], and
hybrid approaches [3]. Particularly, model-driven approaches
rely on strong domain expertise to mathematically model the
physics of deterioration process and predict the RUL. But, with
the evolving complexity of industrial machines, this approach
can be very challenging even for experts to accurately model
the deterioration process of advanced industrial machines.

Differently, data-driven approaches rely on the huge data
availability in the digital era to model the deterioration process.
Data-driven approaches include traditional machine learning
approaches and deep learning based approaches. In particular,
various traditional machine learning approaches have been
utilized to estimate the RUL of industrial machines including,
support vector regressors [4], Markovian models [5], and
shallow neural networks [6]. However, these approaches suffer
from extensive feature engineering that requires advanced
domain knowledge. Recently, deep learning, with its automatic
ability to extract salient features, has been applied for the fault
prognosis problems [7]. For example, Li et al., developed a
deep CNN with 1-D kernels to accurately estimate the RUL of
machine [8]. Zhu et al., predicted the deterioration pattern of
bearings using CNN with a multi-scale features [9]. However,
CNN based approaches cannot explicitly model the temporal
dependency among the data. Recurrent neural networks (RNN)
have showed great potential in modeling the dynamic systems.
Long short-term memory (LSTM), as a strong variant of
RNN for modelling long sequences [10], has been exploited
extensively for RUL estimation problems. In [11], multi-layer
LSTM network is employed to extract features and predict
the RUL of turbofan engines. Miao et el. employed LSTM
networks to jointly predict the RUL and evaluate the degrada-
tion pattern [12]. Huang et al., proposed bidirectional LSTM
coupled with auxiliary inputs to estimate the RUL under
varying working conditions [13]. In [14], LSTM has been
integrated with CNN to extract more representative features.

Nevertheless, all the above approaches work under the
assumption training phase and deployment phase are under the
same working environment, which does not hold in many prac-
tical scenarios. We consider two working environments A and
B each with certain parameters (e.g., pressure, temperature,
and rotational speed) from different distributions. The model
trained on working condition A usually fails to generalize to
working condition B. In reality, this situation is very likely to
happen due to the varying environments. Naı̈ve solution is to
re-annotate the data for each new working environment and
train new model independently. But, annotating the data for
each new working condition is labour-intensive and unscalable
solution. To better handle this issue, there is a need for a
model that can handle new working environment with no
labels available.

Domain adaptation (DA), which is a subgroup of trans-
fer learning that leverages labelled source domain data to
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Fig. 1: Adversarial domain adaptation approach for RUL prediction.

generalize well for unlabelled target domain with a different
distribution. Domain Adaptation has been applied extensively
for image classification problems [15]. Very recently, it has
been applied for fault diagnosis problems [16]–[20]. However,
little attention has been paid to domain adaptation for prog-
nostic problems such as remaining useful life estimation. Only
few works have been developed recently, for instance, Fan et
al., employed group deviation detection method called self-
organized models (COSMO) to create transferable features and
used Random forest to predict the RUL labels [19]. Costa et
al. integrated LSTM model with domain classification loss to
reduce the deviation between source and target distributions
[21].

In this paper, we propose an unsupervised adversarial
domain adaptation method named ADARUL to efficiently
transfer knowledge from labeled working condition (source
domain) to a new unlabelled working condition (target do-
main). Inspired by the successful work done by Tzeng et el.
[22] for image classification from different domains, ADARUL
is an adversarial domain adaptation approach for time series
regression problems. It derives domain invariant representa-
tion for the unlabelled target domain based on a two-player
adversarial game. In particular, ADARUL aims to find a
domain invariant feature representation such that the domain
discriminator network can no longer distinguish between the
source domain and the target domain. As such, the predictor
network trained on the source domain can generalize well to
the target domain network. The contributions of this work are
summarized as follows.

• We propose a novel adversarial domain adaptation ap-
proach for remaining useful life prediction, which can
handle domain shift problem (e.g., different working
conditions).

