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ABSTRACT
The regulatory mechanism of recombination is one of the
most fundamental problems in genomics, with wide appli-
cations in genome wide association studies (GWAS), birth-
defect diseases, molecular evolution, cancer research, etc.
Recombination events cluster into short genomic regions called
“recombination hotspots” in mammalian genomes. Recently,
a zinc finger protein PRDM9 was reported to regulate re-
combination hotspots in human and mouse genomes. In
addition, a 13-mer motif contained in the binding sites of
PRDM9 is also enriched in human hotspots. However, this
13-mer motif only covers a fraction of hotspots, indicat-
ing that PRDM9 is not the only regulator of recombination
hotspots. Therefore, discovery of other regulators of recom-
bination hotspots becomes a current challenge.

Meanwhile, recombination is a complex process unlikely to
be regulated by individual proteins. Rather, multiple pro-
teins need to act in concert as a molecular machinery to
carry out the process accurately and stably. As such, the
extension of the prediction of individual proteins to protein
complexes is also highly desired. In this paper, we pro-
pose a network-based pipeline named NetPipe to identify
protein complexes associated with meiotic recombination
hotspots. Previously, we associated proteins with recombi-
nation hotspots using the binding information between these
proteins and hotspots. Here, we exploited protein-protein
interaction (PPI) data to prioritize many more other pro-
teins without such binding information. Furthermore, we

detected protein complexes conserved between human and
mouse that are associated with hotspots. Evaluation results
show that the top genes ranked in PPI networks have sig-
nificant relations to recombination related GO terms. In
addition, individual genes in the multi-protein complexes
detected by NetPipe are enriched with epigenetic functions,
providing more insights into the epigenetic regulatory mech-
anisms of recombination hotspots.
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1. INTRODUCTION
Recombination is a process that homologous chromosomes
exchange their arms and such crossover events tend to occur
more frequently within some short regions called “recombi-
nation hotspots”. Recombination is one of the most funda-
mental processes in molecular biology and the understanding
of the mechanisms for recombination hotspots would thus
shed light on various important aspects in molecular biol-
ogy and medicine, such as genome instability, birth-defect
diseases, disease gene mapping, molecular evolution and so
on.

Recently, there has been much progress in the discovery of
the mechanisms for meiotic recombination hotspots in mam-
malian genomes. For example, in 2010, a zinc finger protein
PRDM9 was reported as a trans-regulator of recombination
hotspots in human and mouse genomes in three Science pa-
pers [2, 11, 15]. PRDM9 binds to DNA and its binding site
contains a 13-mer motif previously found to be enriched in
human hotspots [12]. In [19], Smagulova et al. analyzed
the molecular features of mouse recombination hotspots us-
ing Chip-Seq data and observed that a consensus motif en-
riched in mouse hotspots aligns with the predicted binding
site of mouse PRDM9 significantly. Using an LD-based ap-
proach named LDsplit, Zheng et al. [31] identified HapMap
SNPs (single nucleotide polymorphisms) as cis-regulators



of recombination hotspots. In addition, the authors [31]
also found an enriched 11-mer motif which closely matches
the aforementioned 13-mer motif bound by PRDM9 and en-
riched in human recombination hotspots.

Although significant breakthroughs have been made in the
understanding of the regulatory mechanisms of meiotic re-
combination hotspots, they are mainly focused on the well-
known protein PRDM9. However, it is estimated that PRDM9
can explain only 18% of variations in human recombination
phenotype [2]. Meanwhile, the 13-mer motif contained in the
binding sites of PRDM9 covers only 41% of human hotspots
[12]. Therefore, PRDM9 is unlikely to be the only trans-
regulator of recombination hotspots. To perform its func-
tions, PRDM9 must interact with other proteins to form a
protein complex or regulatory pathway. Hence, it is highly
motivated to discover other genes and their high-level orga-
nizations, such as protein complexes or regulatory pathways,
which are also associated with recombination hotspots. Fur-
thermore, the function of PRDM9 for regulating recombina-
tion hotspots is well conserved among human, chimpanzee
and mouse. It would also be an interesting question in com-
parative genomics whether there are some other genes and
their pathways or complexes whose functional roles in reg-
ulating recombination hotspots are also conserved among
species.

