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Abstract—Interactions between transcription factors (TFs) are 
necessary for deciphering the complex mechanisms of 
transcription regulation in eukaryotes. In this paper, we 
proposed a novel HV-kernel based Support Vector Machine 
classifier (HV-SVM) to predict TF-TF interactions based on their 
protein domain information and GO annotations. Specifically, 
two types of pairwise kernels, namely, a horizontal kernel and a 
vertical kernel, were combined to evaluate the similarity between 
a pair of TFs, and a Genetic algorithm was used to obtain kernel 
and feature weights to optimize the classifier’s performance. We 
applied our proposed HV-SVM method to predict TF 
interactions for Homo sapiens and Mus muculus. We obtained 
accuracy and F-measures of over 85% and an AUC of almost 
93%, demonstrating that HV-SVM can accurately predict TF-TF 
interactions even in the higher and more complex eukaryotes. 
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I.  INTRODUCTION  
Transcription factors (TFs) are a key regulatory family of 

proteins that control transcriptional activation of genes. They 
bind to the DNA promoter regions to either activate or inhibit a 
transcription process. Much of the research efforts on TFs have 
thus been focused primarily on the identification of TF-DNA 
interactions. However, in eukaryotes, transcription regulation is 
also known to occur through the coordinated action of multiple 
TFs [1]. In other words, TFs do not act alone but do so as 
groups of interacting TFs that co-regulate functionally related 
genes. Knowledge of TFs and the interplay between different 
TFs are therefore necessary for deciphering how the cell 
controls the location and timing of activation of genes and 
regulates how much of the gene products to be produced. 

Ideally, the complex interactions of TFs should be 
unraveled in vitro using high throughput screening 
experiments. Unfortunately, current high throughput screening 
techniques for protein-protein interactions (hence TF-TF 
interactions) have been shown to be inadequate and noisy [2]. 

Given the experimental limitations in high throughput 
screening, researchers have recently begun to explore the 
exploitation of the growing availability of various biological 
data resources to infer TF-TF interactions computationally.  
These computational methods can be categorized into three 
classes, namely, gene expression correlation based techniques, 
interacting motif based techniques and PPI (protein-protein 
interaction) network based techniques. The first class of 
approach exploits the abundance of gene expression data, 
inferring synergistic relationships between TFs when their 
common target genes show highly correlated expression 
patterns [3, 4]. The reliance on gene expression data is a main 
drawback of this kind of methods, as gene expression data have 
been found to contain much background noise.  

The second class of techniques exploits the growing 
availability of whole genome sequences to discover the so-
called interaction motif pairs [5, 6] in the DNA sequences. Two 
motifs are deemed interacting if they co-occurrence in the input 
DNA promoters are over-represented and the distance between 
the two motifs are significantly different from random 
expectations. The TFs binding to these motifs are then 
predicted to be interacting with each other. A problem with this 
approach is that there could be multiple TFs binding to a motif 
and it is difficult to decipher which of these TFs interact with 
which of the potentially many TFs binding to the other motif.   

More recently, [7] predicted cooperative TFs by exploiting 
the large-scale PPI networks. The working hypothesis here is 
that proteins that are close to each other in the PPI networks 
(with shorter median distance) are more likely to be co-
regulated by the same set of TFs. However, the major difficulty 
with this approach is that the small-world phenomenon in PPI 
networks implies the difference of the median distance between 
proteins is typically not significant.   

On the other hand, machine learning algorithms have been 
used to exploit the current abundant availability of PPI data to 
build models to classify novel protein interactions. Various 
evidence sources such as shared biological attributes [8, 9] 



protein domains [8-11], motifs [12], gene expression data [9] 
and sequences [13] have been used as predictors of PPI. 
Rhodes et al. [14] used a Naïve Bayes model to perform 
classification but a more popular approach is to use Support 
Vector Machine (SVM) methods [8, 9, 12, 13].  As far as we 
know, most of these works had focused on predicting generic 
PPI’s. It would be interesting if we could also employ a 
machine learning approach for predicting the more biologically 
specific TF-TF interactions.  

In this paper, we propose a novel HV-kernel based SVM 
classifier (HV-SVM) to predict TF-TF interactions. Previous 
works on TF-TF interaction predictions have been largely 
applied on the relatively simple model organism 
Saccharomyces cerevisiae. In higher eukaryotes, transcriptional 
regulation mechanism is much more complex and it would 
therefore be a challenge to reliably predict TF-TF interactions 
to unravel the complex regulatory mechanisms in these higher 
eukaryotes. In this work, we apply our novel HV-SVM method 
to predict TF interactions in Homo sapiens and Mus muculus. 
Our experimental results showed a very high quality of 
prediction, demonstrating HV-SVM is a good predictor of TF-
TF interactions even in the more complex higher eukaryotes. 