• Different from existing approaches, our proposed ap-
proach is an end-to-end model that can generalize to new
working environment without any labels.

• Extensive experiments have been conducted and exper-
imental results demonstrate that our proposed approach
significantly outperform the state-of-the-art approaches.

II. METHODOLOGY

In this section, we introduce our proposed ADARUL for
RUL prediction in details.

A. Overview of ADARUL

In unsupervised domain adaption settings, we have a labeled
source domain Ds = {Xi

s, y
i
s}

ns
i=1, and unlabeled target

domain Dt = {Xj
t }

nt
j=1, where ns, nt are the number of source

and target samples respectively. The source domain and target
domain have different marginal distribution Ps(X) 6= Pt(X)
due to the variation of working environments. Our task in this
paper is to build a RUL prediction model based on the labelled
source domain, which can perform well on the unlabelled
target domain.

As shown in Fig. 1, our proposed ADARUL has three
main steps. The first step is the supervised training on the
source domain using the available labels. The second step is
to train the target feature encoder to produce the target features
that are similar to the source. In particular, the target feature
encoder is initialized by the weights of the source encoder. We
then train the discriminator against the target feature extractor
adversarially, to mitigate the distribution shift between the
source and target. Last step is to integrate the target encoder
with source RUL predictor to predict the RUL labels for the
target domain. Note that, the model parameters with dashed
box is fixed and those without dash box are trained in each
step. In the following subsections we will provide detailed
explanations for each step.

B. Supervised pre-training on the source domain

1) LSTM for Feature Extraction: Recurrent neural networks
(RNN) have wide acclaimed performance in modeling the sys-
tem dynamics. Long short-term memory (LSTM) is a special
type of RNNs that can model longer dependencies without
vanishing gradient [10]. To model the temporal dependency
of the multivariate time series data, we develop a 3-layer
bidirectional LSTM model to extract representative features
from the input sensor readings, as shown in Fig. 2. Given
an input sample X = (x1, x2, . . . , xT ) ∈ Rn×T , where n
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is number of sensors and T is the total number of time
steps for each sample. The vector xt ∈ Rn is passed as
input to the LSTM network for each time step t, where
(1 ≤ t ≤ T ). Then, the network will process this input to
produce a sequence of hidden states (hj

1, . . . ,h
j
T ), where hj

denotes the output hidden states of jth layer, (1 ≤ j ≤ M ).
M is total number of LSTM layers and it is set as 3 in
our experiments. Subsequently, the output hidden states are
passed to the next LSTM layer until reaching the last layer.
The last hidden state of the last layer hM

T summarizes all the
information from the input sequence among all the layers,
which can be considered as our feature representation for the
whole input sequence. The following equations illustrate the
working principles of single-layer LSTM at each time step t
for the clarity and simplification and the same process can be
applied for the other LSTM layers. Given the input vector xt

and the previous hidden state h(t−1), the equations of can be
as follows:

bt = σ(Vbxt +Wbht−1 + bb), (1)
et = σ(Vext +Weht−1 + be), (2)
it = σ(Vixt +Wiht−1 + bi), (3)

gt = tanh(Vgxt +Wght − 1 + bg), (4)
ct = et � ct−1 + bt � gt, (5)

ht = it � tanh(ct), (6)

where � is an operator for element-wise multiplication, σ
represents a sigmoid function to realize non linearity. Let the
dimension of the hidden states as d, V∗ ∈ Rn×d (i.e., Vb, Ve,
Vf and Vg), are the parameters that matrices that transform the
data from n input dimension to d hidden dimension. Similarly,
W∗ ∈ Rd×d (i.e., Wb, We, Wf and Wg) are parameter
matrices to obtain the current hidden state from the previous
hidden state.

LSTM LSTM LSTM LSTM
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Fig. 2: Multi-layer bidirectional LSTM as feature encoder.

