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Abstract

Motivation: Human microbes play critical roles in drug development and precision medicine. How to
systematically understand the complex interaction mechanism between human microbes and drugs
remains a challenge nowadays. Identifying microbe-drug associations can not only provide great insights
into understanding the mechanism, but also boost the development of drug discovery and repurposing.
Considering the high cost and risk of biological experiments, the computational approach is an alternative
choice. However, at present, few computational approaches have been developed to tackle this task.
Results: In this work, we leveraged rich biological information to construct a heterogeneous network for
drugs and microbes, including a microbe similarity network, a drug similarity network, and a microbe-drug
interaction network. We then proposed a novel Graph Convolutional Network (GCN) based framework for
predicting human Microbe-Drug Associations, named GCNMDA. In the hidden layer of GCN, we further
exploited the Conditional Random Field (CRF), which can ensure that similar nodes (i.e., microbes or
drugs) have similar representations. To more accurately aggregate representations of neighborhoods, an
attention mechanism was designed in the CRF layer. Moreover, we performed a random walk with restart
(RWR) based scheme on both drug and microbe similarity networks to learn valuable features for drugs
and microbes respectively. Experimental results on three different datasets showed that our GCNMDA
model consistently achieved better performance than seven state-of-the-art methods. Case studies for
three microbes including SARS-CoV-2 and two antimicrobial drugs (i.e., Ciprofloxacin and Moxifloxacin)
further confirmed the effectiveness of GCNMDA in identifying potential microbe-drug associations.
Availability: Python codes and dataset are available at: https://github.com/longyahui/GCNMDA.
Contact: luojiawei@hnu.edu.cn and xlli@i2r.a-star.edu.sg
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Microbe or microorganism is a category of microscopic living organisms
which could be single-celled or multi-cellular. The accumulated evidence
have demonstrated that microbe communities, mainly composed of
bacteria, archea, viruses, protozoa, and fungi, have close associations with
human hosts (Huttenhower et al., 2012; Sommer and Bäckhed, 2013).

Microbes are usually viewed as the "forgotten" organ of human beings
due to their functions in providing protection from pathogens, improving
metabolic capability, and enhancing immunological system (Ventura et al.,
2009). For example, the microbes offer protection against invasion by
opportunistic pathogens (Sommer and Bäckhed, 2013), facilitate the
metabolism of indigestible polysaccharides, and boost T-cell responses
via synthesizing essential vitamins (Kau et al., 2011). Besides, they are an
imperative component for the development and differentiation of human’s
intestinal epithelium and immune system (Sommer and Bäckhed, 2013).
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On the other hand, the imbalance or dysbiosis of microbe communities
could cause a wide range of human infection diseases (Huttenhower
et al., 2012; Sommer and Bäckhed, 2013), such as obesity (Zhang et al.,
2009), diabetes (Wen et al., 2008), rheumatoid arthritis (Lynch and
Pedersen, 2016), and even cancer (Schwabe and Jobin, 2013). As such,
the microbes can thus be considered as targets for personalized medicine
(Kashyap et al., 2017). In fact, many microbe-drug interactions have been
reported in the literature. For example, the microbial β-glucuronidases
in the gut assisted the treatment of irinotecan for colorectal cancer by
reactivating the excreted, inactive metabolite (Guthrie et al., 2017), and
it was found to be an effective inhibitor to reduce CPT-11 induced
toxicity (Wallace et al., 2010). Hence, detecting microbe-drug interactions
would be very useful for microbe-based therapeutics and drug discovery.
However, conventional wet-lab experiments (e.g., culture-based methods)
for uncovering microbe-drug associations are time-consuming, laborious,
and expensive. Computational approaches for efficiently and accurately
predicting microbe-drug associations are thus useful complements to the
limited experimental methods.

Recently, several databases are publicly available for experimentally
verified microbe-drug associations, such as MDAD (Sun et al., 2018),
aBiofilm (Rajput et al., 2018) and DrugVirus (Andersen et al., 2020),
which enable machine learning techniques to predict novel microbe-
drug associations. In particular, graph convolutional network (GCN) is
a promising machine learning approach due to its superior capability of
modeling graph data, which has been successfully used for predicting
miRNA-drug resistance association (Huang et al., 2019), disease-gene
association (Han et al., 2019) and lncRNA-disease association (Xuan et al.,
2019). We were thus motivated to customize GCN for novel microbe-drug
association prediction.

Nevertheless, there are two main limitations to the existing GCN
based approaches. Firstly, most of them are implemented on either a
bipartite network or a homogeneous network to deal with the relevant tasks.
Compared with these networks, a heterogeneous network can include
different types of nodes and links, and it is thus able to leverage diverse
and rich semantic information, allowing GCN to better preserve intrinsic
features for nodes. Secondly, the graph data possess similarity information
between different nodes. However, existing GCN based methods consider
all the neighbors equally and thus fail to preserve this kind of similarity
information when learning the node embeddings/representations.