II. THE PROPOSED TECHNIQUES 
We are now ready to present the details of our proposed 

technique HV-SVM. In Section A, we first introduce a method 
to characterize a TF by different biological features. Then, in 
Section B, we briefly provide an overview for Support Vector 
Machines. Next, two novel kernel functions designed for 
predicting TF-TF interactions are proposed in section C. 
Finally, in section D, we propose to combine the two kernels 
and apply GA (genetic algorithm) to learn the kernel and 
feature weights to further optimize the classifier’s performance. 

A. TF characterization 
 Protein domains are evolutionarily conserved modules of 

amino acid sub-sequence postulated that as nature’s functional 
“building blocks” for constructing the vast array of different 
proteins. Protein functional domains are thus regarded as 
essential units for such biological functions as the participation 
in transcriptional activities and other intermolecular 
interactions. The existence of certain domains in the TFs could 
orchestrate the propensity for the TFs to interact due to the 
underlying domain–domain interactions. Databases, such as the 
Protein families (Pfam) database, have been compiled to 
comprise comprehensive domain information 
(http://www.sanger.ac.uk/Software/Pfam). In this study, we 
only used Pfam-A, a collection of manually curated and 
functionally assigned domains, instead of Pfam-B, which is 
computationally derived collection of domains (and hence less 
accurate), to ensure accuracy in our predictions.  

In addition to protein functional domains that can shed light 
into whether a TF is likely to interact with another TF or not, 
there are other information available in databases that can help 
in this task. The Gene Ontology (GO) database [15] provides a 
common vocabulary that can be used to describe the biological 
processes, molecular functions and cellular components  for 
many bio-molecules. Physical interactions between TFs require 

that they exist in close proximity in a cell. Biologically, TFs 
that have the same molecular functions, involved in the same 
biological processes, and located in the same cellular 
components are more likely to interact. This knowledge can be 
used to predict TF interactions.  

In this work, we used information about protein functional 
domains, and information from GO description for proteins or 
genes, to predict interactions between TFs. Our rationale was 
twofold: (1) not all proteins have domain information, so using 
GO categorization may help in some cases; the opposite is also 
true as there are also entries with domain information but 
without GO categorization, and (2) using combined 
information about GO and domains can improve the accuracy 
of TF-TF predictions for many entries that contain both types 
of information (see Fig. 4 in Section 3).  

B. Support vector machines 
In this work, we will train a Support Vector Machine 

(SVM) classifier in predicting TF-TF interactions using the 
above information. SVM is a binary classification model [16] 
and as such, is well suited to the task of discriminating between 
interacting and non-interacting TF pairs. SVM detects a 
hyperplane in a feature space to separate two sets of points 
belonging to two different classes. Each TF-TF pair represents 
a point in this vector space and can be classified as an 
interacting or non-interacting pair. 

To describe the SVM mathematically, suppose the training 
set consists of n labeled training data {xi, yi}, i=1, …, n,   
yi ∈ {1,-1},  xi ∈ Rd, where xi is the feature vector of each 
training data and yi the class. SVM solves the following 
Lagrangian optimization problem: 

                         (1) 
      
          subject to         0 ≤ αi ≤ C, i = 1, ... , n,                                         

                      01 =∑ =
n
i ii yα                                      (2)               

The kernel K(xi, xj) is a measure of similarity between xi 
and xj that satisfies the additional condition of being a dot 
product between the two data in some feature space. Mercer’s 
Theorem further requires the matrix of all pairwise 
comparisons between the training data, K, be symmetric and 
positive semi-definite [17]. By solving the optimization 
problem of (1), a new point x to be classified as: 

( ) bxxKyxf i iii −∑= ),(α                       (3) 
where positive value of f(x) indicates the classification of x as 
an interacting pair whereas a negative value classifies x as non-
interacting. SVM has been found widespread applications in 
many fields, including bioinformatics [8, 9, 12, 13, 18].  

C. Pairwise kernels for predicting TF-TF interactions 
For our application, each data point in the feature space 

represents a pair of TFs instead of a single TF. If a point (C, D) 
(C, D is a pair of TFs) is near to the pair (A, B) (A, B is another 
pair of TFs) in the feature space, and given that (A, B) is a pair 
of interacting TFs, it can be deduced that (C, D) is also an 
interacting TF pair since they share protein features, such as 
domains, functions, biological processes and cellular locations.  
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Figure 1. Two configurations of TF pairwise kernels. 

