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ABSTRACT
Computational methods provide efficient ways to predict
possible interactions between drugs and targets, which is
critical in drug discovery. Supervised prediction with bipar-
tite Local Model recently has been shown to be effective for
prediction of drug-target interactions. However, this pure
“local” model is unapplicable to new drug or target candi-
dates that currently have no known interactions. In this
paper, we extend the existing supervised learning approach
– bipartite local model (BLM) by integrating a strategy for
handling new drug and target candidates. Based on the as-
sumption that similar drugs and targets have similar inter-
action profiles, we present a simple neighbor-based training
data inferring procedure and integrate it into the frame work
of BLM. This globalized BLM called bipartite local model
with neighbor-based inferring (BLMN) then has an extended
functionality for prediction interactions between new drug
candidates and target candidates. Consistent good perfor-
mance of BLMN has been observed in the experiment for the
prediction of interaction between drugs and four important
categories of targets. For the Nuclear Receptors dataset,
where there are more chances for the presented strategy to
be applied, 20% improvement in terms of AUPR has been
achieved. This demonstrates the effectiveness of BLMN and
its potential in drug-target interaction prediction.
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1. INTRODUCTION
Identification of drug-target interaction is an important part
of the drug discovery pipeline. The great advances in molec-
ular medicine and the human genome project provide more
opportunities to discover unknown associations in the drug-
target interaction network. These new interactions may lead
to the discovery of new drugs and also are useful for helping
understand the causes of side effects of existing drugs. Since
experimental way to determine drug-target interactions is
costly and time-consuming, in silico prediction comes out
to be a potential complement that provides useful informa-
tion in an efficient way.

Traditional approaches for this task are generally catego-
rized into drug-based approaches and target-based approaches.
Drug-based approaches screen candidate drugs, compounds
or ligands to predict whether they interact with a given tar-
get based on the assumption that similar drugs share the
same target. The similarity of two drugs are measured in
different ways with respect to different aspects. Other than
comparing drugs according to their chemical structures [14],
side-effect has also been used to measure the similarity be-
tween drugs [2]. Assuming that similar targets bind to the
same ligand, target-based approaches, on the other hand,
compare proteins to predict whether they bind to the given
ligand, or whether they are the targets of the given drug or
compound. More specifically, for a given drug, new targets
are identified by comparing candidate proteins to the known
targets of this drug with respect to certain descriptors such
as amino acid sequence, binding sites, or ligands that bind
to them. The authors of [8] review computational meth-
ods to find new targets for already approved drugs for the
treatment of new diseases based on the structural similarity
of their binding sites. In [11], targets are compared by the
chemical similarity of ligands that bind to them. Different



from these classic drug-based or target-based approaches,
chemogenomics approaches have been proposed to consider
the interactions between drugs and a protein family rather
than a single target [3, 12, 16, 9].

Recently, machine learning approaches have been applied to
this task to explore the whole interaction space. [20] pro-
posed a supervised bipartite graph learning approach. In
this approach, the chemical space and the geometric space
are mapped into a unified space so that those interacted
drugs and targets are close to each other while those non-
interacted drugs and targets are far away from each each
other. After the mapping function to such a unified space is
learned, the query pair of drug and target are also mapped
in the same way to that unified space, and the probability
of interaction between them is the closeness that they are
in the mapped space. [1] shows that the combination of su-
pervised learning independently based on drug and target
performs very well. This approach is called the Bipartite
Local Model (BLM). For a query pair of drug and target, a
model of the query drug is learned with a certain classifier
based on the information of its known targets. Then the
probability of interaction between this drug and the query
target is predicted with this model. The same procedure
is applied to obtain the probability of interaction between
them from the target side. Finally, an overall probability of
interaction for the query pair is calculated by combing these
two probabilities. It has been shown that the result based
the knowledge of both directions, i.e., from the drug side
and from the target side, is much better than those based
on each single one. The same idea is adopted by another
two following work [19] and [13]. In [19], semi-supervised
approach is used instead of supervised approach to learn the
local model. Laarhoven [13] found that only use the kernel
based on the topology of the known interaction network is
able to obtain a very good performance, although together
with other types of similarities can further improve the re-
sults. Other than using one type of drug-drug similarity and
one type of target-target similarity, [15] use multiple types
of drug-drug similarities and target-target similarities and
combine them as features to describe each drug-target pair
to train the logistic regression classifier.