In our previous study [25], we proposed an implementation,
called the Odds-Ratio method, to predict other regulators of
recombination hotspots from DNA-binding proteins based
on their binding preference to hotspots against coldspots.
Our Odds-Ratio method reported a list of candidate trans-
regulators (including PRDM9) of mouse hotspots and these
candidates are enriched with functions of histone modifica-
tions, highlighting the epigenetic mechanisms of recombi-
nation hotspots. However, the Odds-Ratio method requires
the binding motifs of transcription factors (TF) to be known.
Given that there are only a limited number of known TFs
with binding motifs, Odds-Ratio method is thus less effective
to search for more novel genes associated with recombination
hotspots.

To address the above issues, this paper proposes a network-
based pipeline called NetPipe to identify genes and protein
complexes associated with recombination hotspots. NetPipe
consists of three stages. First, for each input DNA-binding
protein, we estimate a Hotspot-Binding (HB) profile show-
ing its binding preference to hotspots. We then construct a
HB network based on the similarity of HB profiles between
genes (thereafter, we use terms “gene” and “protein” inter-
changeably), where a gene is a node and an edge connects
two genes with similar HB profiles. We subsequently prior-
itize conserved genes between human and mouse associated
with recombination hotspots by aligning their HB networks.
Second, using genes prioritized by HB network alignment as
seeds, we apply the Random Walk with Restart algorithm
(RWR) to propagate the influences of these seeds to other
proteins in protein-protein interaction (PPI) networks. As
such, many proteins without known binding motifs will also
be assigned a score showing their relationships with recom-
bination hotspots. Third, we construct sub-PPI networks
induced by top genes ranked by RWR for both human and
mouse and detect conserved protein complexes in those sub-

PPI networks, which may perform functions related to re-
combination hotspots.

In order to evaluate the results of NetPipe, we utilized var-
ious kinds of GO term analysis. First, the GO term en-
richment analysis (as in our previous study [25]) shows that
epigenetic functions are enriched in the seeds prioritized by
our HB network alignment. This result is similar to our
Odds-Ratio method, demonstrating that our HB network
alignment is an effective alternative approach to identify-
ing trans-regulators from TFs. Second, we calculated the
semantic similarity between identified genes to existing re-
combination related GO terms (i.e., “DNA recombination”
(GO:0006310) and “Meiosis” (GO:0007126)). Genes top-
ranked by RWR are demonstrated to have high similarities
with these recombination related GO terms. This shows
RWR is a credible complement to the existing methods since
it enables the detection of those novel genes without HB pro-
files. Last, different from most existing methods which only
explore the individual genes, in this paper we also carried
out analysis at protein-complex level which can capture the
underlying modularity and functional organization among
multiple proteins. Our GO term analysis for conserved com-
plexes based on p-values [8] shows that epigenetic functions
are enriched in those complexes, providing more confidence
in the epigenetic mechanisms for recombination hotspots.

2. METHODS
In this section, we will introduce the three main steps of our
NetPipe in more details.

2.1 HB Network Construction and Alignment
In our previous study [25], we calculated the binding sites
of TFs, based on their binding motifs, to DNA sequences in
mouse genome using the FIMO software [6]. Those prefer-
ring to bind to hotspots rather than coldspots will be pre-
dicted as trans-regulators of mouse hotspots. In this work,
we first collected the hotspot-binding profiles (HB profiles)
for those TFs. In particular, we divide the whole genome
into λ bins with fixed length (e.g., 5M bases) and the HB
profile of a TF g is represented as a λ−dimension vector,
HB(g) = (b1, b2, · · · , bλ), where bi is the number of hotspots
in the ith bin that g binds to. Subsequently, we can build a
HB network for TFs, where a node is a TF and an edge be-
tween two TFs indicates they have similar HB profiles. The
similarity between two HB profiles is measured by Pearson
correlation coefficient. Two TFs will be connected in the
HB network when the similarity between their HB profiles
is larger than a pre-defined threshold (e.g., 0.7 is used in this
paper).

