
On finding the maximum edge biclique in a bipartite graph:

a subspace clustering approach

Eran Shaham ∗ Honghai Yu ∗ Xiao-Li Li ∗

Abstract
Bipartite graphs have been proven useful in modeling a wide
range of relationship networks. Finding the maximum edge
biclique within a bipartite graph is a well-known problem
in graph theory and data mining, with numerous real-
world applications across different domains. We propose a
probabilistic algorithm for finding the maximum edge biclique
using a Monte Carlo subspace clustering approach. Extensive
experimentation with both artificial and real-world datasets
shows that the algorithm is significantly better than the
state-of-the-art technique. We prove that there are solid
theoretical reasons for the algorithm’s efficacy that manifest
in a polynomial complexity of time and space.

Keywords—Maximum edge bipartite subgraph; Biclique;

Subspace clustering; Data mining; Graph mining

1 Introduction.

Biclique detection is a well-known problem in graph
theory and data mining, with numerous real-world
applications across different domains [3,6,9,13,15,17,18,
22,23,29]. Take for example text networks depicting the
relationship between words and documents. Bicliques
reveal documents that share common words, which can
later be utilized for automated topic classification and
tagging.

Given a bipartite graph and its corresponding
partition into two disjoint sets of vertices, a biclique
is a complete bipartite subgraph such that every vertex
of the first partition is connected to every vertex of
the second partition (see example in Figure 1, where
a vertex set {i3, i4, i6} and a vertex set {j3, j5} form
a biclique). Mathematically, the notion of biclique is
defined as follows.

Definition 1. Let G = (U ∪ V,E) be a bipartite graph,
where U and V are two disjoint sets of vertices, and E
is an edge set such that ∀(i, j) ∈ E, i ∈ U, j ∈ V . A
biclique within G is a couple (set pair) (I, J) such that
I ⊆ U , J ⊆ V and ∀i ∈ I, j ∈ J, (i, j) ∈ E.

The computational complexity of finding the maxi-
mum biclique depends on the exact objective function
used. In contrast to the well-known maximum clique
problem [12, 24], the maximum biclique problem has

∗Institute for Infocomm Research (I2R), A*STAR, Singapore,
{eran-shaham, yuhh, xlli}@i2r.a-star.edu.sg.

j2 j3 j

i1 i4i3

j5 j7

i8i6

(a) Bipartite graph G.

j1 j2 j3 j4 j5 j6 j7

i1 0 1 0 0 0 0 0
i2 0 0 0 0 0 0 0
i3 0 1 1 0 1 0 0
i4 0 0 1 0 1 0 1
i5 0 0 0 0 0 0 0
i6 0 0 1 0 1 0 0
i7 0 0 0 0 0 0 0
i8 0 0 0 0 1 0 1

(b) Adjacency matrix of G.

Figure 1: Bipartite graph G and its corresponding ad-
jacency matrix, comprising the maximum edge biclique
({i3, i4, i6}, {j3, j5}) of size 6 edges and 5 vertices.

three distinct variants, with the following objective func-
tion µ(I, J):

(1) µ(I, J) = |I| + |J | — known as the maximum
vertex biclique problem. The problem can be
solved in polynomial time using a minimum cut
algorithm [14].

(2) µ(I, J) = |I|, where |I| = |J | — known as
the balanced complete bipartite subgraph
problem (also known as the balanced biclique
problem). The problem was proved to be NP-
complete [14].

(3) µ(I, J) = |I| × |J | — known as the maximum edge
biclique problem. The problem was proved to be
NP-complete [11].

In this paper we focus on the problem of finding the
maximum edge biclique. We propose an efficient Biclique
Subspace Clustering (BSC) algorithm to tackle this
challenging problem. Our extensive experimental results
across artificial and real-world datasets demonstrate that
our proposed BSC algorithm is significantly better than
the state-of-the-art technique.

The remaining parts of the paper are organized as
follows. In Section 2 we review related work. Section 3
introduces our proposed BSC algorithm, gives a proof
of its optimality, and supplies run-time analysis. Next,
Section 4 presents the extensive experiments conducted

and their detailed experimental results using both
artificial and real-world data. Finally, we conclude the
paper with a discussion and directions for future research
in Section 5.

2 Related Work.

A wealth of research has been undertaken to study the
maximum edge biclique problem. This research has
received much attention due to its wide range of applica-
tions in areas such as bioinformatics [22], epidemiology
[17], formal concept analysis [6], manufacturing prob-
lems [3], molecular biology [18], machine learning [15],
management science [23], and conjunctive clustering [15].

Most of the algorithms tackling the problem can
be divided into the following three main categories: (i)
relaxation of the problem by bounding a characteristic of
a graph; (ii) exploitation of some class of graph; and (iii)
reduction to other domains. Among the algorithms in the
first category we can find: bounding the biclique’s size
[22], bounding the graph’s arboricity [4], and bounding
the graph’s vertices degree [1]. Among the algorithms
in the second category we can find: limitation to convex
bipartite graphs [1, 7, 18], and limitation to chordal
bipartite graphs [7]. Among the algorithms in the last
category we can find: reduction to maximal clique [12,24],
and reduction to frequent itemsets [10,25,27].