To evaluate the similarity between TF pair (A, B) and TF 
pair (C, D), a pairwise kernel function K((A, B), (C, D)) is 
required. Each TF is represented by vectors for each of the four 
features that correspond to its domain, function, biological 
process and cellular localization information. We define the 
vector for domains as d = (d1, d2,…,dn)T∈Rn, where n is the 
number of Pfam domains and di is the frequency of domain i 
that occurred in the TF. Similar definitions hold for the feature 
vectors for biological processes (p), molecular functions (f) and 
cellular components (c), where they take binary values to 
indicate the presence or absence of the GO annotation. 

SVM Default Linear Kernel   A simplistic approach to define 
a pairwise kernel is to arrange the TFs in an alphabetically 
ordered list such that every pair of TFs can be deterministically 
arranged. Hence given TF pairs (A, B) and (C, D), where A<B 
and C<D, the pairwise kernel is defined as: 

               (4) 

where Φ(X,Y) is the similarity score between (X,Y), given by: 
TTTT

, YXcYXfYXpYXdYX wwwwΦ ccffppdd +++=       (5) 
where wd, wp, wf and wc are the weights of each feature types 
and are the same for ΦA,C and ΦB,D. Formula (4) is the default 
kernel of SVM which we adopt as our baseline in this study 
(for the default kernel of SVM wd=1, wp=1, wf=1 and wc=1). 
Here two pairs of TFs, (A, B) and (C, D), are considered to be 
similar when A is similar to C and B is similar to D. Two TFs 
are considered similar if they have similar domains, biological 
processes, molecular functions or cellular components.  

Proposed Vertical Pairwise Kernel  The kernel in (4) 
considers one configuration of similarity between two TF pairs. 
However, it does not take into account of a second 
configuration where A is similar to D, and likewise B similar to 
C. Following this reasoning we have the following vertical 
pairwise kernel (Fig. 1): 

)()(   )),)(,(( ,,,, CBDADBCAv ΦΦΦΦDCBAK +++=       (6)  

Proposed Horizontal Pairwise Kernel  An alternative 
approach to a pairwise kernel is to represent a pair explicitly as 
one object and measure the similarity directly between both 
pairs. Protein domain pairs have been found to be significantly 
over-represented in interacting proteins such that the many 
protein interactions can be reduced to domain interactions [8-
11]. Furthermore, TF pairs in the same biological processes, 
molecular functions and cellular components are more likely to 
interact. As such, every TF pair can be characterized by a set of 
domain pairs between them as well as a set of common 

biological processes, molecular functions and cellular 
components that they share. Fig. 2 illustrates how to map the 
TF pairs into one object. 

Given that domain vectors dX and dY has components dXi 
and dYi respectively, the vector dX×Y, defined to have 
components dXidYj + dYidXj, is the pairwise representation of all 
domain pairs between TFs X and Y. In the case of the other 
three GO features, one approach is that only GO features that 
appear across both TFs are considered similar. For this 
purpose, px.y, fx.y and cx.y are defined to have components pXipYi, 
fXifYi and cXicYi respectively. This gives the following horizontal 
pairwise kernel: 

TTTT   )),(),,(( DCBAcDCBAfDCBApDCBAdh wwwwDCBAK ⋅⋅⋅⋅⋅⋅×× +++= ccffppdd (7) 

D. Combine to build HV kernel and learn feature weights 
Since the vertical kernel and the horizontal kernel each 

measures similarity between two pairs of TFs differently, we 
propose that they are used in combination as the following 
combination HV kernel 

)),(),,(()),(),,(()),)(,(( DCBAKwDCBAKwDCBAK hhvvHV +=   (8) 

where Kh and Kv refer to the horizontal and vertical kernels 
while wh and wv are their respective kernel weights. Note that 
between two different kernels, a particular feature type may 
have different importance in predicting TF interactions. Hence, 
the set of feature weights between the two kernels should be 
independently determined. Here, {wd,v, wp,v, wf,v, wc,v} and 
{wd,h, wp,h, wf,h, wc,h} are used to distinguish between the set of 
feature weights for the vertical and horizontal kernel.  