To address the above issues, we developed a GCN based
framework called GCNMDA for microbe-drug association prediction
in a heterogeneous network. First, GCNMDA exploited drug chemical
information, microbe gene information and Gaussian interaction profile
features to quantify the similarities for drugs and microbes respectively.
Considering the noise in similarities, a random walk with restart
(RWR) based pre-processing scheme was designed on drug similarity
network and microbe similarity network to effectively capture valuable
features for drugs and microbes, respectively. Second, we embedded
a Conditional Random Field (CRF) layer in GCN to strengthen node
representation learning for drugs and microbes, such that similar nodes
have similar representations. We further designed an attention mechanism
in the CRF layer for more accurately aggregating representations of
neighborhoods. Experimental results demonstrated that our proposed
GCNMDA model outperformed existing state-of-the-art methods. Case
studies on three microbes (i.e., SARS-CoV-2, Pseudomonas aeruginosa,
and Escherichia coli) and two popular antibiotic agents (i.e., Ciprofloxacin
and Moxifloxacin) further verified the effectiveness of our proposed model.

Overall, our main contributions are summarized as follows.

• We constructed a heterogeneous network to effectively integrate rich
biological information, including microbe gene information, drug
chemical information, and microbe-drug interactions.

• We proposed a novel GCN-based framework for predicting microbe-
drug associations in the heterogeneous network. To the best of our
knowledge, this is the first work to adapt GCN for predicting microbe-
drug associations.

• A CRF layer was designed in GCN, which could enforce that
similar nodes (i.e. drugs and microbes) have similar representations.
We further designed an attention mechanism in the CRF layer,
which assigned greater weight values to more topological similar
neighborhoods to preserve similar information between nodes.

• Our comprehensive experimental results and case studies demonstrated
the proposed GCNMDA method outperformed seven state-of-the-art
methods on three different datasets.

2 Related Work
In this section, we first present graph convolutional networks (GCN) and
their applications in bioinformatics. We then introduce conditional random
field (CRF) for modelling the dependency between neighboring nodes in
the graph. To our best knowledge, so far few approaches were developed
for predicting microbe-drug associations.

2.1 Graph convolutional networks

Graph Convolutional Neural Network (GCN), proposed by Kipf and
Welling (2016), is an effective deep learning model for graph data.
The basic idea of GCN is to learn node embeddings/representations by
implementing convolutional operation on a graph based on the properties
of neighborhood nodes. In recent years, GCN has achieved great success
in a wide range of tasks, such as node classification (Kipf and Welling,
2016), recommender system (Ying et al., 2018) and relation extraction
(Zhang et al., 2018).

Very recently, researchers have developed numerous GCN-based
approaches to tackle various bioinformatics tasks. For example,
Zitnik et al. (2018) used graph convolutional network for predicting
polypharmacy side effects based on multimodal data. Huang et al.
(2019) proposed a graph convolutional network-based end-to-end learning
framework of GCMDR to address the problem of miRNA-drug resistance
association prediction based on a bipartite network. Han et al. (2019)
developed a new framework named GCN-MF for the identification of
disease-gene associations by incorporating graph convolutional network
with matrix factorization. To infer candidate disease-related lncRNA, Xuan
et al. (2019) first constructed a heterogeneous network combining multiple
sources of biomedical information. They further presented a combination
framework GCNLDA by aggregating graph convolutional network with
convolutional neural network. While the above methods achieved good
prediction performance, they did not consider node similarities in the
hidden layer during the process of representation learning.

2.2 Conditional random field

Conditional random field (CRF), proposed by Lafferty et al. (2001), is a
probabilistic graphical model. Generally, CRF is applied to predict labels
of the sequential data. Its advantage is to model the pairwise relationship
between a given node and its neighborhoods to improve the final prediction.

Recently, the combinations of CRF with different deep learning
methods have achieved successful applications in various research fields.
For example, Liu et al. (2015) proposed a novel approach for image
segmentation by aggregating Convolutional Neural Network (CNN) with
CRF. In addition, Zheng et al. (2015) developed a network called CRF-
RNN (Recurrent Neural Network) and combined it with CNN for semantic
image segmentation. Besides, Cheng et al. (2017) also applied CRF-
RNN for semantic mapping. In addition, Gao et al. (2019) coupled graph
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Fig. 1. The overall architecture of GCNMDA for microbe-drug association prediction.

convolutional neural network with CRF for node classification tasks in
various homogeneous networks.

3 Materials and Methods
In this work, we propose a novel graph convolutional network
(GCN) based framework called GCNMDA to predict Microbe-Drug
Associations. As shown in Figure 1, GCNMDA consists of three main
steps. First, we construct a heterogeneous network by leveraging rich
biological data, including drug similarity, microbe similarity, and microbe-
drug bipartite graph. Second, we learn representations for microbes
and drugs based on GCN, where a CRF layer is plugged to enforce
representation aggregation of neighborhoods. Third, we reconstruct the
microbe-drug bipartite network based on the learned representations. Next,
we introduce the above three steps in detail.

3.1 Heterogeneous network for microbes and drugs

We use three different datasets for known microbe-drug associations,
i.e., MDAD (Sun et al., 2018), aBiofilm (Rajput et al., 2018), and
DrugVirus (Andersen et al., 2020). MDAD dataset (http://www.
chengroup.cumt.edu.cn/MDAD/) consists of 5505 clinically or
experimentally verified microbe-drug associations, between 1388 drugs
and 174 microbes. After removing redundancy information, we finally
obtain 2470 associations between 1373 drugs and 173 microbes.
aBiofilm dataset (http://bioinfo.imtech.res.in/manojk/
abiofilm/) records 1720 unique anti-biofilm agents/drugs which
target over 140 organisms/microbes including bacteria and fungus. After
filtering out repeated data, we finally download 2884 microbe-drug
associations involving 1720 drugs and 140 microbes. DrugVirus dataset
(https://drugvirus.info/tech_doc/) summarizes activities
and developmental statuses of 118 compounds/drugs which altogether
target 83 human viruses, including recently occurred novel coronavirus
name SARS-CoV-2. Besides, we manually curate 57 clinically or
experimentally confirmed drug-virus associations between 76 drugs and
12 viruses from drug databases and related publications. As a result, 933

drug-virus interactions including 175 drugs and 95 viruses are collected.
Overall, the statistics of the three microbe-drug association datasets above
are shown in Table 1. We define the adjacent matrix I ∈ Rnd×nm

to represent the microbe-drug associations, where nd and nm denote
the numbers of drugs and microbes respectively. Iij is equal to 1 if an
association between drug di and microbe mj is observed; 0 otherwise.