We constructed two HB networks for human and mouse,
respectively. Then, they are aligned by the network com-
parison toolkit named NCT [18] to align them. The cross-
species alignment of HB networks can detect evolutionar-
ily conserved network motifs associated with recombination
hotspots, which should be more significant than signals from
single-species analysis. The procedure of NCT for network
alignment is as follows. First, to detect the conserved pat-
terns (paths or cliques) between two species, NCT will first
build an orthology graph (also called network alignment
graph), in which each node represents a pair of proteins with
high sequence similarity (homologous or orthology proteins)



and each edge represents a conserved interaction between
the corresponding protein pairs in both species. Second, a
subgraph in the orthology graph can have a likelihood ratio
score that indicates its propensity to be conserved [17, 18].
Last, candidate subgraphs with high scores are predicted as
conserved patterns by an exhaustive searching heuristic.

It is observed that proteins involved in multiple modules
tend to be more biologically important [13]. Therefore, for
those TFs in HB networks, we evaluate their relevance to
recombination hotspots based on their frequency in the con-
served clusters collected by NCT. More specifically, for a
TF g, its relevance score R(g) to recombination hotspots is
finally measured by its frequency in the conserved clusters,
i.e., the number of conserved clusters involving g, normal-
ized by the maximum frequency over all the genes. We use
the relevance scores to rank candidate genes related to re-
combination hotspots.

2.2 Random Walk in PPI Networks
TFs closely related to recombination hotspots (or so-called
trans-regulators) can be predicted by the above HB net-
work alignment. However, the power of this method, as
well as our previous Odds-Ratio method, would be limited
due to the small number of TFs with known binding motifs.
Out of tens of thousands of known human and mouse genes,
there are only 158 binding motifs for human and 148 for
mouse in two well-known databases (i.e., JASPAR [16] and
TRANSFAC [10]), respectively. Meanwhile, a large amount
of protein-protein interaction (PPI) data are available and
they are often modeled as graphs, where nodes are proteins
and edges are interactions between proteins, for predicting
novel protein interactions [30], protein functions [4], protein
complexes [8], disease genes [9] etc. In this work, we com-
bine PPI data to evaluate the relevance of genes (proteins)
to recombination hotspots, by a Random Walk with Restart
algorithm (RWR) [7].

RWR simulates a random walker, which starts on a set of
seed nodes and moves to their neighbors randomly at each
step. Therefore, RWR propagates the influence from the
seed nodes to the remaining nodes in the PPI network and
can be used to measure the proximity of other nodes to the
seed nodes. Let p0 be the initial vector showing the relevance
of seeds to recombination hotspots (i.e., assigned by the HB
network alignment method) and pt be a vector in which the
i-th element shows the relevance of node i at step t. The
relevance vector at step t + 1 is then calculated as

pt+1 = (1− γ)×W × pt + γ × p0, (1)

where W is the transition matrix of the PPI network and
each element Wij is the transition probability from node i
to node j. The parameter γ ∈ (0, 1) is the restart proba-
bility. At each step, the random walker may return to seed
nodes with probability γ. We generally use the normalized
adjacency matrix as the transition matrix. p0(i) is assigned
with the relevance score R(gi) output from the HB network
alignment in previous subsection if the ith node gi is a seed,
and 0 otherwise. p∞(i) is the final relevance of node i to
recombination hotspots. We can obtain the relevance vector

at the steady state (p∞) efficiently by performing iterations
until the difference between pt+1 and pt is below a threshold,
for example, 10−10 [9].

Based on the RWR algorithm in PPI networks, genes that
are highly interactive with the seed genes will accumulate
more influence pumped from the seeds. Hence, we can con-
sider them as novel genes related to recombination hotspots
even if they do not have HB profiles.