Despite the good performance of supervised local approach,
it is unable to learn without any positive training data and
hence is not able to provide reasonable predictions for drug
or target candidates which are currently new, i.e., candidates
with no existing interactions. In the existing framework of
BLM, the model for the query drug-candidate or target-
candidate is learned based on its own preference, i.e., each
drug select new targets based on its own way of choosing
those already known targets; each target select new tar-
geting drugs according to its discovered targeting drugs.
The BLM therefore does not consider information from their
neighbors. In this study, we step further to present a mod-
ified BLMN to make it applicable to new drug and target
candidates by incorporating some necessary globalization.
Specifically, when the query involving new drug or target
candidates which have no existing interactions, we first de-
rive the initial weighted interactions of the new candidate
from its neighbors, and then use them as training data to
learn the model and finally give the wanted prediction. Sys-
tematic experiments are conducted to simulate the task of

Table 1: A summary of datasets.

Dataset Enzyme Ion Channel GPCR Nuclear Receptor
nd 445 210 223 54
nt 664 204 95 26
D̄d 6.58 7.03 2.85 1.67
D̄t 4.41 7.24 6.68 3.46
Dd = 1(%) 39.78 38.57 47.53 72.22
Dt = 1(%) 43.37 11.27 35.79 30.77

drug-target interaction with datasets that have been used
in several previous studies. The results show that our pro-
posed approach achieves consistent improvement in the per-
formance in terms of AUC and AUPR scores. As these four
datasets contain different portions of new drug and target
candidates in our simulation, the improvements of BLMN
compared to BLM are also different for the four datasets.
The most significant improvement of AUPR is obtained for
the Nuclear Receptor dataset, which contains the largest
portion of new drug and target candidates. This shows the
effectiveness of the presented strategy by inferring training
data from neighbors when there is no training data readily
available.

2. MATERIALS
To facilitate comparison with state-of-the-art approaches,
we used the same groups of four datasets which are first an-
alyzed by [20] and then later by [1], [19], [13] and [4]. These
four datasets corresponds to drug-target interactions of four
important categories of protein targets, namely enzyme, ion
channel, G-protein-coupled receptor and nuclear receptor,
respectively 1. Table 1 gives some statistics of each dataset
including the number of drugs (nd), the number of targets
(nt), the average number of targets (D̄d), the average num-
ber of targeting drugs (D̄t), the percentage of drugs that
have one target (Dd = 1) and the percentage of targets that
have one targeting drug (Dt = 1). It is indicated from this
table that among the four networks, Ion Channel is the most
dense while Nuclear Receptor is the most sparse.

Each dataset is described by three types of information in
the form of three matrices. Together with the drug-target in-
teraction information, the drug-drug similarity, and target-
target similarity are also available. Four interaction net-
works were retrieved from the KEGG BRITE [10], BRENDA
[17], SuperTarget [6] and DrugBank [18] these four databases.
The drug-drug similarity is measured based on chemical
structures from the DRUG and COMPOUND sections in
the KEGG LIGAND database [10] and is calculated with
SIMCOMP [7]. The target-target similarity is measured
based on the amio acid sequences from the KEGG GENEsS
database [10] and is calculated with a normalized version of
Smith-Waterman score. More details on how the data have
been collected and calculated are given in [20].

3. METHODS
3.1 Problem formalization
The problem under consideration is to predict new interac-
tions between nd drugs and nt targets. We use an nd×nt ma-
trixA to record these known interactions, i.e., aij ∈ A = 1 if

1The datasets are download from http://web.kuicr.kyoto-
u.ac.jp/supp/yoshi/drugtarget/



the ith drug denoted as di, is known to interact with the jth
target denoted as tj . All other entries of A are 0. Assume
ni interactions in total involves md drugs and mt targets
and md < nd and mt < nt. This means there are some
new drug and target candidates and the corresponding rows
and columns of A are all 0. Other than the interaction net-
work, Sd and St are similarity matrix of drug and target,
respectively.

3.2 Bipartite Local Learning Model (BLM)
To predict pij , the probability that a drug di and a target
tj interacts, the basic bipartite local model is described as
follows: a local model for di is first learned based on the
known targets of this drug ai and the similarities between
targets St, then this model is used to predict pdij the score
between this drug to the tested protein based on the local
model of di. The model learning and prediction process is
performed independently from the query target side to get
ptij . Once both pdij and ptij are calculated, they are combined

to get the final result pij = f(pdij , p
t
ij).