The reduction of the problem to finding a maximal
clique has the benefit of a well-researched field with an
abundance of heuristics and approximation algorithms
(recall that the problem is NP-complete). However, in
order to perform such reduction, an inflation of the
bipartite graph is needed. Such inflation is achieved by
adding all possible edges between vertices of the same
partition [12]. The edge inflation transformation makes
the problem computationally impractical due to the
large number of edges it adds. Consider G = (U ∪ V,E)
to be a bipartite graph with |U | = m, |V | = n, and
|E| = e. Inflating the bipartite graph results in a graph
G′ = (V ′, E′), where |V ′| = |U | + |V | = m + n and

|E′| = |E|+
(|U |

2

)
+
(|V |

2

)
= e+

(
m
2

)
+
(
n
2

)
. The “fill” of a

graph (also known as “edge density”, or “connectance”)
is defined as the proportion of the number of edges
to the total number of possible edges [5]. Therefore,

while fill(G) = e
m×n , we get fill(G′) =

e+(m
2)+(n

2)
(m+n

2)
. To

illustrate how dramatic is the change, take for example
the bipartite graph G with |U | = |V | = k (for some
k ∈ N), and |E| = 0 (i.e., E = ∅, no edges). While the fill

of G is zero, the asymptotic fill of G′ is ∼50%
(
fill(G) =

0
k×k = 0; fill(G′) =

0+(k
2)+(k

2)
(k+k

2)
= k2−k

2k2−k
=

k→∞ 0.5
)

.

The reduction of the problem to frequent itemsets
benefits, as above, by relying on a rich field of research.

However, it contains other difficulties. Literature has
shown [28] that a transactional database corresponds to
a bipartite graph G = (U ∪ V,E), where U is the set
of items (itemsets), V is the set of transactions (tids),
and E is the set of pairs (item, transaction), i.e., an
edge in the bipartite graph represents a transaction
comprising the item. Take for example a set of products
offered by a supermarket. A transaction would be a
subset of products (itemset) purchased by a customer.
Therefore, finding frequent itemsets corresponds to
finding bicliques, and finding a maximal frequent closed
itemset corresponds to finding a maximal biclique.
However, transforming a frequent itemset to a biclique,
although requiring a trivial post-processing step, can be
highly time consuming [10]. Therefore, these reductions
to other domains may present practical and scalability
problems [29], and may not fully utilize the special
characteristics of the bipartite graph.

Recently, Zhang et al. [29] introduced the iMBEA
algorithm for the enumeration of maximal bicliques
in a bipartite graph. The algorithm uses an efficient
branch-and-bound technique to prune away non-maximal
subtrees of the search tree. Despite the theoretical
complexity of an exponential run-time, the algorithm
outperforms the previous state-of-the-art algorithms: (i)
MICA [1] – the best known general graph algorithm; and
(ii) LCM-MBC [10] – a prime frequent closed itemsets
algorithm (an improvement of LCM [25] algorithm).
Zhang et al. [29] report in their paper that the iMBEA
algorithm is consistently faster than the LCM-MBC
algorithm on both artificial and real-world datasets.
Furthermore, it was shown that the performance of the
iMBEA algorithm is at least three orders of magnitude
faster than the MICA algorithm.

3 Finding Maximum Biclique.

We are now ready to present the BSC algorithm. In
Subsection 3.1 we describe a Monte Carlo algorithm
for extracting a list of maximal bicliques. Next, we
prove in Subsection 3.2 that the list contains, with fixed
probability, an optimal biclique. Finally, we present in
Subsection 3.3 the run-time analysis of the algorithm.

For ease of readability, we adopt the graph’s adja-
cency matrix representation, defined as follows (see the
example in Figure 1b, which is the adjacency matrix
representation of the bipartite graph G in Figure 1a).

Definition 2. Let G = (U ∪ V,E) be a bipartite graph
such that |U | = m, and |V | = n. The adjacency matrix
X of graph G is a [m× n] matrix such that Xi,j = 1 if
(i, j) ∈ E and Xi,j = 0 otherwise.

The input of the BSC algorithm is therefore an adjacency
matrix X of a given bipartite graph G, consisting of only

Algorithm 1 : BSC algorithm for finding maximal
bicliques.

Input: X, a [m× n] matrix of boolean numbers.
Output: List of maximal bicliques.
Initialization: Setting of N and |P | is thoroughly
discussed in the following sections.

1: loop N times
2: // Seeding phase
3: choose a set of rows P uniformly at random;
4: set I ← ∅, J ← ∅;
5: // Column addition phase
6: foreach column j ← 1, n do
7: if XP,j = 1 then
8: add j to J ;

9: // Row addition phase
10: foreach row i← 1,m do
11: if Xi,J = 1 then
12: add i to I;

13: return list of (I, J);

boolean numbers, namely 0 and 1. The output of the
BSC algorithm is a list of maximal bicliques, i.e., a list
of submatrices of ones, representing maximal bicliques
within G (the graph may contain multiple, possibly
overlapping, maximal bicliques). The BSC algorithm
itself uses a subspace clustering approach [11,21]. This
common technique uses iterative random projection (i.e.,
a Monte Carlo strategy) to obtain the biclique’s seed,
which is later expanded into a maximal biclique.

3.1 The BSC Algorithm. Algorithm 1 presents the
BSC algorithm (the Java code of the algorithm is freely
available at the paper’s supporting webpage [20]). As in
the case of many Monte Carlo algorithms, the structure
of the BSC algorithm is very simple, and can be divided
into the following four stages:
(i) Seeding (lines 2-4): a random selection of a set of
rows to serve as a seed of the maximal biclique.
(ii) Addition of columns (lines 5-8): accumulating only
columns that comply with the seed.
(iii) Addition of rows (lines 9-12): this is similar to the
previous stage (ii), but accumulating only those rows that
comply with the columns accumulated in the previous
stage (ii).
(iv) Polynomial repetition (line 1): repetition of the
above three steps provides a probabilistic guarantee to
find a maximum biclique.