2.3 Detection of Protein-Complexes Conserved
in PPI Networks

After prioritizing genes associated with recombination hotspots,
we construct sub-networks for human and mouse, respec-
tively, which are induced by those top-ranked genes (e.g., top
200 genes [21]). Furthermore, we can detect protein com-
plexes highly related to recombination hotspots, which are
conserved in both human and mouse. Generally, if two com-
plexes from two species share main components and they are
similar enough, we can consider them as conserved although
they may have additional distinct members. The NCT al-
gorithm is supposed to be applied here to detect conserved
complexes. However, a conserved protein complex collected
by NCT often means that two species have exactly the same
complex if there is no further post-processing on it (Figure
3 shows an example output of NCT). To address this issue,
we thus proposed a simple yet efficient approach to detect
the conserved complexes with the following two steps.

First, we used the COACH algorithm [26] to detect protein
complexes in human and mouse PPI sub-networks, respec-
tively. Let H = {H1, · · · , Hm} and M = {M1, · · · ,Mn}
be the set of protein complexes predicted by COACH from
human and mouse sub-networks respectively. Then, we can
build a bipartite graph G = (H,M,E,w), where H and M
represent two sets of super-vertices (i.e., each predicted pro-
tein complex is considered as a super-node in the bipartite
graph G) and the edge weights are defined using the neigh-
borhood affinity (NA) score [26, 3] in Equation 2. Here,
|Hi ∩ Mj | is the number of ortholog pairs between Hi and
Mj . In previous studies [26, 3], two protein complexes with
many common proteins, which have a NA score larger than
or equal to a threshold (generally set as 0.25), will be con-
sidered as the same protein complex. Similarly, a pair of
super-nodes (i.e., protein complexes) in our bipartite graph
G with an edge weight larger than or equal to the thresh-
old will be considered as a pair of conserved complexes and
all the edges with weights lower than the threshold will be
removed from G.

w(Hi,Mj) =
|Hi ∩Mj |2

|Hi| × |Mj |
. (2)

Second, we will detect conserved protein complexes by match-
ing H and M in G. A matching P in G is a subset of E,
where each vertex is involved in no more than one edge in
P . The maximum weighted matching P ∗ has the maximum
sum of weights of edges. Here, a modified augmenting-path
algorithm [24] is employed to solve the maximum weighted
matching problem and finally our conserved protein com-
plexes are those pairs in the maximum weighted matching
P ∗.



3. RESULTS
Before showing the results of NetPipe, we briefly introduce
the data used in our experiments. Recombination hotspots
of mouse were downloaded from [19]. Recombination hotspots
of human were collected from HapMap genetic map esti-
mated by the LDhat package [1]. There are 9,874 and 39,551
hotspots in mouse and human genomes respectively. DNA
sequences for mouse (version: MGSCv37) and human (ver-
sion: GRCh37) were downloaded from NCBI.

To collect the HB profiles, the binding motifs of TFs were
downloaded from JASPAR and TRANSFAC databases. Af-
ter processing, we obtained 158 human binding motifs and
148 mouse binding motifs respectively. Human PPI data
were downloaded from the BioGRID database [20], consist-
ing of 11,120 proteins and 55,014 interactions among these
proteins, while mouse PPI data were downloaded from [29],
with 10,348 proteins and 63,882 interactions. Lastly, the GO
data for various GO term analysis were downloaded from
http://www.geneontology.org.

3.1 HB profiles for TF proteins
In our experiments, we set the bin size as 5Mb to divide both
human and mouse chromosomes. Correspondingly, we ob-
tained 35 bins and 27 bins for human chromosomes 6 and 11
respectively. Figure 1 shows the distribution of hotspots over
all the bins in human chromosomes 6 and 11. We can eas-
ily observe that the distributions of the hotspots have dips
in the middle of the chromosomes. This is also observed in
the other chromosomes (data not shown). The observation
is consistent with the fact that recombination hotspots oc-
cur more frequently in telomeres than centromeres [14]. Our
HB profiles for genes, based on the above binning of chromo-
somes, would thus be promising to capture some biological
insights.