2) RUL Predictor Network: After obtaining the feature vec-
tors for input sequences, the RUL predictor network harnesses
these features to predict the RUL labels. The RUL predictor

is a 3-layer fully connected neural network O : R(d) → R
that maps the input features to the corresponding RUL label.
The RUL Network and the LSTM feature extractor are trained
jointly in an end-to-end manner to minimize the mean square
error loss (MSE) between the predicted RUL and the true label.
The full training loss can be formulated as follows:

Lrul =
1

N

N∑
i=1

(O(Es(X
i
s)), y

i)2 (7)

where Es represents the LSTM encoder model, O is the
RUL predictor network, Xi

s is the input sample from the source
domain, O(Es(X

i
s)) is the predicted RUL for Xi

s and yi is
the corresponding true label.

C. Unsupervised Domain Adaptation for the Target Domain

The model trained on the labeled source domain has the
knowledge to predict the RUL accurately. To inherit this
knowledge, we use the parameters of the source encoder Es as
initialization for the target encoder Et. Usually, the initialized
target encoder Et performs poorly on the target domain data
due to the significant distribution shift between source and
target. To mitigate this domain shift problem, the target feature
extractor is then adversarially trained against discriminator
network to produce target features ft that can be similar to
the source features fs(i.e, hMT ). More specifically, for each
iteration, the discriminator network D is updated to classify
well between the source features fs and target features ft.
We manually assign ground-truth labels of 1 and 0 for the
source and target features respectively. Then the discriminator
network is trained to minimize the binary cross entropy loss
between the predicted labels and the true labels. This can be
formulated as follows:

min
D
LD =− EXs∼Ps

[
logD(fs)

]
− EXt∼Pt

[
log(1−D(ft))

]
. (8)

where fs = Es(Xs) and ft = Et(Xt) are the source and target
features, respectively.

Given the optimal discriminator, the target feature extractor
is then updated to maximize the discriminator by producing
target features ft that are indistinguishable from the source
features. In particular, the target encoder is trained using
inverted labels for the target features (i.e., true label 1 instead
of 0) such that discriminator network is fooled to classify the
target features as a source features. This can be formalized as
follows:

max
Et

LE =− EXt∼Pt

[
log(1−D(ft))

]
, (9)

where D is the discriminator network and ft = Et(Xt) is the
target domain features.

The discriminator D and target encoder Et are updated
in adversarial manner using LD and LE respectively. The
alignment between source and target features is achieved when
the discriminator network can no longer distinguish between
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source and target features, demonstrating that the distribution
discrepancy between the source and target features is already
minimized.

D. Evaluate the Target Domain

After minimizing the discrepancy between the source and
target features, the source RUL predictor O can be directly
used to predict the RUL labels of the adapted target features
ft. Given single input sample Xi

t , the RUL prediction of the
target domain data can be formulated as follows:

r̂ult = O(Et(X
i
t)) (10)

where r̂ult is the predicted RUL for the sample Xi
t in the

target domain, O is the pre-trained RUL predictor network,
and Et is the target feature extractor.

III. EXPERIMENTS AND RESULTS

A. Data Description

We used the C-MAPSS dataset for experimental evaluation,
which describes the degradation process of turbofan engines
as shown in Fig. 3. To monitor the engines under varying
working conditions, 21 parameters of total 58 outputs are used,
including multiple health states [23]. As shown in Table I, the
dataset consists of four data subsets with different operating
conditions and fault modes denoted as FD001, FD002, FD003,
and FD004.

Fig. 3: Diagram of the engines in C-MAPSS data [23].

TABLE I: Properties of C-MAPSS Dataset

Dataset FD001 FD002 FD003 FD004

# Training engines 100 260 100 249

# Testing engines 100 259 100 248

# Operating conditions 1 6 1 6

# Fault types 1 1 2 2

Particularly, some data subsets have single fault mode (e.g.,
FD001 and FD002) while other data subsets have double fault
modes (e.g., FD003 and FD004). In addition, the data collected
under different operating conditions, for instance, FD001 and
FD003 have single operating condition while FD002 and
FD004 have multiple operating conditions. These working
conditions are comprised by the variation of three different
parameters: altitude (0-42K ft.), mach number (0-0.84), and
throttle resolver angle (TRA) (20-100), as shown in Fig. 4.