Remark 1. The Monte Carlo nature of the BSC algo-
rithm is revealed in phase (i) where random seeds are
generated. The subspace clustering nature of the BSC

algorithm is revealed later, in phases (ii) and (iii), where
the seed of phase (i) is expanded to form a maximal
subset of columns over a maximal subset of rows, i.e., a
maximal biclique.

Remark 2. To ease readability, we present the BSC
algorithm as first obtaining the columns (stage ii) and
subsequently obtaining the rows (stage iii). However, the
algorithm is symmetric, i.e., it can also be performed by
first obtaining the rows and then obtaining the columns.
In fact, running the algorithm in an interleaving fashion
(i.e., alternating between first obtaining the rows, and
first obtaining the columns) might help in finding
imbalanced bicliques (see Theorem 3.2 for analysis of
the probability of finding a biclique in relation to the
dimensions of its rows and columns).

Remark 3. Due to the Monte Carlo nature of the
proposed BSC algorithm, its iterations (line 1) are
independent of each other. The algorithm can therefore
be implemented in an efficient distributed computing
environment to take advantage of parallel computing or
special hardware in a straightforward manner.

Remark 4. To ease readability, lines 7 and 11 use the
short notations of: XP,j = 1 and Xi,J = 1, respectively,
which have the meaning of: ∀i ∈ P, Xi,j = 1 and
∀j ∈ J, Xi,j = 1, respectively.

Remark 5. The BSC algorithm has an inherent ability
to mine multiple, possibly overlapping, bicliques by
utilizing the independent random projection on each
repetitive run, to reveal columns and rows relevant only
to a specific biclique.

Remark 6. The BSC algorithm is not designed for
the enumeration of all maximal bicliques, which may
be exponential in size [4, 29]. The algorithm has a
polynomial number of iterations, and thus, the size of the
return list is also polynomial. Next, we prove that the
returned list contains, with fixed probability, an optimal
biclique.

3.2 Optimality of the Algorithm. Clearly, the
proposed BSC algorithm can be viewed as a heuristic
method, and the extensive experimental evidence of
Section 4 shows it to be efficacious in both artificial and
real-world datasets. Next, we prove that there are solid
theoretical reasons for this efficacy.

Usually, a bipartite graph (adjacency matrix) would
contain many bicliques (submatrices of ones). From a
practical point of view, an application would probably
prefer a biclique with as many rows as possible (to
increase the statistical relevance), and with as many

columns as possible (to increase the data correlation) [21].
However, most probably these objectives will conflict
with each other. Take for example the extreme case of a
biclique (I, J) with |I| = m (or, |J | = n). The biclique
would probably have a zero or very small size of J (I,
respectively). This is due to the “curse of dimensionality”
[8], where data tend to be sparse in high dimensional
space. As such, the biclique would be far less useful as it
would probably hold unimportant information regarding
the data structure. The solution is therefore to define a
rank which models the trade-off between the number of
rows |I| and the number of columns |J | in the biclique.
We adopt the following objective function as a rank
measurement [2, 13, 16, 19, 21, 26]: the inclusion of an
additional column in J is worth the exclusion of a (1-γ)-
fraction of the rows in I.

At this point, we have all we need in order to formally
define a ranked biclique. However, we extend the model
to include two additional parameters, α and β, that allow
the user to specify the minimum dimensions of the mined
biclique: α - the minimum number of rows expressed as
a fraction of m, and β - the minimum number of columns
expressed as a fraction of n. If the user wishes not to
constrain the biclique’s dimensions, trivial defaults can
be used, i.e., |I|, |J | = 1.

Definition 3. Let 0 < α, β, γ < 1 be fixed parameters
and |P | the size of the randomly selected seed rows. A
ranked biclique of matrix X is a couple (I, J), with I a
subset of the rows and J a subset of the columns, that
satisfies the following:

• Rank: The rank of a biclique (I, J) is defined as
µ(|I|, |J |), where µ(x, y) = x(1/γ)

y
.

• Size: The number of rows is 1 ≤ αm + |P | ≤ |I|
and the number of columns is 1 ≤ βn ≤ |J |.

Our problem thus turns into finding an optimal ranked
biclique (or, optimal for brevity): a biclique of maximum
rank that is larger than a given minimum size.

The main result of this subsection is Theorem 3.2,
which states that if the BSC algorithm runs a polynomial
number of iterations then we are guaranteed, with a fixed
probability, to find an optimal biclique. The proof relies
on the important insight of Procopiuc et al. [21] that
in an optimal biclique there must be a relatively small
subset of rows, of size O(log n), which determines the
participating columns of the biclique. The term of such
a subset is a discriminating set, and is defined as follows.

Definition 4. Let (I, J) be a biclique. The set P ⊆ I
is a discriminating set for J if it satisfies:

(1) ∀ j ∈ J, i ∈ P : Xi,j = 1 (or, ∀ j ∈ J , XP,j = 1).

(2) ∀ j /∈ J, ∃i ∈ P : Xi,j = 0 (or, ∀ j /∈ J , XP,j 6= 1).

The structure of the proof is inspired by Procopiuc
et al. [21] and consists of two major stages. First, we
show that an optimal biclique can be located using a
log-size discriminating set with a probability of at least
0.5. Based on this capability, we then show that when
running the BSC algorithm in a polynomial number of
iterations, it finds an optimal biclique with a probability
of at least 0.5.