The relative values between the different weights reflect the 
importance of each feature in predicting TF-TF interactions. 
The following constraints are imposed: 

                   1=+ hv ww  
                   1,,,, =+++ vcvfvpvd wwww  
                   1,,,, =+++ hchfhphd wwww                            (9) 
The weights in formula (8) can be optimized, subject to (9), 

to maximize the SVM classifier’s ability to predict TF-TF 
interactions.  For searching the vast multi-dimensional solution 
space for the global maximum, it is practical to adopt a 
heuristic search algorithm. In this study, we make use of 
Genetic algorithm (GA) [19], a global search heuristic based on 
the concept of natural genetics and Darwinian’s principle of 
survival of the fittest. Details of our GA search algorithm are 
presented in Fig. 3. 
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Figure 2. Schematic representation for a horizontal pairwise kernel.
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1) Randomly generate an initial population of k chromosomes; 
2) Evaluate the fitness, f, of each individual; 
3) Form k/2 random pairs from the population and select the fitter 

individual of each pair as parents to breed the next generation. 
Repeat to obtain a total of k parents; 

4) Breed a new generation of offspring through crossover of the k 
parents; 

5) Perform random mutation on the newly created offspring with a 
mutation rate r; 

6) Repeat Steps 2-5 for n generations; 
7) Select fittest chromosome from the n generations as solution to 

the search problem. 
Figure 3. Genetic algorithm optimizes the kernel and feature weights 

A final SVM classifier HV-SVM can then be built 
using ( ) bxxKyxf

i iHVii −=∑ ),(α . Given a TF pair (A, B), 

if ( ) 0, >BAf , then A and B are interacting TF pairs; otherwise, 
A and B are non-interacting. 

III. EXPERIMENTAL RESULTS 
We performed various experiments to evaluate the 

proposed HV-SVM technique under different settings. In 
Section A, we describe the data sets and evaluation metrics. 
Finally, Section B presents the experimental results. 

A. Datasets and Evaluation Metric 
We collected TF-TF interaction data for Homo sapiens and 

Mus Musculus from various databases, including IntAct 
(http://www.ebi.ac.uk/intact/index.html), GRIP 
(http://biodata.mshri.on.ca/grid/servlet/Index/), MINT 
(http://mint.bio.uniroma2.it/mint/), BIND (http://bind.ca/), and 
DIP (http://dip.doe-mbi.ucla.edu/). In all, a total of 3224 TF-TF 
interaction pairs among 619 TFs were extracted.  

In order to train our SVM classifier (SVMlight package [20]  
was used in our implementation), both positive TF-TF 
interaction data and negative interaction data are required. The 
extracted 3224 TF-TF interaction pairs formed the positive 
dataset, and a negative dataset of similar size was constructed 
by randomizing pairs of TFs that do not already exist in the 
positive dataset. Four types of biological features for 
characterizing the TFs arefrom the Swissprot database 
(http://www.expasy.org/sprot/). To evaluate the performance of 
our HV-SVM classifier, we use three different evaluation 
metrics that are commonly used by others for similar tasks, i.e. 
F-measure (F), Accuracy (A) and AUC under ROC curves. 

B. Results 
The results reported in this subsection are based on 5-fold 

cross-validation of the dataset. 

Comparison between Feature Combinations We conducted 
an experiment to determine the effectiveness of the different 
features in predicting TF-TF interactions. All 15 combinations 
of the 4 features (D: domains, P: biological processes, F: 
molecular functions, C: cellular components) were tested over 
different kernels. Fig. 4 shows the performance of Kd for the 
various feature combinations (Due to the space limitations, we 
only report the results for kernel Kd here. The results of each 
feature combination across all kernels show a similar trend). 

In Fig. 4, among individual features, using either domain 
(D) or molecular functions (F) alone to predict TF-TF 
interactions gave higher performance than using either cellular 
components (C) or biological processes (P). This is expected 
since interactions between TFs is highly likely to be 
orchestrated by the binding of domains, while sharing the same 
molecular function increases the likelihood of interactions. 
Biological processes, on the other hand, are biologically less 
specific as they encompass numerous molecular functions to 
achieve a broader goal and are also multi-step processes. Hence 
it is likely that TFs involved in the same biological process 
have a smaller possibility of interacting compared to proteins 
with similar functions. Cellular component merely specifies a 
TF’s location and gives even less direct indication of the 
likelihood of interactions between TFs. Using a combination of 
at least two features significantly improves the prediction 
results in all cases. In particular, the best results are obtained 
when all four features are used, or when only domain, 
molecular function and biological process are used. 