This framework is first proposed by [1] and then used in [19]
and [13]. From the above description, it is clear that the pos-
itive interactions in ai and pairwise target similarity St are
critical to the final prediction of pdij . The model learned for
di describes how this drug selects targets. Once the model
is trained, the similarity between the query target and those
known targets of this drug largely decides pdij . Similarly,
positive interactions in aj and pairwise drug similarity Sd

are critical to the final prediction of ptij . Under the same
BLM framework, different results are produced due to the
differences in Sd and St, the classifier used, and the merge
function f to get pij based on pdij and ptij . In our approach,
Sd and St are the linear combination of the similarity de-
rived based on the network topology and the similarity de-
rived based on other sources. Although more sophisticated
ways such as Kronecker product have been used to combine
two types of similarity matrices or kernel matrices, the lin-
ear combination gives comparable performance with a much
lower computational complexity.

3.3 Training data inferring for new drug/target
candidates

Generally, supervised learning gives better performance than
unsupervised learning. However, good performance of su-
pervised learning is largely dependent on the amount and
quality of labeled training data. When the drug is new,
it has no existing targets that can be used as positive la-
beled training data and the model for this drug thus can
not be learned. Similarly, supervised local learning does
not work for new target candidates. To extend the applica-
tion domain of BLM to new drug and target candidates, we
present a neighbor-based procedure and intergrade it into
BLM. Based on the assumption that drugs which are sim-
ilar to each other interact with the same targets, training
data for drug/target candidates could be possibly inferred
from their neighbors. The neighbors may be defined based
on a particular description of drug and target, e.g. chemical
similarity of drugs, sequence similarity of targets, or com-
binations of multiple descriptions. Assume matrices Sd and
St record the drug-drug similarity and target-target similar-
ity, respectively, which are obtained based on a single type
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Figure 1: Drug-target interaction prediction with learning
from the drug and target independently.

of source or the combinations of multiple sources in certain
ways. For a drug di that has no known targets, we obtain the
inferred weighted training data with the following formula

l(i) = sdi ×A (1)

where each dimension

lj(i) =
∑
h

sdih × ahj (2)

This shows that the interaction weight of this drug to the
jtarget is the sum of its neighbors connected to this target
weighted by the similarity between this drug and its neigh-
bors. This simple formula are two folds for a given new drug
candidate: the weight to a target is high if many of its neigh-
bors connected to it; the final weight to a target is influenced
more by a neighbor with a larger similarity than those with
smaller similarities. To only allow neighbors with large sim-
ilarities to contribute, a threshold may be used to reduce the
impact of those non-important neighbors to 0. Alternately
an exponential function as below may be introduced:

l(i) = e(s
d
i /β) ×A (3)

This procedure is applied to new target candidates in the
same way.

3.4 Bipartite Local Learning Model with Neighbor-
based Inferring (BLMN)



Integrating the strategy of inferring labels from neighbors
for drug/target candidates into the BLM framework forms
the Bipartite Local Learning Model with Neighbor-based In-
ferring (BLMN). Figure 1 illustrates the idea of drug-target
interaction prediction with learning from the drug and tar-
get independently.

Since learning from the drug-candidate side and target-candidate
side follow the similar procedures, here only the steps of
neighbor-based local model learning and prediction from the
drug-candidate is given as below:

1. calculate network-based similarity Sn
d

2. combine Sn
d with S0

d to get Sd

3. if di is new, inferred labels li from its neighbors

4. Learn a local model for di with existing training data
or derived training data.

5. Predict the score between this drug to the query pro-
tein target pdij with the local model and St.

Learning from the neighbors allows drugs and targets to ob-
tain training data when themselves do not have any known
interactions. This procedure actually introduced some de-
gree of globalization of the original local model to give more
chances or an enlarged scope for the learning process. How-
ever, too much globalization is not desired as it will de-
crease the local characteristics and make the models for each
drug or target less discriminative. Moreover, the low quality
of neighbors or similarity may cause negative impact when
neighbors preferences are too much relied upon. Therefore,
we only activate the learning from the neighbors for totally
new candidates. For other cases, we still train the model lo-
cally on its own preference, i.e., the known interaction pro-
file.

3.5 Compared approaches
The proposed work is closely related two existing BLM based
approaches [1] and [13]. The main differences of these two
approaches are summarized as below:

• BY(2009) [1]: only use chemical similarity and se-
quence similarity. SVM is used as the classifier. The
final probability is the maximum of two independently
obtained ones, i.e., pij = max{pdij , ptij}.