Next, we show that for an optimal biclique (I∗, J∗),
there are many small sets of size O(log n), each of which
is a discriminating set with a probability of at least 0.5.
This result is important since upon selecting P ⊆ I∗,
we can deduce J∗ and subsequently I∗. Furthermore,
the capability of finding a discriminating set with a
probability of at least 0.5 is later used by Theorem 3.2
to find a biclique in a polynomial number of iterations.

Theorem 3.1. Let (I∗, J∗) be an optimal biclique.
Any randomly chosen subset P ⊆ I∗ of size |P | >
log(2n)/ log(1/γ), is a discriminating set for J∗, with a
probability of at least 0.5.

Proof. We show that for any P that satisfies the above,
condition (1) of Definition 4 always holds, and the
probability that condition (2) does not hold is less than
0.5.

Condition (1) of Definition 4 is always satisfied,
as P ⊆ I∗, and thus ∀j ∈ J∗, XP,j = 1 (line 7 in
Algorithm 1).

Moving to condition (2) of Definition 4, we note that
P fails to be a discriminating set for J∗ only if there exists
a column j /∈ J∗ such that XP,j = 1. Next, we show
that the probability of this happening for a particular
column j is at most γ|P |, and for some column j is at
most nγ|P | < 0.5.

Lemma 3.1. Let I ⊆ I∗ and j /∈ J∗. If XI,j = 1, then
|I| ≤ γ|I∗|.

Proof. The biclique (I, J), with |I| > γ|I∗| and J =
J∗ ∪ {j}, is a biclique satisfying µ(I, J) > µ(I∗, J∗),
contradicting the optimality of (I∗, J∗). �

Therefore, the probability of choosing all rows of
P (P ⊆ I∗) out of the set I of “bad rows” (I ⊆ I∗) is
bounded by:

k=|P |−1∏
k=0

|I| − k
|I∗| − k

<

(
|I|
|I∗|

)|P |
≤
(
γ|I∗|
|I∗|

)|P |
= γ|P |.

The above probability refers to a particular column j.
Therefore, the probability that some column j /∈ J∗ will
violate condition (2) of Definition 4 is bounded (after

substituting |P |> log(2n)/ log(1/γ)) by: (n−|J∗|)γ|P | ≤
(n − βn)γ|P | = n(1 − β)γ|P | < nγ|P | < 0.5. Note that
as β decreases, the probability of a set to discriminate
also decreases (while still being higher that 0.5), as more
columns that do not belong to the biclique need to be
filtered out, or vice versa. �

The outcome of Theorem 3.1 is important since
upon selecting P ⊆ I∗ we can deduce J∗. Moving to
the second part of the proof, we show that when the
BSC algorithm runs a polynomial number of iterations,
it finds, with a probability of at least 0.5, an optimal
biclique. We base this on Theorem 3.1, which shows
the abundance of randomly selected discriminating sets
of size O(log n) with a discriminating probability of at
least 0.5.

Theorem 3.2. Let P be a discriminating set for the
optimal biclique (I∗, J∗) and |I∗| ≥ αm+ |P |. Provided
N ≥ 2 ln 2/α|P |, the BSC algorithm will find the optimal
biclique (I∗, J∗), with a probability of at least 0.5.

Proof. The probability of satisfying P ⊆ I∗ is at least
α|P | (given |I∗| ≥ αm+ |P |):

k=|P |−1∏
k=0

|I∗| − k
m− k

>

(
|I∗| − |P |
m− |P |

)|P |
>
(αm
m

)|P |
= α|P |.

Following Theorem 3.1, any given P ⊆ I∗ is a dis-
criminating set for J∗ with a probability of at least
0.5. Therefore, the probability that all N iterations
fail to find a discriminating rows set P (using the in-
equality (1 − 1/x)x < 1/e for x ≥ 1) does not exceed
(1 − 0.5α|P |)N < 0.5. It follows that the algorithm’s
chances of finding a biclique upon P ⊆ I∗ is at least 0.5.
When it does, from the discriminating property of P , we
obtain that J = J∗.

Next, we show that I = I∗. A row i is added to I
only if (line 11 in Algorithm 1): Xi,J = 1. Since J = J∗

and P ⊆ I∗, each i ∈ I∗ would be added to I, namely
I ⊇ I∗. From the optimality of (I∗, J∗) we obtain that
I = I∗ (similarly to Lemma 3.1 proof). �

The outcome of Theorems 3.1 and 3.2 is that the
BSC algorithm’s chance of mining an optimal biclique
increases as β and α increases (see Theorems 3.1 and 3.2,
respectively) which in turn requires a smaller number of
iterations. The other side of the coin is that for small
sized bicliques, the BSC algorithm needs a larger (while
still polynomial) number of iterations. Also, Theorem 3.2
requires |I∗| ≥ αm+ |P |, which constrains the optimal
biclique to have a minimum O(log n) of rows. To tackle
this limitation, we tend, in terms of future research,
to integrate frequent itemsets techniques in order to
efficiently obtain those small seeds.

3.3 Run-time. The inner for-loops take O(mn) time.
The total number of iterations is upper bounded by
Theorem 3.2 as N = O(1/α|P |), with |P | bounded by
Theorem 3.1 to |P | = O(log(n)/ log(1/γ)). All in all,
the run-time is polynomial: mnO(1), for the constants
α and γ are independent of the matrix dimensions.
Experiments reported in the next section show these
bounds to in fact be largely pessimistic.