Table 1. The statistics for each microbe-drug association dataset.

Datasets # Microbes # Drugs # Associations

MDAD 173 1373 2470

aBiofilm 140 1720 2884

DrugVirus 95 175 933

We further construct microbe functional similarity matrix FM and
drug structural similarity matrix DS. Particularly, FM is calculated
by the method proposed by Kamneva (2017). DS is measured using
the method SIMCOMP2 (Hattori et al., 2010). More details about the
calculations of FM and DS can be found in Supplementary Materials.

It is clear that both FM and DS are sparse, i.e., many microbes
or drugs have no similarity scores in FM and DS respectively, due to
lacking microbe functional information and drug structural information.
To discover more valuable similarity information, we exploit the Gaussian
interaction profile kernel function to calculate Gaussian kernel similarity
for microbes and drugs. The key idea is that similar microbes (drugs)
interact with similar drugs (microbes), leading to similar interaction
profiles. More specifically, in the microbe-drug association matrix I , we
define the i-th row I(di) and the j-th column I(mj) as interaction profiles
for drug di and microbe mj , respectively. Then, the Gaussian interaction
profile kernel similarity matrices GD and GM for drugs and microbes
are calculated as follows:

GD(di, dj) = exp(−ηd‖I(di)− I(dj)‖2), (1)

GM(mi,mj) = exp(−ηm‖I(mi)− I(mj)‖2), (2)

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/doi/10.1093/bioinform
atics/btaa598/5864717 by guest on 30 June 2020



4 Yahui Long et al.

where ηd and ηm represent the normalized kernel bandwidths, and they
are defined in Equations 3 and 4.

ηd = η′d/(
1

nd

nd∑
i=1

‖I(di)‖2), (3)

ηm = η′m/(
1

nm

nm∑
i=1

‖I(mi)‖2), (4)

where η′d and η′m are the original bandwidths and both are set to 1.
For complementing biological information and improving drug

similarity, a final drug similarity is constructed by integrating drug
structural similarity and Gaussian kernel drug similarity. Specifically, for
drugs di and dj , if there exists drug structural similarity between them,
the integrated drug similarity is defined as the average of GD and DS;
GD otherwise. The integrated drug similarity Sd is defined as follows:

Sd(di, dj) =

{
GD(di,dj)+DS(di,dj)

2
, if DS(di, dj) 6= 0,

GD(di, dj), otherwise.
(5)

Similarly, the integrated microbe similarity Sm is defined as follows:

Sm(mi,mj) =

{
GM(mi,mj)+FM(mi,mj)

2
, if FM(mi,mj) 6= 0,

GM(mi,mj), otherwise.
(6)

We finally construct a heterogeneous network for drugs and microbes,
which consists of three networks: 1) a microbe-drug interaction network,
2) a drug similarity network, and 3) a microbe similarity network. In
particular, let G = (V,E) denote the heterogeneous network, with V =

(νm, νd) representing a set of nm microbe nodes and nd drug nodes. Its
adjacency matrix A ∈ R(nd+nm)×(nd+nm) is defined in Equation 7.

A =

[
Sd I

IT Sm

]
. (7)

3.2 Feature processing for drugs and microbes

As aforementioned, Sd and Sm are matrices for drug similarity and
microbe similarity, respectively. In Sd ( or Sm), each row or column
denotes the similarity profile for a drug (or a microbe), which can be
considered as the feature vector for the drug (or microbe). However, it is
insufficient to directly regard the similarity profiles as input features for
microbes and drugs because the calculated similarity possibly includes
some noises due to false positives and the limitations of computational
methods. Therefore, in this paper, we further implement a random walk
with restart (RWR) based method to derive the features from the similarity
profiles. RWR is a network-based method that can effectively capture
local and global topological intrinsic characteristics of a network. Note
random walk has been extensively applied for reducing noise in image
processing (Jain et al., 2018) and preserving neighbor information in
feature learning (Grover and Leskovec, 2016), and thus we adopt it for
our problem. Formally, RWR (Köhler et al., 2008) is defined as follows:

pt+1
i = (1− ϕ)Mpti + ϕei, (8)

whereM (i.e., Sd or Sm) represents the transition probability matrix and
ϕ is the restart probability, which is empirically set as 0.9. In addition,
ei ∈ Rn×1 is the initial probability vector for the i-th node and eij is
1 if j = i; 0 otherwise. pti ∈ Rn×1 shows the probabilities of reaching
other nodes at the time t from the i-th node, and we take pti at steady
state as the feature vector for the i-th node. After performing RWR on
both drug similarity network and microbe similarity network, we obtain
a probability profile vector for each microbe or drug. These probability

profile vectors can thus form a new drug feature matrix Fd ∈ Rnd×nd

and a new microbe feature matrix Fm ∈ Rnm×nm. To make the features
comparable among different nodes, we further normalize the probability
profile vectors in Fd and Fm, i.e., the sum of probabilities in each vector
is normalized to 1. Eventually, the normalized probability profile vectors
in Fd and Fm are treated as input features for microbes and drugs in our
model. In consistent with the heterogeneous network, a new feature matrix
X ∈ R(nd+nm)×(nd+nm) is described as follows:

X =

[
0 Fd
Fm 0

]
. (9)

3.3 Graph convolutional network for node embeddings

We have derived the adjacent matrix A in section 3.1 and feature matrix
X of heterogeneous network in section 3.2. We can then use them to
learn the preliminary embeddings for drugs and microbes using graph
convolutional network. The basic idea of GCN is to learn node embeddings
by implementing the convolution operation on a graph based on the
properties of neighborhood nodes. Formally, let us assume that each
node in the heterogeneous network is connected to itself (i.e., self-loop),
the normalized systematic adjacent matrix Ã of A is defined as Ã =

D−
1
2AD−

1
2 whereD is a diagonal matrix with diagonal elements being

Dii =
∑nd+nm
j=1 Aij . Based on these terminologies, the preliminary

embeddings Q ∈ R(nd+nm)×n is formulated as follows:

Q = ReLU(ÃXWen +Ben), (10)

where Wen ∈ R(nd+nm)×n is a parameter matrix, Ben ∈
R(nd+nm)×n is a bias matrix, ReLU (Rectified Linear Unit) represents
activation function and n is the dimension of embeddings for drugs and
microbes.

3.4 CRF layer for embedding update

After deriving the preliminary embeddings, we further introduce a CRF
layer to ensure that similar drugs (or microbes) are also similar in the
feature space, i.e., have similar embeddings. Meanwhile, we also require
a smooth update for the embeddings. As such, we define a loss function
LCRF for this CRF layer in Equation 12, motivated by Gao et al. (2019).

L(Hi) = α ‖Hi −Qi‖22 + β
∑
j∈Ni

λij ‖Hi −Hj‖22, (11)

LCRF =

nd+nm∑
i=1

L(Hi). (12)

In Equation 11, Qi represents the preliminary embedding of node i
obtained from the GCN convolution layer and Hi denotes the embedding
of node i updated in the CRF layer. In addition, λ denotes attention scores
between nodes and λij measures the importance of neighbor node j to
node i. Ni is the neighborhood of node i, while α and β are weight
factors to balance the influences of the first term and the second term
on the prediction performance. The first term in Equation (11) aims to
encourage a smooth update for the representation of node i, while the
second term in Equation (11) enforces that Hi of node i should be close
toHj of neighbor node j. Meanwhile, we update the node embeddingHi
in the CRF layer according to the following rule.

H
(k+1)
i =

αQi + β
∑
j∈Ni

λijH
(k)
j

α+ β
∑
j∈Ni

λij
, (13)

where the initial embeddingH(1)
i is set asQi, andH(k)

i is the embedding

updated in thek-th iteration. We setHi = H
(K)
i as the final representation
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of node i and K is set as 2 in our experiments. Note that the first layer
considers all the neighbours equally, while our proposed CRF layer focuses
on similar/important neighbours. In addition, as the number of iterationK
in CRF layer increases, the nodes will incrementally gain more and more
information from their high-order neighbours.

Moreover, unlike Gao et al. (2019), we adopt a self-attention (Vaswani
et al., 2017) to differentiate the contributions of neighboring nodes to a
given node. Formally, the attention efficient λij between node i and node
j in Equation 11 is defined as follows.

aij = att(WtHi,WtHj), (14)

λij = softmax(aij) =
exp(aij)∑

x∈Ni
exp(aix)

, (15)

where att denotes a single-layer feedforward network to perform the
attention, and Wt represents a latent trainable matrix.

3.5 Decoder for microbe-drug association reconstruction

H is the feature/embedding matrix learned in the CRF layer and let us
denote the learned feature matrices for drugs and microbes as Hd ∈
Rnd×n and Hm ∈ Rnm×n, respectively. We thus reconstruct the
adjacent matrix Znd×nm for microbe-drug associations in Equation 16
and derive the reconstruction loss in Equation 17.

Z = HdW
de
d (W de

m )T (Hm)T , (16)

LREC =
∑

(i,j)∈A+∪A−

Φ(Zij , Aij), (17)

where W de
d ∈ Rn×r and W de

m ∈ Rn×r are latent factors that project
representations back to original feature space for drugs and microbes,
respectively. In addition, Φ is the MSE loss (i.e., mean square error) and
A+ and A− denote the sets of positive samples and negative samples,
respectively.

3.6 Overall loss and optimization

In the encoder and decoder, we have trainable parameters, includingW en,
Ben, W de

d and W de
m . In addition to the losses LCRF and LREC , we

include an regularization term for the model parameters denoted as LΘ in
Equation 18. Therefore, the overall lossLTotal is defined in Equation 19.

LΘ = ‖W en‖2 + ‖Ben‖2 +
∥∥∥W de

d

∥∥∥2
+
∥∥∥W de

m

∥∥∥2
, (18)

LTotal = LCRF + LREC + γLΘ, (19)

where γ is a weight factor.
GCNMDA model is then trained by optimizing the overall lossLTotal

above. We employ the Adam optimizer (Kingma and Ba, 2015) for the
optimization. Finally, we leverage the scores in the reconstructed matrix
Z to rank the unknown pairs for novel microbe-drug association prediction.