As a result of these variant operating parameters, the model
trained on data subsets such as FD001 fails to generalize to
different data subsets (e.g., FD002, FD003, and FD004).
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Fig. 4: Six operating conditions in FD002 dataset

B. Data Processing

The provided sensor readings represent full run-to-failure
test for each engine, which can be very long sequence. Sliding
window has been used to segment the long sequences into
shorter samples to facilitate the model training. As shown in
Fig. 5, T represents the total number of cycles, W is the
window length, s is the shifting size, and n is the total number
of sensors. In our case, the window length W is 30 and shifting
size is 1.

Fig. 5: Sliding window to generate data samples.

In addition, different sensor types are involved in current
system (e.g.,speed, pressure, and temperature) which also
exposed to different working conditions. As a result, the raw
sensor readings are highly varying among each other, and the
direct use of this data may obstruct performance of the ma-
chine learning models. To address this problem, we normalized
the reading of sensor to be between [0, 1] by using Min-Max
normalization, as in [12], [13]. Furthermore, to handle the
variability of working conditions, we grouped and normalized
the sensor reading with respect to their corresponding working
condition. Formally, the data points of sensor i under k-th
operating condition is represented by vector Vik, we compute
the normalized vector V̂ik as follows

V̂ik =
Vik −min(Qik)

max(Qik)−min(Qik)
. (11)

C. Sensor Selection

Different type of sensors are deployed in different locations
inside each engine to measure different parameters (e.g., speed,
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pressure, temperature). To select the most informative sensors,
we visualized the sensors of a randomly selected engine
from run to failure. We visualized the sensor readings from
datasets with single working condition (e.g., FD001 ) and
multiple working conditions (e.g., FD002). To clearly show
the trendy pattern of the sensor readings, moving average has
been applied to smooth the sensor signals.

Fig 6 shows the sensor readings of a selected engine in
FD001 dataset, while Fig 7 shows the sensory data of FD002
dataset. Clearly, there are some sensors that are non trendy
during the whole run-to-failure test, which can deteriorate the
model performance. In addition, for our domain adaptation
problem, where we map the model source dataset (e.g.,
FD001) to target dataset (e.g., FD004). We selected the most
common 14 informative sensors among the source and target.
The selected sensors are S2, S3, S4, S7, S8, S9, S11, S12,
S13, S14, S15, S17, S20 and S21.
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Fig. 6: The readings of 21 sensors for a randomly selected
engine in FD001 dataset.

D. Experimental Settings

In this section, we provide detailed explanations of our tech-
nical details. Our ADARUL model is composed of three main
components, namely LSTM feature extractor, Discriminator
and RUL predictor network. The LSTM feature extractor is
composed of 3 bidirectional layers, each with 32 hidden neu-
rons. The discriminator network is a 3-layer fully connected
network with input layer of 64 neurons, second layer of 32
neurons and last layer of a single neuron. The RUL predictor
network has a similar architecture with an additional dropout
layer to reduce overfitting (the dropout rate is set as 0.5).
Hyper-parameters are so critical for the model performance,
in our experiment, the learning rate is equal to 1e−4, batch
size is equal to 10, the length of each training sample is 30,
and only 20 epochs of training are required to align the two
domains.
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Fig. 7: The readings of 21 sensors for a randomly selected
engine in FD002 dataset.