Figure 2 shows the HB profiles for the PRDM9 gene in hu-
man chromosomes 6 and 11. We can find that the HB pro-
files of PRDM9 have similar overall trends as the distribu-
tions of hotspots, while also look different in some specific
bins. In this work, we mainly compared the HB profiles
among different genes and then built the HB networks based
on the profile similarities. We will compare HB profiles for
various genes with the background hotspot distributions for
future studies. For example, if a protein has a HB profile
significantly different from the background hotspot distribu-
tions, it may thus be inferred to perform functions related
to recombination hotspots.

3.2 Genes prioritized by HB network align-
ment

After collecting HB profiles for TFs and building HB ne-
towrks, NCT will generate clusters conserved in HB net-
works. Figure 3 shows a conserved cluster predicted by
NCT. As previously introduced, NCT will assign a score
to each output conserved cluster. The cluster here in Figure
3 with 15 TFs is the one with the highest score.

TFs are now ranked with respect to their relevance scores
that are computed based on all the conserved clusters col-
lected by NCT. In our experiments, we selected 15 TFs with
the highest relevance scores as “seeds” for the subsequent
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Figure 1: The number of hotspots in each bin of
human chromosomes 6 and 11.
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Figure 2: The number of hotspots binding to
PRDM9 in each bin of human chromosomes 6 and
11.

RWR algorithm in PPI networks. These seeds are SP1,
PRDM9, PAX5, ESR1, CTCF, NF1, NR6A1, MYOD1, YY1,
USF1, PPARG, NFKB1, MYC, RELA and REL in the de-
creasing order of their relevance scores. Note that 13 out



of these 15 seeds are in the cluster in Figure 3. With these
seeds,we will next show the results in each step of NetPipe.

First, we utilized the GO term analysis as in our previous
study [25] for these seeds. Table 1 shows top-10 GO terms
enriched in these human seeds (results for mouse seeds are
similar and thus are not shown here). The gap score of a GO
term (in the 4th column of Table 1) shows the enrichment of
this GO term in a given set of genes. In Table 1, top three
terms are quite interesting, namely GO:0007283 (spermato-
genesis), GO:0007276 (gamete generation) and GO:0019953
(sexual reproduction). As we know, meiotic recombination
hotspots play key roles in sexual reproduction. Our seeds
enriched with functions highly related to “sexual reproduc-
tion”, may perform their functions in the regulation of re-
combination hotspots. In addition, other top ranked terms
are all epigenetic functions, indicating the conserved epige-
netic mechanism for recombination hotspots across human
and mouse species.

Table 1: GO terms enriched in human seeds with
top-10 gap scores
Rank GO terms GO term descriptions gap
1 GO:0007283 spermatogenesis 0.722
2 GO:0007276 gamete generation 0.487
3 GO:0019953 sexual reproduction 0.322
4 GO:0051573 negative regulation of

H3-K9 methylation
0.302

5 GO:0016573 histone acetylation 0.284
6 GO:0051574 positive regulation of

H3-K9 methylation
0.284

7 GO:0051571 positive regulation of
H3-K4 methylation

0.277

8 GO:0031060 regulation of histone
methylation

0.268

9 GO:0016568 chromatin modification 0.263
10 GO:0006338 chromatin remodeling 0.256

Second, we generated random seeds from all the input DNA-
binding TFs as the input of RWR in our NetPipe and then
collected their results, i.e., genes ranked by RWR algorithm
and conserved protein complexes. In contrast to the enrich-
ment of epigenetic terms in Table 1, there are no epigenetic
functions enriched in the random seeds as shown in Table
3. It suggests that epigenetic functions are enriched in our
seeds while not enriched in the whole set of TFs.
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Figure 3: A conserved cluster predicted by NCT
from HB networks.