4 Results
In this section, we first briefly introduce our experimental setup and then
demonstrate the performance of our GCNMDA model by comparing with
seven existing methods and the ablation study. Finally, we show the case
studies on the top drugs and microbes predicted by our method for three
selected microbes and two selected drugs.

4.1 Experimental setup

We conducted three cross-validations (CVs), i.e. 2-fold, 5-fold, and 10-
fold, on three different datesets (i.e., MDAD, aBiofilm, and DrugVirus)

to evaluate the performance of GCNMDA. Taking 5-fold CV as example,
we equally divided all the observed microbe-drug association pairs into 5
groups, and iteratively used 1 group for testing and the remaining 4 groups
for training. We reported two well-known performance metrics, widely
used for pair-wise association (link) predictions, during cross validation,
namely, area under ROC curve (AUC) and area under precision-recall
curve (AUPR).

In our model, the training epoch was set to 200 and the learning
rate in the optimization algorithm was set to 0.001. In the next section,
we will discuss the influences of several other important parameters.
The experimental code was implemented based on the open source
machine learning framework Tensorflow (https://github.com/
tensorflow/tensorflow). All experiments were conducted on
Windows 10 operating system with a HP Z4 G4 workstation computer
of an Intel W-2133 8 cores, 3.6GHz CPU, and 32G memory.

4.2 Comparison with state-of-the-art methods

As mentioned before, few existing approaches have been developed
specifically to tackle microbe-drug association prediction problem. Thus,
we compare our method with seven state-of-the-art methods that were
proposed to address other link/association prediction tasks in the field of
computational biology.

• KATZHMDA (Chen et al., 2016) is a KATZ measure based
computational method, developed for microbe-disease prediction.

• WMGHMDA (Long and Luo, 2019) is a meta-graph-based approach
for predicting microbe-disease associations.

• NTSHMDA (Luo and Long, 2018) is a random walk with restart based
model, proposed to predict microbe-disease associations.

• IMCMDA (Chen et al., 2018) is a matrix completion based model for
microRNA-disease association prediction.

• GCMDR (Huang et al., 2019) is a graph convolutional network based
model for identifying miRNA-drug resistance relationships.

• BLM-NII (Mei et al., 2012) is a bipartite local model with Neighbor-
based Interaction profile Inferring for drug-target prediction.

• WNN-GIP (Van Laarhoven and Marchiori, 2013) is a weighted nearest
neighbor-Gaussian interaction profile model, developed to address
drug-target prediction problem.

For a fair comparison, all existing seven methods adopted the default
parameter values from their original implementations and were compared
on the same benchmark MDAD, aBiofilm, and DrugVirus datasets. Table 2
shows the results of 5-fold CV on MDAD. Among all methods, our
proposed GCNMDA model achieves the best prediction performance with
average AUC of 0.9423±0.0105 and average AUPR of 0.9376±0.0114,
which are 2.08% and 1.22% higher than that of the second-best method
BLM-NII. It is significantly (at least 7% and 4.54%) better than the
remaining six models in terms of AUC and AUPR respectively. To further
evaluate the effectiveness and robustness of our model, we also carried out
GCNMDA and all the baseline methods on another two datasets aBiofilm
and DrugVirus. The results in Table 2 indicate that our model consistently
outperforms the baseline methods. In the proposed framework, GCNMDA
introduces a CRF layer with attention mechanism in GCN to better
aggregate the representations of neighbours. Besides, the RWR-based
pre-processing scheme and the decoder are also important components to
boost the model performance. They are the main reasons why our proposed
model can achieve superior performance, which will be shown in the model
ablation study in the next section.

In addition, we also conducted comparative experiments for all
methods under 2-fold CV and 10-fold CV settings on these three datasets,
as shown in Supplementary Table S1, Table S2, and Table S3. The results
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Table 2. Performance comparison between baseline methods and our method on datasets MDAD, aBiofilm and DrugVirus under 5-fold CV. The best results are
marked in bold and the second best is underlined.

Methods
MDAD aBiofilm DrugVirus

AUC AUPR AUC AUPR AUC AUPR

KATZHMDA 0.8723±0.0032 0.8384±0.0405 0.9013±0.0072 0.9020±0.0056 0.7809±0.0235 0.7554±0.0314

NTSHMDA 0.8302±0.0089 0.7924±0.0121 0.8213±0.0078 0.7639±0.0095 0.7389±0.0179 0.6973±0.0196

WMGHMDA 0.8654±0.0122 0.8381±0.0083 0.8451±0.0060 0.8903±0.0056 0.7230±0.0214 0.7687±0.0216

IMCMDA 0.7466±0.0102 0.7773±0.0113 0.7750±0.0096 0.8572±0.0049 0.6235±0.0245 0.6962±0.0302

GCMDR 0.8485±0.0062 0.8509±0.0040 0.8772±0.0076 0.8847±0.0061 0.8243±0.0168 0.8206±0.0141

BLM-NII 0.9231±0.0170 0.9263±0.0152 0.9256±0.0842 0.9338±0.0633 0.8913±0.0190 0.8922±0.0221

WNN-GIP 0.8721±0.0162 0.8922±0.0137 0.9019±0.0187 0.9408±0.0132 0.8002±0.0193 0.8436±0.0183

GCNMDA 0.9423±0.0105 0.9376±0.0114 0.9517±0.0033 0.9488±0.0031 0.8986±0.0305 0.9038±0.0372

confirm that GCNMDA once again outperformed all the seven state-of-
the-art methods consistently on different datasets, indicating GCNMDA is
an effective and robust computational model for predicting microbe-drug
associations.
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Fig. 2. Comparison analysis between GCNMDA and its Variants on MDAD dataset.