• Laarhoven et al (2011) [13]: chemical similarity is com-
bined with network topology based similarity to get
drug-drug similarity; sequence similarity is combined
with network topology based to get the target-target
similarity. Regularized Least Squares (RSL) classifier
is used. The final probability is the mean of two in-
dependently obtained ones,i.e., pij = 0.5 ∗ (pdij + ptij).
Other than this simple linear combination, the version
with Kronecker product is shown to be slightly better
at the cost of high complexity.

Next we compare the proposed BLMN with these two ap-
proaches. We use func=max in our experiment as we find

max is overall slightly better than mean. To compare with
the state-of-the-art approach, we use the same classifier RSL
(with parameter δ = 1) as in [13]. To directly show the im-
provements attributed to the neighbor-based training data
inferring strategy, we also report the results of BLM, i.e., the
results of BLMN without using neighbor-based interring.

4. EVALUATION
In order to evaluate the performance of the presented ap-
proach, systematic experiments are carried out to simulate
the process of bipartite network inference from biological
data of four drug-target interaction networks as summarized
in Table 1. We use the same leave-one-out cross validation
(LOOCV) as in [13]. In each run of the method, one drug-
target pair is left out by setting its entry in matrix A to 0.
Then we try to recover its true value using the remaining
data.

We measure the quality of the predicted P compared to A in
terms of the area under ROC curve or true positive vs. false
positive curve (AUC) and the area under the precision vs.
recall curve (AUPR). It has been discussed in the literature
that for skewed datasets where the number of true positives
are much less than false positives, the precision-recall curve
gives a more informative picture of the performance of the
algorithm than the ROC curve [5]. Since in the current task,
the known interactions are much less than those unknown
ones, or the number of nonzero entries in A is much less
than that of zero entries, the precision-recall curve should
be a better measurement than the ROC curve here.

We applied the algorithm with three different groups of in-
puts: S0 for drug is the chemical similarity and for target
is the sequence similarity; Sn denotes that the drug-drug
similarity and target-target similarity are derived from the
existing network; Sn + S0 denotes that the drug-drug sim-
ilarity and target-target similarity are combinations of net-
work derived and biological data derived information. As
suggested in [13], gaussian kernel is used to calcualte the
network-based similarity with bandwidths γ = 1

n

∑n
i=1 a

2
ij .

4.1 Performance comparison
Table 2 gives the AUC and AUPR scores of different ap-
proaches on the four datasets with three different types of
similarities. The results of BY (2009) and Laarhoven et al
(2011) are the best results quoted from [1] and [13], respec-
tively. From this table, it is shown that in all the cases,
BLMN outperforms the other three approaches. The results
of BLM and BY(2009) with S0 are similar as the only dif-
ference between them is the former use RSL as the classifier
while the later use SVM. The results of BLM and Laarhoven
et al (2011) are also close in most of the cases although the
later used Kronecker product, which is a more complicated
way to combine two types of similarities.

These results clearly show that neighbor-based training data
inferring is very useful for improving the final result when
the dataset contains new drug/target candidates. Despite
the consistent improvements of BLMN compared to the other
three on all the four datasets, the amounts of improvements
differ for different datasets. If we compare the improve-
ments of the proposed approaches over the four datasets, it
is seen that the improvement with respect to BLM on Nu-



clear Receptor is the most significant, i.e., 18% in AUPR
with S0 + Sn. The improvement on GPCR also achieved
10% in AUPR. Compared to these two datasets, the im-
provement on Enzyme and Ion Channel, which are 4% and
2%, respectively, are not so significant. Such kind of dif-
ferences in performance of the proposed approach are con-
sistent with our expectation according to the differences in
the structure of the datasets. Although all the datasets do
not contain new drug/target candidates, in our experiment,
the real interaction to be predicted is leave out. This means
drugs and targets with degree equal to 1 turn out to have
no positive training data and thus they are simulated to be
“new” in the experiments. As shown in Table 1, the per-
centage of drugs that only have one target is the highest
for Nuclear Receptor (72.22 %), and then GPCR (47.53 %).
The percentage of targets that only interact with one drug
for Enzyme is the highest of the four which is 43.37%, while
this number for Ion Channel is only 11%, which is much
lower than the other three. This means Nuclear Receptor
has a much larger portion of “new” drugs and targets than
Ion Channel. Therefore, it has more chances for BLMN to
improve the results for Nuclear Receptor where the training
data inferring is applied more frequently.