4 Experiments.

The previous section laid the theoretical foundations
for the algorithm’s capability to efficiently mine ranked
bicliques. This section demonstrates that the algorithm
is also capable of efficiently mining maximum edge
bicliques. The BSC algorithm is extensively evaluated
and compared to the state-of-the-art algorithm. The
experiments are divided into two sets. The first set
of experiments uses artificial data in order to establish
an easy-to-use setting of parameters and demonstrate
the scalability of the BSC algorithm. The use of
artificial data, which naturally enables tighter control,
is important as it facilitates the examination of specific,
isolated properties of the algorithm. The second set of
experiments uses both artificial and real-world data. It
aims to compare the performance of the BSC algorithm
to the recent state-of-the-art iMBEA algorithm [29].

Experimental Methodology.
We adopt the experimental design suggested by Zhang
et al. [29] which makes use of the following two random
bipartite graph models (the code for the random bipartite
graph generators is freely available at the paper’s
supporting webpage [20]).

(a) Erdős-Rényi random bipartite graph model [5]: each
possible edge in the bipartite graph has a probability
ρ, independent of other edges, to be included in
the graph. The probability ρ is also referred to as
“density”.

(b) A modified Erdős-Rényi random bipartite graph
model that enables variability in the degree of
vertices. Given a bipartite graph G = (U ∪ V,E),
the degree of each vertex i ∈ U is governed by the
following two parameters: (i) µ: mean vertex degree;
and (ii) CV : coefficient of variation. Note that:
CV = σ/µ, where σ is the standard deviation, µ
is the mean, and CV is the coefficient of variation.
Also note that setting CV = 0 is equivalent to using
the previous Erdős-Rényi model as µ = ρ.

The above degree places edges to every i ∈ U . The
end point of each edge on V is selected with uniform
probability. For example, if a vertex u ∈ U has been
assigned a degree of two, then two vertices of V ,

v1, v2 ∈ V , will be selected, uniformly at random, to
serve as edge end points, namely: (u, v1),(u, v2) ∈ E.

The experiments were conducted using the platform
32x Intel R© Xeon R© @ 2.20GHz CPU with 128GB RAM,
running Linux operating system. However, all algorithms
were tested on a single core, i.e., no parallelism has been
used.

4.1 BSC: Properties of the Algorithm. The ad-
vantage of using artificial data is that we have maxi-
mum control in verifying the validity of the bicliques
found (in comparison to real-world data). Specifically,
the contribution of the experimentation with artificial
data is threefold. First, to establish a “best practice”,
easy-to-use, setting of parameters. Secondly, to enable
the verification of theoretical bounds and show that
these bounds are coarse while better performance is
achieved in practice. Finally, through the experiments,
the actual run-time and scalability of the algorithm is
demonstrated.

Experiment I: Discriminating Probability.
The discriminating set size, |P |, directly affects the run-
time of the BSC algorithm. Theorem 3.1 provides us with
the following bound: |P | > log(2n)/ log(1/γ), where
γ is used to determine the rank of the biclique (see
Definition 3). The bound depends on γ, a parameter of
which the user has no knowledge. In order to get a sense
of what the value of |P | is in practice, we conducted
the following experiment. We first created random
bipartite graphs (adjacency matrices) of |U | = 1000
and |V | = 1000, with ρ ∈ {0.2, 0.4, 0.6, 0.8}, and
CV ∈ {0.0, 0.3, 0.6, 0.9, 1.2}. We set the dimensions
of the biclique size to α, β ∈ {0.2, 0.4, 0.6, 0.8}. Then,
we generated a random biclique within the specified
dimensions and put it at a random location in the
adjacency matrix, overriding the existing values. Then, a
size - k subset of the biclique rows was chosen at random
N = 100, 000 times, checked whether it discriminated
(according to Definition 4), and what its discriminating
probability was (i.e., in how many of the N times did the
set actually discriminate). This process was repeated
for k=1,. . . until reaching a value for k which the subset
successfully discriminated in all of the N trials. Due to
the random nature of the BSC algorithm, we repeated the
experiment 10 times for each of the above configurations.
Therefore, the experimentation results given hereafter
report the average performance of the BSC algorithm.
Due to space limitations, detailed quartile charts are
given at the paper’s supporting webpage [20].

Figure 2 depicts the probability to discriminate as
a function of the discriminating set size |P | across the
parameters β and ρ. We present here only the results for

40%

60%

80%

100%

%
 d

is
c
ri

m
in

a
ti

n
g

β=0.8

β=0.6

β=0.4

β=0.2

0%

20%

0 5 10 15 20

%
 d

is
c
ri

m
in

a
ti

n
g

Discriminating Set Size (|P|)

(a) β dissect.

40%

60%

80%

100%

%
 d

is
c
ri

m
in

a
ti

n
g

ρ=0.8

ρ=0.6

ρ=0.4

ρ=0.2

0%

20%

0 10 20 30 40 50 60

%
 d

is
c
ri

m
in

a
ti

n
g

Discriminating Set Size (|P|)

(b) ρ dissect.

Figure 2: The probability to discriminate as a function
of the discriminating set size |P |.

the configurations {α=0.6, ρ=0.4, CV=0.6} and {α=0.8,
β=0.8, CV=0.0} for figures 2a and 2b, respectively, as
the results for the other configurations exhibit similar
patterns.

The following important observations can be made
from the experiment: (i) smaller sizes of |P | can also have
a high discriminating probability (e.g., Figure 2a: 92%
for |P |=10). Since |P | appears as an exponent in the
estimated running time (see Subsection 3.3), choosing
smaller |P | will reduce the run-time, without having
a major negative effect on the results; (ii) a larger
discriminating set is needed when the biclique has fewer
columns or when the graph has a higher level of density
(figures 2a and 2b, respectively). This is due to the fact
that the discriminating set has to filter out more columns
which do not belong to the biclique (see Theorem 3.1);
and (iii) the parameters α and CV have no effect on the
discriminating probability.