4.3 Model Ablation Study

Recall that our GCNMDA consists of four components, including 1) RWR-
based feature processing, 2) CRF layer, 3) attention mechanism in CRF
layer, and 4) decoder layer for reconstruction, as shown in Figure 1. In
addition, our model is implemented on a heterogeneous network. Here,
we conduct the ablation study to evaluate the impact of each component
and heterogeneous network using 5-fold CV based on dataset MDAD. In
particular, we derive the following model variants for ablation study.

• GCNMDA w/o RWR: it uses Sd (or Sm) instead of Fd (or Fm) in
Equation 9 as features for drugs (or microbes);

• GCNMDA w/o CRF: it has no CRF layer, i.e., LCRF is not included
in the overall loss LTotal;

• GCNMDA w/o Attention: it uses equal weight instead of bias weight
in CRF layer;

• GCNMDA w/o Decoder: instead of HdW de
d (W de

m )T (Hm)T , it
uses Hd(Hm)T in Equation 16 for reconstruction.

• GCNMDA w/o Similarity: it uses zero matrices instead of Sd and
Sm in Equation 7 and thus its input network is a bipartite network.

Figure 2 shows the performance comparison between GCNMDA
and its five variants in terms of AUC and AUPR. We observe that the
CRF layer with attention mechanism plays the most important role in
GCNMDA, as GCNMDA w/o CRF achieves the lowest performance.
GCNMDA w/o RWR, GCNMDA w/o Attention, and GCNMDA w/o
Decoder also achieve lower performance than GCNMDA, indicating that
all of RWR-based feature processing, attention mechanism in CRF layer
and the decoder are essential components of GCNMDA as they can

further enhance GCNMDA’s prediction capability. In addition, GCNMDA
outperforms GCNMDA w/o Similarity in terms of both AUC and AUPR,
demonstrating that the heterogeneous network can help our proposed
model to achieve better performance than the bipartite network.

4.4 Parameter sensitivity analysis

In our model, there are several important parameters, such as the neuron
numbern in hidden layer, the negative sampling ratep, the iteration timeK
of CRF layer and weight factorsα, β and γ. In this section, all experiments
were conducted based on dataset MDAD and were evaluated under 5-
fold CV. The neuron number may affect the prediction performance of
our model. As such, we measure our model performance with different
numbers of neurons, ranging from 5 to 95 with a step value of 5. From
Figure 3 (a) and (f), we observe that our model is quite robust as both
AUC and AUPR values change slightly, i.e. 1-2%, and they reach the best
performance with 25 neurons.

As only positive samples exist in the database MDAD, for better
model training, we adopt a negative sampling strategy to train our model
by randomly selecting some unknown/unlabelled microbe-drug pairs as
negative samples. In the experiment, the ratio p, which determines the
number of negative samples to that of positive samples, varies from 1
to 10 with a step value of 1. Results in Figure 3 (b) and (g) show, as p
increases, its performance slightly increases and then decreases, with p=5
achieving its best performance, indicating our model is robust against the
parameter p.

In the CRF layer, the iteration number K controls the representation
aggregation of high-order neighbors when updating node representations.
We evaluate the influence ofK by setting its value from 0 to 10 with a step
value of 1. Note that K = 0 means our model has no CRF layer. It could
be found in Figure 3 (c) and (h) that the performance first increases and
then slightly decreases. The best performance is reached when K = 2.
The results indicate that small or large K is not good for the prediction
performance of our model.

In the objective function Equation (19), we have weight factors
α and β for self-representation and similarity constraint, respectively.
Moreover, we employ γ to control the influences of weight matrices
on the model. In our experiments, we choose the values from
{0.0001, 0.001, 0.01, 0.1, 1, 10, 50, 100} for bothα and β and the value
of γ from {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01,

0.05, 0.1, 0.5}. From Figure 3 (d), (e), (i) and (j), we observe that these
parameters have relatively bigger impact on GCNMDA’s performance. In
particular, GCNMDA achieves better performance when α = 50, β = 1

and γ = 0.0005, so we set these values as the default ones.
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Fig. 3. Parameter sensitivity of GCNMDA w.r.t. Neuron number n, Negative sampling rate p, Iteration timeK and Weight factors α, β, γ.

Table 3. The top 20 predicted Ciprofloxacin-associated microbes. The first column records top 10 microbes, while the third column records top 11-20 microbes.