It is also observed that although network-derived similarity
alone provides good information, combining biological in-
formation can further improves the result especially when
the network is sparse, e.g., the results of both BLM and
BLMN for Ion Channel with only Sn is very close to those
with Sn + S0 while significant improvements are achieved
for both approaches on Nuclear Receptor when S0 is fur-
ther combined with Sn. This shows that combining multi-
ple types of similarities usually gives better results when no
single type of similarity is good enough.

4.2 Analysis
To take a close look at the difference in the results due to
the neighbor-based inferring strategy, we compare these top
ranked interactions of the Nuclear Receptor dataset pro-
duced by BLMN and BLM. Since this dataset has 90 known
interactions, we inspect the top 90 interactions predicted by
each algorithm.

As illustrated in Fig 3, among the top 90 predicted interac-
tions, BLM correctly detected 56 known interactions while
BLMN detected 73. 52 known interactions are ranked within
90 by both. Although compared to BLM, 4 are missed by
BLMN, this four interactions get an average rank 106, which
indicates that these 4 are still recognized as high probable in-
teractions by BLMN. Nevertheless, 21 interactions detected
by BLMN are missed by BLM. The average rank of these 21
produced by BLM is 335 as some of them ranks very low.
Among these 21, four pairs namely D00163 (Chenodeoxy-
cholic acid) – hsa9971 (nuclear receptor subfamily 1, group
H, member 4), D00506 (Phenobarbital) – hsa9970 (nuclear
receptor subfamily 1, group I, member 3) , D01441 (Ima-
tinib mesilate) – hsa6095 (RAR-related orphan receptor A),
and D00040 (Cholesterol) – hsa6095 (RAR-related orphan
receptor A), which are assigned extremely low ranks by BLM
are successfully detected by BLMN. After checking, we find
that the query drug D00506 of the first pair only has one
target which happens to be the query target has9970, and
the query target is known to be only interacted with the

Table 2: Comparison of AUC and AUPR for the four
datasets

Dataset Data Method AUC AUPR

Enzyme S0 BY(2009) 97.6 83.3
BLM 96.6 84.6
BLMN 98.4 87.9

Sn Laarhoven et al (2011) 98.3 88.5
BLM 98.2 88.0
BLMN 99.2 91.7

Sn + S0 Laarhoven et al (2011) 97.8 91.5
BLM 97.9 90.6
BLMN 99.2 95.0

Ion Channel S0 BY(2009) 97.3 78.1
BLM 97.3 81.7
BLMN 98.0 84.6

Sn Laarhoven et al (2011) 98.6 92.7
BLM 98.5 92.5
BLMN 99.0 95.6

Sn + S0 Laarhoven et al (2011) 98.4 94.3
BLM 98.2 93.5
BLMN 99.1 95.8

GPCR S0 BY(2009) 95.5 66.7
BLM 94.8 64.4
BLMN 98.0 75.0

Sn Laarhoven et al (2011) 94.7 71.3
BLM 94.4 70.6
BLMN 97.5 83.9

Sn + S0 Laarhoven et al (2011) 95.4 79.0
BLM 95.0 76.5
BLMN 98.5 86.9

Nuclear Receptor S0 BY(2009) 88.1 61.2
BLM 86.6 58.2
BLMN 97.3 77.2

Sn Laarhoven et al (2011) 90.6 61.0
BLM 90.9 62.9
BLMN 95.7 77.0

Sn + S0 Laarhoven et al (2011) 92.2 68.4
BLM 92.8 70.3
BLMN 98.5 88.8

query drug. The second pair has the same situation as the
first one. Since we leave out the true interaction in our
simulation, the testing for these two pairs becomes to pre-
dict interaction between new drug candidate and new target
candidate. Since no training data is available from both the
drug side and target side, BLM is unable to learn a effec-
tive model and simply assigns a very small possibility for
them. For the other two pairs, the query drug has the only
one target which is the query target while the query tar-
get has two known interactions including the one with the
query drug. In our leave-one-out simulation, such kind of
pairs consists of a new drug candidate and a existing target
candidate. For BLM, it is unable to get reasonable result
from the drug side due to the lack of training data, while it
may still detect the interaction if the query drug is similar
enough to the drug that known to interact with the query
target. However, if the query drug is not similar to that
drug, the overall possibility of the interaction between this
pair is still considered to be low. Although difficulty is pre-
sented for cases when training data is absent for both or
one of the query drug and query target, BLMN successfully
detected these four pairs to be interact. This clearly shows
the effectiveness of the presented approach to infer training
data from the interactions of neighbors.