E. Experimental Results

In this section, we evaluate our ADARUL approach on on
C-MAPSS dataset. To evaluate our cross domain performance
performance, we train on one labeled dataset (e.g., FD001)
and test (i.e., deploy) on a different unlabeled one (e.g.,
FD002). Note that we only use target domain labels to evaluate
the performance on the target domain. In total, we have 12
cross domain scenarios across the different datasets. Different
metrics are used to evaluate the model performance such as
root mean square error (RMSE) and Score, following the
previous studies in the literature [13], [21], [24]. Table II

TABLE II: Comparison between the proposed approach and
source only in terms of Score and RMSE

Scenario Score RMSE

Source-Only Proposed Source-Only Proposed

FD001–>FD002 5066 4426 20.77 19.87

FD001–>FD003 23762 10711 48.52 39.74

FD001–>FD004 12519 12369 34.15 31.78

FD002–>FD001 657 455 15.48 14.33

FD002–>FD003 3504 3449 33.99 32.6

FD002–>FD004 12715 12227 36.08 34.35

FD003–>FD001 34538 1391 33.03 19.97

FD003–>FD002 270078 20764 33.01 23.47

FD003–>FD004 113835 48748 27.11 26.33

FD004–>FD001 161724 121677 39.30 37.89

FD004–>FD002 96527 62215 31.31 28.77

FD004–>FD003 1861 537 19.26 14.13

Mean 61399 24914 31.00 26.94
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TABLE III: RMSE comparison against state-of-the-art approaches.

Scenario NN-TCA [21] DNN-TCA [21] NN-CORAL [21] DNN-CORAL [21] DNN-DANN [21] CNN-DANN [21] LSTM DANN [21] Proposed