Third, we computed the semantic similarity between our
seeds and two manually-collected terms (i.e., “DNA recombi-
nation”(GO:0006310) and“Meiosis”(GO:0007126)) in Equa-
tion 3. These two terms are highly related to meiotic re-
combination hotspots. In Equation 3, T (g) is the set of GO
terms annotating a gene g, S(t, g) is the similarity between a
GO term t and a gene g and S(t, V ) is the similarity between
t and a gene set V . In addition, sim(t, t′) is the semantic
similarity between GO terms t and t′ and we calculated it
using the method in [23].

S(t, g) = max
t′∈T (g)

sim(t, t′)

S(t, V ) =
1

|V |
∑
g∈V

S(t, g). (3)

Table 2 shows the semantic similarity for random seeds, all
the TFs with binding motifs and the whole set of human
genes for comparison (the results for mouse are similar and
they are not shown here). It is observed that the seeds from
HB network alignment have much higher similarity to these
two terms than other sets of genes, indicating that the HB
network alignment method is indeed of help for selecting
genes associated with recombination hotspots.

Table 2: Semantic similarity between human seeds
and two recombination related terms

DNA recombination Meiosis Average
Seeds 0.568 0.322 0.445

Random seeds 0.519 0.215 0.367
158 TFs 0.518 0.215 0.367

All human genes 0.272 0.161 0.216

Last, the above results and analysis show that the seeds
prioritized by our HB network alignment method are very
promising and biologically significant. In fact, our HB net-
work alignment method can identify some genes highly re-
lated to recombination hotspots, which cannot be detected
by our previous Odds-Ratio method [25]. For example, the
gene YY1 has a low odds ratio score in [25], while it can
be identified by our HB network alignment method. It is a
core component of the chromatin remodeling INO80 com-
plex which is involved in transcriptional regulation, DNA
replication and DNA repair. It is annotated with the terms
GO:0006310 (DNA recombination) and GO:0000724 (double-
strand break repair via homologous recombination) [28] and
is involved in recombination events by binding to DNA re-
combination intermediate structures [27].

3.3 Genes re-ranked by RWR
In the above subsection, we show that seeds are enriched
with epigenetic terms and have high similarity with two
recombination-related GO terms. Here, we focus on ana-
lyzing those novel non-seed genes top-ranked by the RWR
algorithm. Table 4 shows top non-seed genes in the PPI
network ranked by the RWR algorithm and their semantic
similarity to terms“DNA recombination” (GO:0006310) and
“Meiosis”(GO:0007126). We observed that those top-ranked
human non-seeds have a higher similarity with these two
terms than the seeds themselves (0.480 v.s. 0.445). Simi-
larly, top-ranked human genes from random seeds also have a



Table 3: GO terms enriched in random human seeds with top-10 average gap scores (over 100 random sets
of seeds)

Rank GO terms GO term descriptions Average gap
1 GO:0015695 organic cation transport 0.0326
2 GO:0048241 epinephrine transport 0.032
3 GO:0055085 transmembrane transport 0.0276
4 GO:0010248 establishment and/or maintenance of transmembrane

electrochemical gradient
0.0276

5 GO:0000301 retrograde transport, vesicle recycling within Golgi 0.026
6 GO:0006891 intra-Golgi vesicle-mediated transport 0.0258
7 GO:0015909 long-chain fatty acid transport 0.0255
8 GO:0042953 lipoprotein transport 0.0254
9 GO:0015908 fatty acid transport 0.0254
10 GO:0046323 glucose import 0.0251

Table 4: Top human and mouse genes ranked by
RWR algorithm and their similarity to two recom-
bination related terms.

