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Introduction
The current anti-cancer drug development is faced with 
multiple issues, such as low approval rate of new drugs despite 
enormous amounts of money and time invested in the drug 
discovery, emergence of drug-resistance, and side effects of 
single-target drugs.1,2 Recently, a novel anti-cancer strategy 
called “synthetic lethality” (SL) has shown great potential 
to address these issues. A pair of genes is defined as SL if 
mutation of either gene alone has little effect on the cell but 
mutations of both genes would lead to cell death.1,2 While the 
DNA mutation rate is extremely low in normal cells, there are 

abundant somatic mutations in cancer cells. Thus, a drug that 
targets the SL partner gene of a cancer-specific mutated gene 
will kill cancer cells, but spare normal cells. Originally dis-
covered in genetic experiments of yeast and fruit fly,3 SL was 
proposed by Hartwell et al as a new framework for anti-cancer 
therapies in 1997,4 and since then has been under intense 
research. Recently, clinical success for breast cancer therapy 
has been achieved by an SL-based drug, namely the inhibi-
tor of poly ADP-ribose polymerases (PARPs), which has SL 
interactions with the BRCA1 and BRCA2, two well-known 
genes for DNA repair whose mutations lead to breast cancer.1
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The dominant approach to discovery of SL is high 
throughput screening using RNA interference (RNAi) or com-
pound libraries. For instance, Tong et al developed a genome-
wide strategy for the construction of double mutants named 
synthetic genetic array (SGA) analysis5; Ooi et al introduced 
the genomic approach of SL analysis by microarray (SLAM).6 
In addition, a variant of the SGA method, called epistatic 
miniarray profiling (E-MAP), was developed to quantify the 
synthetic effects.7,8 However, the screening-based approach 
has limitations, eg, high cost, false positive, lack of mecha-
nistic interpretation, and inconsistency among cell lines. As 
a result, very few SL pairs have been discovered in human  
cancer.9 With abundant data of genetic interactions including 
SL, yeast (Saccharomyces cerevisiae) is a popular model organism 
for cancer research. It is also because several pathways critical 
for cancer (eg, DNA damage, cell cycle) are highly conserved 
between human and yeast.9 Nevertheless, even for yeast, the 
number of known SL pairs is low compared to all possible 
genetic interactions. Many potential SL candidates remain to 
be discovered for yeast as well as other model organisms (eg, 
Caenorhabditis elegans, zebrafish). To this end, computational 
prediction can play important roles, as a cheap and efficient 
approach complementary to the wet-lab screening. Moreover, 
computational methods of systems biology based on pathway 
modeling and functional analysis could shed light on mecha-
nisms of SL interactions. Recently, several machine learning 
methods have been proposed and tested on the benchmark 
datasets of yeast, showing that computational methods have 
great potential to analyze and predict SL.10–13 Qi et al applied 
diffusion kernels defined on the network of yeast SL inter-
actions in a support vector machine (SVM) classifier for the 
prediction of new genetic interactions and protein co-complex 
membership.10 Paladugu et al extracted multiple features from 
protein–protein interaction networks, which were used in an 
SVM to predict new SL interactions.11 Li et al used protein 
domain as the main type of features to achieve high perfor-
mance of SL prediction.12 These methods tend to focus on a 
particular type of features and to use a single machine learning 
method. However, as a highly complex cellular phenomenon, 
SL interactions are likely to be caused by different mecha-
nisms. Thus, integrative analysis of multiple features would 
be desirable. Pandey et al proposed a method called “multi-
network multi-classifier” (MNMC) that integrates results 
of multiple predictive methods into one system.13 However, 
MNMC combines the predictions of multiple classifiers with-
out considering their difference in predictive performances. 
As such, if any classifier employed makes poor predictions, 
the overall performance of MNMC may be affected.

As more data sources are available and more compu-
tational models are designed, meta-analysis methods gain 
their popularity in computational biology domain for data 
integration and model combination.14,15 In this paper, we 
propose a meta-analysis approach called “MetaSL,” which 
integrates multiple features into multiple predictive models.16 

In contrast to MNMC, MetaSL assigns different weights to 
the predictions from various models, according to their per-
formances (measured by AUC) during the training process. 
In other words, the final decisions will be made based on a 
weighted consensus derived from votes of the participating 
classifiers. Running on yeast benchmark data, MetaSL was 
able to achieve an AUC of 87.1%, better than MNMC and 
other methods. Moreover, we conducted analysis of feature 
ranking output by MetaSL, which provided biological insights 
into the observed SL of yeast. In addition, we designed vari-
ous orthologous mappings between yeast and human genes. 
By mapping yeast SL to orthologous human genes and taking 
into account the pathways and gene ontology (GO) annota-
tions, this paper reported human SL candidates that may lead 
to discovery of novel anti-cancer drug targets.