FD001–>FD002 94.1± 1 90.0 ± 2.9 99.2 ± 3.6 77.5 ± 4.6 67.1 ± 24.1 50.3 ± 6.4 48.6 ± 6.8 19.87 ± 0.27

FD001–>FD003 120.0 ± 1.0 116.1 ± 1.0 60.0 ± 0.7 69.6 ± 5.2 64.2 ± 28.7 42.8 ± 3.3 45.9± 3.6 39.74 ± 0.32

FD001–>FD004 120.1 ± 1.0 113.8 ± 6.9 107.7 ± 2.8 84.6 ± 7.0 74.8 ± 32.5 87.0 ± 60.8 43.8 ± 4.1 31.78 ± 0.36

FD002–>FD001 94.7 ± 1.1 85.6 ± 5.5 77.9 ± 19 80.9 ± 9.4 52.1 ± 27.3 47.4 ± 16.3 28.1 ± 5.0 14.33 ± 0.14

FD002–>FD003 107.4 ± 3.7 111.5 ± 7.2 60.9 ± 15.1 79.8 ± 10.1 73.9 ± 46.4 40.8 ± 0.2 37.5 ± 1.5 32.60 ± 0.39

FD002–>FD004 93.5 ± 2.8 94.4 ± 6.7 37.5 ± 0.5 43.6 ± 3.6 26.3 ± 0.5 38.0 ± 7.3 31.8 ± 1.6 34.35 ± 0.67

FD003–>FD001 98.7± 0.4 90.5 ± 4.6 26.5 ± 0.5 26.5 ± 1.9 28.7 ± 10.1 33.8 ± 6.0 31.7 ± 9.4 19.97 ± 0.45

FD003–>FD002 90.5 ± 0.3 80.8 ± 4.3 113.2 ± 4.5 75.6 ± 9.5 77.2 ± 16.5 68.2 ± 15.2 44.6 ± 1.2 23.47 ± 0.61

FD003–>FD004 78.9 ± 5.3 102.6 ± 3.2 113.9 ± 5.5 77.2 ± 9.1 92.7 ± 47.2 73.7 ± 67.5 47.9 ± 5.8 26.33 ± 0.88

FD004–>FD001 98.5 ± 0.4 85.6 ± 5.0 119.1 ± 16.7 94.0 ± 8.8 71.3 ± 47.4 67.4 ± 24.3 31.5 ± 2.4 37.89 ± 0.17

FD004–>FD002 75.3 ± 1.7 80.8 ± 5.8 37.3 ± 0.6 30.9 ± 1.4 24.9 ± 1.8 39.1 ± 2.5 24.9 ± 1.8 28.77 ± 0.34

FD004–>FD003 77.2 ± 6.0 102.9 ± 2.7 68.1 ± 11.1 68.6 ± 11.2 47.5 ± 25.1 45.5 ± 11.0 27.8 ± 2.7 14.13 ± 0.16

Mean 95.74 96.22 76.78 67.40 58.15 52.83 37.01 26.94

TABLE IV: Score comparison against state-of-the-art ap-
proaches

Model LSTM DANN Proposed

FD001–>FD002 93841 4426

FD001–>FD003 27,005 10711

FD001–>FD004 57,044 12369

FD002–>FD001 8,411 455

FD002–>FD003 17,406 3449

FD002–>FD004 66,305 12227

FD003–>FD001 5,113 1391

FD003–>FD002 37,297 20764

FD003–>FD004 141,117 48748

FD004–>FD001 7,586 121677

FD004–>FD002 17,001 62215

FD004–>FD003 5,941 537

Mean 40339 24914

shows the performance of proposed approach with respect
to Score and RMSE. Note that “Source-Only” means our
ADARUL model without domain alignment, i.e., we use
the source feature extractor directly on the target domain
without domain adaptation. Overall, ADARUL can achieve
significant improvement in terms of both Score and RMSE
by implementing the domain adaptation in the framework.

1) Comparison Against State-of-the-art Approaches: In this
section, to show the superiority of proposed ADARUL, we
compare against state-of-the-art approaches in transfer learning
for prognostics. The authors of LSTM-DANN [21] reported
the performance of 6 domain adaptation approaches. These
approaches used three different architectures to extract features
such as shallow neural networks (NN), deep neural networks
(DNN), and convolutional neural networks (CNN). These

architectures have been combined interchangeably with three
domain adaptation approaches as follows.

• Transfer Component Analysis (TCA) [25]: TCA is a
conventional subspace learning technique based on max-
imum mean discrepancy (MMD) that regularized by
principle Component Analysis (PCA).

• Correlation Alignment (CORAL) [26]: In contrast to
subspace based methods, it minimizes the covariance of
source and target domains.

• Domain Adversarial Neural Network (DANN) [27]: This
method uses a domain classifier coupled with gradient
reverse layer to reduce the discrepancy between source
and target features.

In our experiments, for fair comparison, we compared
against the six aforementioned stat-of-the-art methods using
the same cross-domain scenarios experimental settings. Table
III shows the comparison of the proposed approach against all
the aforementioned related works in terms of RMSE metric.
We achieved the best results among 9 cross-domain scenarios.
While some cross domain scenarios can be easily adapted,
other scenarios can be challenging, which attributed to the
different distributions discrepancies across different domains.
For instance, we achieve significant improvement when map-
ping between datasets with single operating condition (e.g.,
FD001 and FD003), which seems to be close domains. While
mapping between datasets with multiple operating conditions
(e.g., FD002 and FD004) can be more challenging. Overall,
our model is achieving an average RMSE of 26.94, which is
significantly lower than that of LSTM-DANN (37.01).

In terms of score metric, to clearly show our superiority, we
compared against the best state-of-the-art method (i.e., LSTM-
DANN) as shown in Table IV. While our ADARUL achieves
better Score performance under 10 out of 12 cross domain
scenarios, our model achieves lower Score when mapping from
complex datasets (e.g, FD004 to FD001 and FD002). On the
whole, our ADARUL still significantly outperforms DANN-
LSTM by achieving an average Score of 24914.
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IV. CONCLUSION

In this work, we handled a more challenging yet practical
problem of predicting machine RUL under varying working
environments. We developed an end-to-end architecture based
on deep LSTM network and adversarial domain adaptation.
Different from traditional data-driven methods, the proposed
deep LSTM network enabled automatic feature extraction
and RUL prediction in an end-to-end manner. To mitigate
the domain shift problem from different working conditions,
we successfully realized an adversarial domain adaptation to
learn new feature representation that can be invariant among
different working conditions. Experimental results on real-
world datasets showed that our proposed ADARUL signifi-
cantly outperforms the state-of-the-art methods, demonstrating
the effectiveness of ADARUL for prognostics across different
domains.
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