Human Mouse
Rank Genes Similarity Genes Similarity
1 UIMC1 0.464 CREBBP 0.504
2 UBC 0.647 SMAD3 0.438
3 EP300 0.463 EP300 0.303
4 HDAC1 0.446 RB1 0.439
5 SMARCA4 0.417 SMAD4 0.457
6 SMAD3 0.438 TBP 0.37
7 CREBBP 0.504 GTF2I 0.37
8 POLR2A 0.425 LOC637733 0
9 KPNA2 0.712 HDAC1 0.446
10 SMAD2 0.432 BRCA1 0.746
11 TP53 0.575 HSPA8 0.509
12 RUNX1 0.395 POLR2A 0.384
13 SMAD4 0.393 THRB 0.375
14 ID3 0.478 YWHAB 0.266
15 DAXX 0.41 ID2 0.361

AVERAGE 0.480 AVERAGE 0.398

higher similarity than these random seeds (0.391 v.s. 0.367).
This observation implies the usefulness of PPI data for us
to find and study those individual proteins related to re-
combination hotspots. In addition, human genes generated
by real seeds in Table 4 have significantly higher similarities
to recombination-related GO terms than those by random
seeds, once again demonstrating that our seeds generated
by HB network alignment are biologically meaningful. We
also observed that some genes (e.g., UBC and HDAC1) are
both top-ranked using real seeds and random seeds. It is
reasonable that some hub genes (i.e., with many interacting
partners) will accumulate influence using either real seeds
or random seeds. As such, how to estimate and normal-
ize such bias of network properties (e.g., degree) would be
investigated in future.

Here, we briefly show some proteins top-ranked by RWR,
which may play important roles in recombination hotspots.
Human UIMC1 is ranked as the top 1 non-seed gene and
it is a component of BRCA1-A complex [22]. It has anno-
tations including GO:0006302 (double-strand break repair),

GO:0016568 (chromatin modification) and GO:0045739 (pos-
itive regulation of DNA repair). HDAC1 in both human and
mouse is a component of the histone deacetylase complex
and it is annotated with GO terms like GO:0006338 (“chro-
matin remodeling”) and GO:0006476 (“protein deacetyla-
tion”). Interestingly, human KPNA2 is also captured by
RWR algorithm. It was previously reported to be involved
in recombination, with a GO annotation GO:0000018 (“reg-
ulation of DNA recombination”) [5].

In summary, many important genes associated with recom-
bination hotspots are identified by RWR in PPI networks.
Currently, protein interaction data for various species are
still incomplete and noisy. In BioGRID database, no in-
teracting partners can be found for the PRDM9 protein in
human or mouse. However, we believe that PPI data will
provide more insights when they are further enriched.

3.4 Conserved complexes between human and
mouse

We exploit the Gene Ontology (GO) to evaluate the func-
tional enrichment of our conserved protein complexes based
on p-values [8]. A predicted protein complex with low p-
values indicates that it is enriched by proteins from the same
functional group and it is thus statistically significant. In
our experiments, 14 out of 15 conserved complexes have the
lowest p-values among all the GO terms, which are smaller
than 0.001. This result shows that those conserved com-
plexes are indeed enriched by a common, specific function,
demonstrating the ability of our NetPipe for predicting pro-
tein complexes.
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Figure 4: Conserved complexes predicted by our
NetPipe.



Table 5: Top-5 GO terms for the conserved complex
predicted by NetPipe as shown in Figure 4.

Human
Rank P-value GO term Term description
1 6.53e-012 GO:0016580 Sin3 complex
2 5.65e-011 GO:0016581 NuRD complex
3 7.08e-009 GO:0035098 ESC/E(Z) complex
4 4.71e-008 GO:0000792 heterochromatin
5 5.38e-007 GO:0005654 nucleoplasm

Mouse
1 1.69e-009 GO:0016580 Sin3 complex
2 7.86e-009 GO:0016581 NuRD complex
3 4.47e-007 GO:0005654 nucleoplasm
4 2.99e-006 GO:0035098 ESC/E(Z) complex
5 9.98e-006 GO:0000792 heterochromatin

More specifically for the conserved complexes in human and
mouse, we list top 5 GO terms with the lowest p-values for
them. Figure 4 shows a conserved complex predicted by
NetPipe. It is also very interesting that epigenetic func-
tions are enriched in these conserved complexes predicted
by our NetPipe. For instance, Table 5 shows top 5 “cel-
lular component” GO terms of the conserved complexes in
Figure 4. Here, the Sin3 complex (GO:0016580) is a tran-
scriptional repressor of protein-coding genes, through the
gene-specific deacetylation of histones. The NuRD com-
plex (GO:0016581) has ATP-dependent chromatin remod-
eling activity in addition to histone deacetylase (HDAC) ac-
tivity. The ESC/E(Z) complex (GO:0035098) methylates
lysine-27 and lysine-9 residues of histone H3.