Experiment II: Discriminating Set Size.
The previous experiment shows that using a smaller dis-
criminating set will not only exponentially decrease the
run-time, but will also ensure a reasonable discriminating
probability. It also shows that the discriminating set size

depends on the density of the graph ρ = |E|
|U |×|V | (=

||X||0
m×n

using adjacency matrix notation), and on the ratio of the

biclique columns β = |J|
|V | (= |J|

n). In this experiment, we

wish to provide an easy-to-use setting for the discriminat-
ing set size. The experiment was conducted in the same
manner as the previous one, except for recording differ-
ent sizes of random bipartite graphs (from small ones of
[10× 10] to large ones of [100, 000× 100, 000]), and using
a discriminating probability of 50% (see Theorem 3.1).

Figure 3 depicts the relation between the dis-
criminating set size |P |, the density of the graph
ρ, and the various ratios of the biclique columns
β. The exponential fittings of |P | = c1e

c2ρ for
the ratios β = {0.2, 0.4, 0.5, 0.6, 0.8} are: |P | =
{0.50e4.68ρ, 0.36e4.95ρ, 0.20e5.57ρ, 0.13e5.96ρ, 0.07e6.35ρ}
(R2 = {0.98, 0.99, 0.98, 0.98, 0.97}), respectively.

20

30

40

50

D
is

cr
im

in
at

in
g
 S

et
 S

iz
e

(|
P

|)

β = 0.2

β = 0.4

β = 0.5

β = 0.6

β = 0.8

0

10

0.0 0.2 0.4 0.6 0.8 1.0

D
is

cr
im

in
at

in
g
 S

et
 S

iz
e

(|
P

|)

Density (ρ)

Figure 3: Discriminating set size |P | vs. the density ρ.

Moreover, the constants c1 and c2 are linearly dependent
in β: c1 = 0.64− 0.77β (R2 = 0.93), and c2 = 4.0 + 3.0β
(R2 = 0.95). An important finding from the experiment
is the obtainment of an easy-to-use, γ free, formula
for setting |P |: |P | = (0.6 − 0.8β)e(4+3β)ρ. While the
density of the graph can be easily calculated, the
biclique to be mined is unknown, and thus also the ratio
β is unknown. Nevertheless, β can be set according
to a user’s prior knowledge or randomly guessed, i.e.,
β ∈ [0.0, 1.0].

Experiment III: Number of Iterations.
Theorem 3.2 provides us with the following bound on
the number of iterations: N ≥ 2 ln 2/α|P |. While the
previous experiment supplies an easy-to-use formula for

setting |P |, the bound is still hard to set as α (= |I|
m)

is unknown. In this experiment, we wish to provide an
easy-to-use setting for the number of iterations. The
experiment was conducted in the same manner as the
previous one, except for setting N = mn and recording
the number of iterations and coverage of the explored
planted biclique.

An important finding from the experiment is that
the actual average number of iterations needed is 0.98%
of the set N = mn (σ=4.44%), with an average coverage
of 99.71% (σ=3.04%). Thus, an easy-to-use setting of
the number of iterations to 1% of the graph size would
provide the desirable high coverage.

Experiment IV: Scalability.
Subsection 3.3 provides us with the following polynomial
run-time bound: mnO(1). The aim of this experiment is
to examine the actual run-time for various inputs sizes.
The experiment was conducted in the same manner as
the previous one, except for recording the actual run-
time till exploration of the planted biclique.

Figure 4 depicts the run-time of the BSC algorithm
to |U |×|V |. The important finding from the experiment
is that the BSC algorithm is linear in the graph size.
The results corroborate the feasibility and scalability of
the algorithm.

10000

15000

20000

R
u

n
-t

im
e
 (

m
se

c
)

0

5000

0 25,000,000 50,000,000 75,000,000 100,000,000

R
u

n

|U|x|V|=mn

Figure 4: Scalability of the BSC algorithm to |U | × |V |.

4.2 BSC vs iMBEA: Performance Comparison.
The experiments of the previous section yield promising
results which demonstrate the capability and scalability
of the BSC algorithm. The experiments in this section
aim to compare the performance of the BSC algorithm
to the recent state-of-the-art algorithm on both artificial
and real-world data. Doing so will demonstrate the
capability of the BSC algorithm to efficiently find the
maximum edge biclique for a wide range of domains and
graph characteristics. To achieve that, we compare the
BSC algorithm to the recent state-of-the-art iMBEA
algorithm [29],1 which significantly outperforms the
previous state-of-the-art MICA[1] and LCM-MBC[10]
algorithms, on both artificial and real-world data.

The comparison experiments are divided into two
sets. The first set of experiments uses artificial data,
while the second set of experiments uses real-world data.
The first set of experiments were conducted in the same
manner as the artificial experiments in the previous
subsection. To facilitate a fair comparison, we compared
the outcome of the algorithms at the end of a one-hour
run-time. The second set of experiments uses 10 real-
world datasets encompassing a wide spectrum of domains
with diverse bipartite graph properties.

Experiment V: Comparison on Density and CV.
The goal of the experiment is to compare the performance
of the BSC and iMBEA algorithms by means of change
in density and CV. The experiment was conducted in
the same manner as the previous one, except for setting
|U | = 1000, |V | = 1000, and holding CV = 0.0 for the
density examination and ρ = 0.5 for the CV examination.