Microbe Evidence Microbe Evidence
Candida albicans PMID:31471074 Enteric bacteria and other eubacteria PMID:27436461
Streptococcus mutans PMID:30468214 Listeria monocytogenes PMID:28355096
Staphylococcus epidermis PMID:10632381 Burkholderia cenocepacia PMID:27799222
Staphylococcus epidermidis PMID:28481197 Streptococcus pneumoniae PMID:26100702
Enterococcus faecalis PMID:27790716 Burkholderia pseudomallei PMID:24502667
Vibrio harveyi PMID:27247095 Burkholderia multivorans PMID: 19633000
Salmonella enterica PMID:26933017 Clostridium perfringens PMID:29978055
Human immunodeficiency virus 1 PMID:9566552 Serratia marcescens PMID:23751969
Actinomyces oris Unconfirmed Streptococcus epidermidis Unconfirmed
Streptococcus sanguis PMID: 11347679 Klebsiella pneumoniae PMID:27257956

4.5 Case study

To further validate the prediction performance of GCNMDA, we conduct
two kinds of case studies based on datasets MDAD and DrugVirus
respectively. The first kind of case study includes two popular antimicrobial
drugs, i.e. Ciproloxacin and Moxifloxacin, and two popular microbes, i.e.
Pseudomonas aeruginosa and Escherichia coli. For each of them, all the
known entries are reset to unknown, and all candidate microbes (or drugs)
are ranked, in decreasing order, according to their predicted scores. We
measure the performance of our model by checking whether the most likely
candidate microbes (or drugs), occurred in the top 10, 20, and 50 ranking
list, are actually verified by previous reports.

Drug Ciprofloxacin is a broad spectrum fluoroquinolone antibacterial
agent (Davis et al., 1996), which is mainly applied for therapeutic in most
tissues and body fluids. It can show excellent activity against most Gram-
negative bacteria. An increasing number of studies have indicated that it
has a close interaction with a wide range of human microbes. The common
interactions include its activity and toxicity against microorganisms, and
the drug-resistance of microorganisms against it. For example, Kim and
Woo (2017) indicated that Enterococcus faecalis was a kind of high-
level ciprofloxacin-resistant bacterial. Zhang et al. (2018) found that in
vitro experiments, Ciprofloxacin showed a significant killing effectiveness
against Streptococcus mutans. Hacioglu et al. (2019) demonstrated that
Ciprofloxacin was an active agent against Candida albicans. As a result,
among the top 10, 20, and 50 predicted Ciprofloxacin-related microbes,
9, 18, and 41 microbe-drug associations are confirmed by previously
published literature, respectively. These high percentages of confirmed
microbes, i.e. 90%, 90%, and 82%, demonstrate GCNMDA’s capabilities
that could be used in real-life applications. Table 3 shows the top 20

predicted candidate microbes associated with Ciprofloxacin. The top 50
predicted candidate microbes can be found in Supplementary Table S4.

Drug Moxiflocacin is a fluoroquinolone antibacterial agent (Balfour
and Wiseman, 1999), which has great efficacy in treating patients with
respiratory tract, pelvic inflammatory disease (Tulkens et al., 2012)
and skin infections (Keating and Scott, 2004). For example, Akiyama
and Khan (2012) demonstrated that multiple isolates of Salmonella
enterica resisted to Moxifloxacin. (Budzinskaya et al., 2019) suggested
that in the group of patients with Pseudomonas aeruginosa injections,
greater resistance to Moxifloxacin was observed compared to the control
group. (Dubois and Dubois, 2019) confirmed the bactericidal activity
of Moxifloxacin against Staphylococcus auereus strains in vitro. By
analysing the antibiotic resistance of Staphylococcus epidermidis, Eladli
et al. (2019) found that Staphylococcus epidermidis isolated from patient
students were susceptible to moxiflocaxin compared to ones isolated from
healthy students. Our results show that 9, 16, and 36 out of top 10,
20, and 50 predicted candidate Moxifloxacin-associated microbes are
validated by existing reports, indicating GCNMDA has strong capabilities
to predict corresponding microbes for given drugs and thus is very useful
for drug repositioning. The top 20 and 50 predicted candidate microbes
for Moxifloxacin are shown in Table 4 and Supplementary Table S5
respectively.

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen,
which can cause severe acute and chronic infections at different human
body sites such as gastrointestinal tracts and skin (Baltch and Smith,
1994). As Supplementary Table S6 shown, 7, 13, 27 out of top 10, 20,
and 50 identified candidate Pseudomonas aeruginosa-related drugs are
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Table 4. The top 20 predicted Moxiflocacin-associated microbes. The first column records top 10 microbes, while the third column records top 11-20 microbes.

Microbe Evidence Microbe Evidence
Pseudomonas aeruginosa PMID:31691651 Human immunodeficiency virus 1 PMID:18441333
Staphylococcus aureus PMID:31689174 Actinomyces oris PMID: 26538502
Escherichia coli PMID:31542319 Streptococcus sanguis PMID:10629010
Streptococcus mutans PMID:29160117 Enteric bacteria and other eubacteria Unconfirmed
Staphylococcus epidermis PMID: 11249827 Listeria monocytogenes PMID:28739228
Staphylococcus epidermidis PMID:31516359 Burkholderia cenocepacia Unconfirmed
Enterococcus faecalis PMID:31763048 Streptococcus pneumoniae PMID:31542319
Bacillus subtilis PMID:30036828 Burkholderia pseudomallei PMID:15731198
Vibrio harveyi Unconfirmed Burkholderia multivorans Unconfirmed
Salmonella enterica PMID:22151215 Clostridium perfringens PMID:29486533

Table 5. The top 40 predicted SARS-CoV-2-associated drugs. “**” denotes the predicted drugs with clinical evidences and “*" denotes the predicted drugs with
literature supports.