4.3 New interactions predicted
Table 3 gives the top 10 new interactions predicted by BLMN.
Figure 4a plots the subnetwork containing existing links and
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Figure 2: Comparison of Precision-Recall curve between BLM and BLMN on Nuclear Receptor with different similarities. (a)
S0, (b) Sn, (c) S0 + Sn.
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Figure 3: Performance of BLM and BLMN on Nuclear Re-
ceptor.

Table 3: Top 10 predicted interactions

Rank Pair Description
1 D00316 Etretinate

hsa6096 RORB; RAR-related orphan receptor beta
2 D01132 Tazarotene

hsa6097 RORC; RAR-related orphan receptor gamma
3 D00182 Norethisterone

hsa2099 ESR1; Estrogen receptor 1
4 D00094 Tretinoin

hsa6095 RORA; RAR-related orphan receptor A
5 D00348 Isotretinoin

hsa5915 RARB; retinoic acid receptor, beta
6 D00348 Isotretinoin

hsa5916 RARG; retinoic acid receptor, gamma
7 D00348 Isotretinoin

hsa6256 RXRA; retinoid X receptor, alpha
8 D00348 Isotretinoin

hsa6257 RXRB; retinoid X receptor, beta
9 D00348 Isotretinoin

hsa6258 RXRG; retinoid X receptor, gamma
10 D01132 Tazarotene

hsa190 NR0B1; nuclear receptor subfamily 0,
group B, member 1

9 of those predicted links.

D00316 is predicted to interact with has9096 with a high
possibility because D00316 shares six targets with D01132
and D00094, which interact with has9096. Similarly, D01132
shares seven targets with D00094, which indicates these two
drugs are similar in terms of interaction profile. There-
fore, D01132 is expected to also interact with has6097 and
has190, another two targets of D00094. Since has6097 also
has a similar sequence with has6096, the overall possibil-
ity that D01132 interacts with has6097 is larger than that
with has190. D00094 is predicted to interact with has6095,
which has large similarities to two known targets has6096
and has6097. Since the chemical similarity between D00348
and D00094 calculated with SIMCOMP is 1, D00348 is ex-
pected to share the same targets with D00094.

It is known that has2099 is the target of 10 drugs. Among
these drugs, D00066 is the one which is assigned a largest
weight during model learning. D00182 shares a target has5241
with D00066, and these two drugs also have a relative large
chemical similarity. Combine both, D00182 is very similar
with D00066 and hence is predicted to interact with has2099.

According to these results, it is observed that to be assigned
with a high possibility of interaction for a given pair of drug
and target, they usually satisfy one or more of the following
conditions: the query drug has similar chemical structure
with drugs that known to interact with the query target;
the query drug shares targets with some drugs which inter-
act with the query target; the query target has similar se-
quence with the known targets of the query drug; the query
target and known targets of the query drug interact with
the common drugs.

5. CONCLUSION AND DISCUSSION
We have proposed to integrate a neighbor-based inferring
procedure into local learning model. This improved model
is applicable to new drug/target candidates which have no
interactions. From our experimental results, it has been
demonstrated that the proposed strategy of inferring train-
ing data from neighbors is quite useful for producing effective
prediction of interaction involving new candidates. With the
presented strategy, the performance of prediction model is
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Figure 4: Existing interactions (solid line) and predicted
interactions (dashed line) between drugs (dot) and protein
targets (square). (a) 1,3,5,8, and 9 (b) 6,7 and 10 (c) 2 (d)
4.

consistently improved when applied to datasets containing
new drug/target candidates. As expected, the improvement
is more significant when a larger portion of drug/target can-
didates are contained which means the proposed strategy is
activated more frequently.

In the current work, we only apply neighbor-based inferring
for drugs and targets that are totally new, i.e., have no ex-
isting interactions, and we find the results are already good
enough to show the usefulness of this strategy. It may be
applied to a larger portion of drugs and targets which do not
have sufficient training data. However, too much emphasis
on neighbors tends to eliminate the local characteristics of
each drug and target and could cause degeneration of the re-
sults. It would be an interesting future work to explore the
balance between local information and global information
that used in model learning.

Although network-based similarity is reliable and robust,
further incorporating other types of data sources is still ben-
eficial to improve the prediction. It provides chances to find
new interactions with additional information that enriches
the knowledge contained in the interaction network, espe-
cially when the network is too sparse to provide enough in-
formation.
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