Figures 5 and 6 depict the relationship between
the run-time and coverage of the iMBEA and BSC
algorithms as a function of the bipartite graph density
and CV, respectively. The important finding from the
experiment is the superiority of the BSC algorithm over
the iMBEA algorithm for the entire range of densities and

1Zhang et al. [29] presented two algorithms: MBEA and iMBEA.
We present here only a comparison with iMBEA as the authors
have shown the superiority of iMBEA over MBEA on both artificial

and real-world data. The authors have graciously provided us with
their implementation of the algorithm.

1E+3

1E+4

1E+5

1E+6

1E+7

ti
m

e
 (

m
s
e
c
)

-
lo

g
 s

c
a
le

iMBEA BSC

1E+0

1E+1

1E+2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u

n
-t

im
e
 (

m
s
e
c
)

Density (ρ)

40%

60%

80%

100%

C
o

v
e
ra

g
e

iMBEA BSC

0%

20%

40%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

v
e
ra

g
e

Density (ρ)

Figure 5: BSC and iMBEA run-time and coverage
performance comparison as a function of density.

1E+3

1E+4

1E+5

1E+6

1E+7

ti
m

e
 (

m
s
e
c
)

-
lo

g
 s

c
a
le

iMBEA BSC

1E+0

1E+1

1E+2

0.0 0.3 0.6 0.9 1.2 1.5 1.8

R
u

n
-t

im
e
 (

m
s
e
c
)

Coefficient of Variation (CV)

40%

60%

80%

100%

C
o

v
e
ra

g
e

iMBEA BSC

0%

20%

40%

0.0 0.3 0.6 0.9 1.2 1.5 1.8

C
o

v
e
ra

g
e

Coefficient of Variation (CV)

Figure 6: BSC and iMBEA run-time and coverage
performance comparison as a function of CV .

CV, with an average run-time improvement of 4.6 and
3.9 orders of magnitude for figures 5 and 6, respectively,
and an average coverage improvement of 1.4 and 1.0
orders of magnitude for figures 5 and 6, respectively.

Experiment VII: Performance Comparison with Real-
world Datasets.
The following set of experiments use 10 real-world
datasets comprising a wide spectrum of domains and
diverse bipartite graph properties. The datasets were
taken from the KONECT repository [9] and their prop-
erties are summarized in Table 1 (sorted by ascending
order of |E|). As the ground-truth (i.e., the maximum
edge biclique) is unknown, we conducted the experiment
in the following way. The iMBEA algorithm was run till
completion while recording the maximum edge biclique

Table 1: Real-world Datasets.

Dataset Name |E| |U | |V |
MovieLens 100k 100,000 943 1,682
YouTube 293,360 94,238 30,087
Location 293,697 172,091 53,407
GitHub 440,237 56,519 120,867
Wikiquote (en) 549,210 21,607 94,756
Wikinews (en) 901,416 10,764 163,008
MovieLens 1M 1,000,209 6,040 3,706
Wikibooks (en) 1,164,576 32,583 134,942
VisualizeUs 2,298,816 17,122 82,035
MovieLens 10M 10,000,054 69,878 10,677

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

ti
m

e
(m

se
c)

 -
lo

g
 s

ca
le

iMBEA BSC

1E+0

1E+1

1E+2

R
u
n
-t

im
e

(m
se

c)

Figure 7: Run-time of the iMBEA and BSC algorithms
on various real-world datasets.

exploration time and dimensions, which now serve as the
ground-truth. Next, the BSC algorithm was run while
recording the exploration time of the ground-truth. As
in previous experiments, the run of the BSC algorithm
was repeated 10 times.

Figure 7 depicts the run-time of the iMBEA and
BSC algorithms on the various real-world datasets
listed in Table 1. The important finding from the
experiment is the superiority of the BSC algorithm over
the iMBEA algorithm for the entire range of datasets,
with an average run-time improvement of 4.5 orders of
magnitude.

5 Discussion, Conclusions and Future Work.

The maximum edge biclique problem is well known in
graph theory and data mining, with numerous real-world
applications across different domains. Its importance is
reflected in the vast body of prior literature.

The paper presents the BSC algorithm, a probabilis-
tic method for finding the maximum edge biclique using
a Monte Carlo subspace clustering approach. While
the BSC algorithm can be viewed as an effective heuris-
tic, we show that there is a strong theoretical base for
its efficacy. The theoretical analysis promises a fixed
probability of finding an optimal biclique (in the sense
of balancing the number of rows and the number of
columns), while giving a polynomial bound to the com-
plexity of time and space. Extensive experimentation
of the BSC algorithm with artificial data provides a
“best practice”, easy-to-use setting of parameters, which
present a significant improvement over the theoretical
bounds. Furthermore, comprehensive experimentation
with both artificial and real-world datasets shows that
the algorithm is significantly better than the state-of-
the-art technique. The results corroborate the usability,
scalability and feasibility of the BSC algorithm.

The task of finding small sized bicliques requires
a relatively large (while still polynomial) number of
iterations. This is due to the relatively low probability
of finding good seeds to serve as discriminating sets.
Techniques of frequent itemsets could assist, by finding
these good seeds. We believe there is far more to be
explored in combining the methods of frequent itemsets
and subspace clustering in terms of future research.

References

[1] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L.
Hammer, and B. Simeone, Consensus algorithms for
the generation of all maximal bicliques, Discrete Applied
Mathematics, 145 (2004), pp. 11–21.

[2] F. Alqadah and R. Bhatnagar, An effective al-
gorithm for mining 3-clusters in vertically partitioned
data, in International Conference on Information and
Knowledge Management, ACM, 2008, pp. 1103–1112.

[3] M. Dawande, P. Keskinocak, J. M. Swaminathan,
and S. Tayur, On bipartite and multipartite clique
problems, Journal of Algorithms, 41 (2001), pp. 388–
403.