Next, we focus on 3 specific histone-related “cellular com-
ponent” terms, namely, GO:0000118 (histone acetyltrans-
ferase complex), GO:0000123 (histone deacetylase complex)
and GO:0035097 (histone methyltransferase complex). Ta-
ble 6 shows the number of complexes whose top-5 GO terms
include these 3 histone-related terms or their descendent
terms. For example, Sin3 complex and NuRD complex are
two main components of histone deacetylase complex. Their
corresponding terms GO:0016580 and GO:0016581 are de-
scendants of the term GO:0000123 (histone deacetylase com-
plex) in Gene Ontology.

In this work, a conserved complex refers to a pair of hu-
man and mouse complexes, which may be slightly different
in their protein components but still similar enough overall.
NetPipe predicted 15 conserved complexes from real seeds
(i.e., 15 pairs of human and mouse complexes), out of which
6 human complexes and 7 mouse complexes are enriched
with the term GO:0000118 (histone acetyltransferase com-
plex) and 4 pairs are both enriched with this term. However,
the number of conserved complexes predicted from random
seeds, whose top-5 GO terms include these histone-related
terms, is much smaller as shown in Table 6. This indi-
cates that epigenetic functions enriched in the conserved
complexes detected NetPipe from real seeds is not merely
by chance. In our previous study [25], we found that pro-
teins preferring to bind to hotspots are enriched with epi-
genetic function and we thus shed light on the epigenetic
mechanism of recombination hotspots. In this paper, pro-
tein complexes with epigenetic functions, which are formed

by proteins highly related to recombination hotspots, would
be a complementary evidence for the above hypothesis.

4. DISCUSSION AND CONCLUSIONS
In this paper, we proposed a network-based pipeline NetPipe
to identify genes and protein complexes associated with re-
combination hotspots. By using protein interaction data,
we can prioritize many more proteins without binding infor-
mation, which can address the limitation that our previous
Odds-Ratio method can only work for a small number of TFs
with binding motifs available. Meanwhile, we also detected
protein complexes conserved in human and mouse that are
associated with hotspots. As far as we know, this is the first
work to study the protein complexes conserved for recom-
bination hotspots. Evaluation results show the effectiveness
of our NetPipe. Novel genes ranked in PPI networks have
high similarity to recombination related GO terms, showing
PPI data are indeed a good source to select individual genes
associated with recombination hotspots. For example, hu-
man protein KPNA2 is also captured by RWR algorithm.
It was previously reported to be involved in recombination,
with a GO annotation GO:0000018 (regulation of DNA re-
combination) [5]. In addition, individual genes and protein
complexes detected by our NetPipe are enriched with epige-
netic functions, providing more insights into the epigenetic
regulatory mechanisms of recombination hotspots.

In the future, we will work on the following two directions
to extend our current study. First, PRDM9 with no records
in the current PPI databases would possibly be due to the
incompleteness of the databases themselves. As such, we
will take the reliability of PPI data into consideration, i.e.,
adding novel false negative interactions and eliminating false
positives. It is reasonably expected that PPI data with
higher quality will provide more accurate prioritization for
genes associated with hotspots. Second, we will look for ex-
perimental evidence reported in literature or even wet-lab
experiments to support our computational predictions. For
example, a candidate gene in mouse can be knocked out and
it will be verified to be highly associated with recombination
hotspots if the recombination rates of many hotspots vary
much after its knock-out.
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