Comparison between Kernel Combinations Fig. 5 shows the 
performance of the SVM with the default kernel (Kd), our 
proposed horizontal kernel (Kh), our proposed vertical kernel Kv 
and our proposed combinational kernel Khv, using all four 
features with equal feature and kernel weights. Compared with 
the default kernel Kd, both vertical kernel Kv and combinational 
kernel Khv performed better than Kd in terms of F-measure, 
Accuracy and AUC. In particular, the kernel Khv is able to 
obtain the best results (F-measure 84.7, Accuracy 84.8 and 
AUC 91.8), which are 3.0%, 3.2%, 2.8% higher than Kd 
respectively in terms of F-measure, Accuracy and AUC. 

Compared to Kd, the improvement of Kv is expected since 
the Kv takes into consideration two configurations while Kd 
considers only one configuration. We observed that while 

6 0

6 5

7 0

7 5

8 0

8 5

9 0

D P F C D
P

D
F

D
C PF PC FC D

PF

D
PC

D
FC PF

C

D
PF

C

F e a tu re  c o m b in a tio n s  fo r d e fa u lt S V M  k e rn e l

Pe
rfo

rm
an

ce

F -m e a su re A c cu ra c y A U C

 
Figure 4. Performance of default kernel for different feature combinations. 
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Figure 5. Comparison of different kernels with all features (equal weights).



kernel Kh gave the worst results in terms of F-measure and 
AUC, the accuracy and precision of Kh were higher than Kd and 
Kv due to its use of domain pair information, which is a 
significant indicator of protein interactions. Our proposed 
kernel Khv, which combined the horizontal kernel Kh with the 
vertical kernel Kv, is able to exploit all the biological 
knowledge needed for predicting TF-TF interactions and obtain 
the best results.  

Optimization of Kernel and Feature Weights Based on the 
above best kernel Khv, we employed Genetic algorithm (GA) to 
learn the kernel and feature weights in order to achieve optimal 
performance by the final kernel Khvo. Here, since we aim to 
automatically learn the weights of HV-SVM classifier, we need 
to reserve a validation set to assess the fitness scores (we use 
the average F-measure on validation set as the fitness function) 
for different weights. The GA parameters [19] are set at 
population size k = 18, number of generations n = 50 and 
mutation rate r = 0.08. The kernel and feature weights are then 
learned to maximize the F-measure. Applying our optimized 
HV-SVM classifier with kernel Khvo on test set achieved 85.7% 
F-measure, which is 1.0% higher than kernel Khv and 2.5% 
higher than randomly assigned weights for the initial 
population. 

Finally, the performance of the optimized kernel Khvo 
compared to the default kernel Kd, vertical pairwise kernel Kv, 
horizontal pairwise kernel Kh, combinational kernel Khv and a 
Naïve Bayes classifier [14], is summarized in Table 1.  

Obviously, compared to the different kernels, optimized 
kernel Khvo performs best in all aspects, with the AUC, 
Accuracy and F-measure all increased by over 3.5-4.0% than 
default kernel Kd. Compared to the Naïve Bayes classifier, the 
improvement is around 6%.  

IV. CONCLUSIONS 
Unraveling the coordinated interactions of the TFs is 

imperative for understanding the complex mechanisms behind 
the transcription regulation of the eukaryotes. Recent years’ 
advance in genome research has brought the community useful 
biological information such as protein functional domains and 
GO annotations that can shed light into whether a TF is likely 
to interact with another TF.  In this paper, we characterized the 
TFs using Pfam domains and GO annotations, which include 
biological processes, molecular functions and cellular 
components. We have shown from our results that integrating 
multiple biological evidences improves the prediction of TF-
TF interactions.  

We specifically designed two novel pairwise kernels for 
predicting TF-TF interactions based on such characterizations 
of the TFs. The vertical pairwise kernel measures similarity 
across individual TFs between two pairs while the horizontal 
pairwise kernel considers similarity between two pairs by 
measuring the similarity between the feature pairs of the two 
sets of TFs. Using vertical and horizontal pairwise kernels 
concurrently further improved the ability of SVM to perform 
classification of interacting TF pairs. Genetic algorithm was 
then employed to learn the kernel and features weights of the 
kernel combination to give the best results.  

TABLE I.  COMAPISON OF THE PERFORMANCE OF VARIOUS CLASSIFIERS 

 Classifier AUC Accuracy F-Measure 

 SVM with Kd 88.98 81.61 81.75 

 SVM with Kv 89.98 82.57 82.71 

 SVM with Kh 84.99 76.77 74.13 

 HV-SVM with Khv 91.80   84.77   84.68 

 HV-SVM withKhvo  92.76 85.24 85.70 

 Naïve Bayes 85.23 78.88 79.49 
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