[4] D. Eppstein, Arboricity and bipartite subgraph listing
algorithms, Information Processing Letters, 51 (1994),
pp. 207–211.

[5] P. Erdős and A. Rényi, On random graphs I.,
Publicationes Mathematicae, 6 (1959), pp. 290–297.

[6] B. Ganter and R. Wille, Formal concept analysis,
vol. 284, Springer, 1999.

[7] T. Kloks and D. Kratsch, Computing a perfect edge
without vertex elimination ordering of a chordal bipartite
graph, Information Processing Letters, 55 (1995), pp. 11–
16.

[8] H. P. Kriegel, P. Kröger, and A. Zimek, Clustering
high-dimensional data: a survey on subspace clustering,
pattern-based clustering, and correlation clustering,
Transactions on Knowledge Discovery from Data, 3
(2009), pp. 1–58.

[9] J. Kunegis, KONECT – The Koblenz Network Collec-
tion, in International Conference on World Wide Web
Companion, 2013, pp. 1343–1350.

[10] J. Li, G. Liu, H. Li, and L. Wong, Maximal
biclique subgraphs and closed pattern pairs of the
adjacency matrix: a one-to-one correspondence and
mining algorithms, Transactions on Knowledge and
Data Engineering, 19 (2007), pp. 1625–1637.

[11] S. Lonardi, W. Szpankowski, and Q. Yang, Finding
biclusters by random projections, Theoretical Computer
Science, 368 (2006), pp. 217–230.

[12] K. Makino and T. Uno, New algorithms for enumer-
ating all maximal cliques, in Algorithm Theory, vol. 9,
2004, pp. 260–272.

[13] A. A. Melkman and E. Shaham, Sleeved CoClus-
tering, in ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004, pp. 635–
640.

[14] R. G. Michael and D. S. Johnson, Computers and
intractability: a guide to the theory of NP-completeness,
Freeman, 1979.

[15] N. Mishra, D. Ron, and R. Swaminathan, On
finding large conjunctive clusters, Learning Theory and
Kernel Machines, (2003), pp. 448–462.

[16] T. Murali and S. Kasif, Extracting conserved gene
expression motifs from gene expression data, in Pacific
Symposium on Biocomputing, vol. 8, 2003, pp. 77–88.

[17] R. A. Mushlin, A. Kershenbaum, S. T. Gallagher,
and T. R. Rebbeck, A graph-theoretical approach
for pattern discovery in epidemiological research, IBM
systems journal, 46 (2007), pp. 135–149.

[18] D. Nussbaum, S. Pu, J. R. Sack, T. Uno, and
H. Zarrabi-Zadeh, Finding maximum edge bicliques in
convex bipartite graphs, Computing and Combinatorics,
(2010), pp. 140–149.

[19] C. F. Olson and H. J. Lyons, Simple and efficient
projective clustering, in International Conference on
Knowledge Discovery and Information Retrieval, 2010,
pp. 45–55.

[20] Paper’s supporting webpage. https://www.dropbox.

com/s/h8riaac5qdgsc9a/SDM16.ReadMe.txt.
[21] C. M. Procopiuc, M. Jones, P. K. Agarwal, and

T. Murali, A Monte Carlo algorithm for fast projective
clustering, in International Conference on Management
of Data, 2002, pp. 418–427.

[22] M. J. Sanderson, A. C. Driskell, R. H. Ree,
O. Eulenstein, and S. Langley, Obtaining maximal
concatenated phylogenetic data sets from large sequence
databases, Molecular Biology and Evolution, 20 (2003),
pp. 1036–1042.

[23] J. M. Swaminathan and S. R. Tayur, Managing
broader product lines through delayed differentiation
using vanilla boxes, Management Science, 44 (1998),
pp. 161–172.

[24] E. Tomita, A. Tanaka, and H. Takahashi, The
worst-case time complexity for generating all maximal
cliques and computational experiments, Theoretical
Computer Science, 363 (2006), pp. 28–42.

[25] T. Uno, M. Kiyomi, and H. Arimura, LCM ver. 2:
Efficient mining algorithms for frequent/closed/maximal
itemsets, in ICDM Workshop on Frequent Itemset
Mining Implementations, vol. 126, 2004.

[26] M. L. Yiu and N. Mamoulis, Iterative projected clus-
tering by subspace mining, Transactions on Knowledge
and Data Engineering, 17 (2005), pp. 176–189.

[27] M. J. Zaki and C. J. Hsiao, CHARM: An efficient
algorithm for closed itemset mining, in International
Conference on Data Mining, vol. 2, 2002, pp. 457–473.

[28] M. J. Zaki and M. Ogihara, Theoretical foundations
of association rules, in Workshop on Research Issues on
Data Mining and Knowledge Discovery, 1998, pp. 71–78.

[29] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J.
Baker, E. J. Chesler, and M. A. Langston, On
finding bicliques in bipartite graphs: a novel algorithm
and its application to the integration of diverse biological
data types, BMC Bioinformatics, 15 (2014), pp. 110–127.

https://www.dropbox.com/s/h8riaac5qdgsc9a/SDM16.ReadMe.txt
https://www.dropbox.com/s/h8riaac5qdgsc9a/SDM16.ReadMe.txt

	Introduction.
	Related Work.
	Finding Maximum Biclique.
	The BSC Algorithm.
	Optimality of the Algorithm.
	Run-time.

	Experiments.
	BSC: Properties of the Algorithm.
	BSC vs iMBEA: Performance Comparison.

	Discussion, Conclusions and Future Work.