Rank Drug Rank Drug Rank Drug Rank Drug
1 Favipiravir∗∗ 11 Brincidofovir 21 Tilorone (Amixin) 31 Foscarnet
2 Mycophenolic acid∗ 12 Sorafenib 22 Suramin 32 Azithromycin∗∗

3 Nitazoxanide∗ 13 Gemcitabine 23 Labyrinthopeptin A2 33 Mitoxantrone
4 Cidofovir∗ 14 Monensin 24 Luteolin 34 Amiodarone
5 Obatoclax 15 Eflornithine 25 Letermovir 35 Raloxifene
6 Amodiaquine 16 Glycyrrhizin 26 Rapamycin (Sirolimus) 36 Pentosan polysulfate
7 Emetine 17 Berberine 27 Artesunate 37 Bortezomib
8 Niclosamide 18 ABT-263 28 Emodin 38 Labyrinthopeptin A1
9 Brequinar 19 BCX4430 (Galidesivir) 29 Chlorpromazine 39 Silvestrol
10 EIPA (amiloride) 20 Cyclosporine∗ 30 Ganciclovir 40 Sunitinib

verified by previous literatures. Escheriachia coli is a Gram-negative, rod-
shaped, coliform bacterium, which is commonly found in human intestine
(Tenaillon et al., 2010). Most Escheriachia coli are harmless, but some
strains can cause disease of the gastrointestinal, urinary, or central nervous
system. (Nataro and Kaper, 1998). The results generated by GCNMDA
indicate that 8, 14, 22 out of top 10, 20, and 50 predicted candiated
Escheriachia coli-associated drugs could be confirmed by existing reports,
as shown in Supplementary Table S7.

Given that COVID-19 has caused great damages to human life globally,
it is thus both interesting and timely to leverage our developed method to
address this serious problem. In particular, we performed an additional
case study on DrugVirus dataset for SARS-CoV-2, which is the etiologic
agent of COVID-19. In particular, we reset all the known SARS-CoV-2-
related entries as unknown ones and prioritize the drugs for SARS-CoV-2
according to their prediction scores. At present, no specific antivirals or
approved vaccines are available to combat COVID-19 (Hoffmann et al.,
2020). However, several drugs such as favipiravir, chloroquine, arbidol,
remdesivir, and azithromycin are currently undergoing clinical studies to
test their efficacy and safety in the treatment of COVID-19 (Dong et al.,
2020). Table 5 shows the top 40 predicted associated drugs for SARS-
CoV-2, where some drugs have been successfully verified by previous
clinical experiments. For example, Cai et al. (2020) demonstrated that
favipiravir showed great therapeutic responses to COVID-19 in the clinical
experiment, and favipiravir is ranked by our model as the first candidate
drug for SARS-CoV-2. Gautret et al. (2020) indicated that the combination
of azithromycin and hydroxychloroquine could clinically improve the
disease of patients with COVID-19, while azithromycin is predicted by
our model as the top 32nd drug associated with SARS-CoV-2.

In addition, some predicted drugs have been considered to be
possible or referenced treatment drugs for COVID-19. For example, Lee
et al. (2020) indicated that the patients with COVID-19 could receive
treatments of some systematic antibiotics and antiviral medications,
such as Mycophenolic acid (the 2nd) and Cyclosporine (the 20th). In

addition, Kelleni (2020) discovered that the combination of Nitazoxanide
(the 3rd) with Azithromycin (the 32nd) has potential antiviral activity
against SARS-COV-2. Through analyzing the structural and chemical
features of FDA-approved drugs, Jockusch et al. (2020) showed that
Cidofovir (the 4th ) is likely a potential therapy for COVID-19. The
corresponding prediction scores for these 40 candidate drugs can be found
in Supplementary Table S8.

5 Discussion and conclusion
Recent research have clearly shown human microbes residing within
and upon human bodies play critical roles for human health. Predicting
microbe-drug associations can benefit human beings by facilitating the
efficient development of drugs and personalized medicine. Compared
with conventional culture-based methods, computational methods are able
to more effectively identify target microbes for existing drugs or new
drugs for known microbes, on a global scale. However, to date, we
have found few computational methods to address this important problem,
possibly because only recently some experimental validated microbe-drug
associations become available for designing computational methods.

In this paper, we present a novel graph convolutional neural network-
based framework, named GCNMDA, for predicting new microbe-
drug associations. In particular, we first construct a heterogeneous
network to effectively integrate rich biological information, including
microbe gene information, drug chemical information, and microbe-
drug interactions. We then implement a RWR based pre-processing
mechanism for effective feature extraction. Finally, we introduce an
additional CRF layer in GCN, which could enforce that similar nodes
(i.e. drugs and microbes) have similar representations. We further design
an attention mechanism in the CRF layer, which assigns greater weight
values to more similar neighborhoods for preserving topological similar
information between nodes, leading to more accurate node representations.
Extensive experimental results and case studies demonstrate that the
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proposed GCNMDA method significantly outperforms seven state-of-the-
art methods in predicting microbe-drug associations on the benchmark
MDAD dataset, as well as its great potential for drug discovery.

Although we leverage multiple types of prior biological information
to construct similarities for microbes and drugs, there is still room to
improve our prediction model through further data integration. In the
future, we can incorporate more biological information, such as microbe-
disease associations (Chen et al., 2016), microRNA-disease associations
(Xiao et al., 2018; Chen et al., 2019), LncRNA-disease associations (Chen
et al., 2017) and drug-target associations (Liu et al., 2016; Ezzat et al.,
2019), for microbe-drug association prediction. More specifically, we can
exploit such information to enrich input features for microbes and drugs or
construct multiplex and heterogeneous biological networks (Valdeolivas
et al., 2019) to improve the prediction performance of our model.
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