Methods
Features from multiple data sources. SL means that 

mutations of two non-essential genes result in a lethal pheno-
type.17 Therefore, two genes with an SL relationship generally 
have back-up functions for each other. To model such rela-
tionship, we collected various features to measure the simi-
larity between two genes, including GO semantic similarity, 
topological similarity in PPI networks, gene expression cor-
relation, and so on. We denote these features as similarity-
based features (S features in short). In addition, the clinical 
applications for each gene in the SL pairs should be non-
essential. We thus collected features for individual genes to 
reflect their propensity to be non-essential and these features 
are denoted as lethality-based features (L features in short). 
All these features are summarized in Table 1. Next, we briefly 
introduce the coding of features from various data sources. We 
calculated the semantic similarity between genes based on the 
GO term similarity that is defined in Ref.18 As we know, GO 
has three sub-ontologies [biological process (BP), molecular 
function (MF), and cellular component (CC)], and we were 
able to calculate a semantic similarity for two genes in each 
sub-ontology of GO. Therefore, we have three features for 
GO semantic similarity between genes. For two genes in a 
PPI network, the number of their common neighbors can be 
utilized to measure their similarity. We employed a simpli-
fied variant of FSweight19,20 to show the topological similarity 
between two genes. In tandem affinity purification with mass 
spectrometry (TAP-MS) experiments, two proteins occurring 
more frequently in the same purifications (ie, bait–prey and 
prey–prey relationships) tend to have a higher similarity. Here, 
we utilized a recently developed method called C2S21 to cal-
culate the similarity from the TAP-MS data. For two genes, 
the Pearson correlation coefficient between their expression 
profiles was also applied to measure their similarity. In addi-
tion, similarity-based features for two genes in this paper 
included their co-complex membership, co-pathway member-
ship, whether or not they are paralogs, as well as the number 
of their common or interacting domains.
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For each gene, the degree (ie, the number of incident 
edges) in a PPI network, the number of paralogs, and the 
number of domains are used as lethality-based features.22 In 
total, 17 features are used to predict SL pairs, consisting of 
11 similarity-based features and 6 lethality-based features.

Individual classifiers and the meta-classifier. Once we 
collected the features for gene pairs, various classifiers can 
be applied to predict whether a given pair of genes is an SL 
pair or not. In this paper, eight classifiers from the WEKA 
machine learning suite23 were used, namely, random forest, 
J48 (a type of decision tree), Bayesian logistic regression, 
Bayesian network, PART (a rule-based classifier), RBFNet-
work, bagging (bootstrap aggregating), and classification 
via regression. Among the eight classifiers, random forest is 
a well-known ensemble classifier. A random forest is a set 
of decision trees such that each tree is built from a random 
subset of features.24 In addition, SVM is a state-of-the-art 
classification technique and it has been proven to be one of 
the best classifiers in many application domains.25 SVM finds 
a maximum-margin hyperplane for classification by solving 
a convex optimization problem. In this paper, we explored 
SVM with linear and Gaussian RBF kernels (using SVMlight 
software26) for predicting SL pairs. With SVM (two kernels) 
and the above eight classifiers from WEKA, we have ten 
individual classifiers in all.

Given a pair of genes x, assume that pi(x) is the probabil-
ity of x to be SL as predicted by the ith classifier (1 # i # N, 
where N is the number of classifiers and is fixed as 10 in this 
paper). The MNMC method13 combines the results from 
the above 10 classifiers in Equation 1. Here, p xii

N ( )
=∏ 1

and 
( ( ))1

1
−

=∏ p xii
N  are the products of the probabilities of the 

instance x to be SL and non-SL, respectively. The score p(x) as 
their difference will thus provide an accurate estimate of the 
likelihood of x to be a true SL pair
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As we know, the above individual classifiers may have 
different performances for classification. However, the 
MNMC method treats them equally when combining them 
in Equation 1 and does not take their relative importance into 
account. In this work, we apply the following weighted sum 
in Equation 2 to combine the individual classifiers. We assign 
the weight wi to the ith classifier based on its classification 
performance during the training process, eg, a classifier with 
higher performance will be assigned with a larger weight. 
Here, we measure the classification performance for classifi-
ers using the AUC, ie, the area under the Receiver Operating 
Characteristics (ROC) curve (AUC), which is a graphical plot 
of the sensitivity vs. 1-specificity for a classifiers as the deci-
sion threshold varies
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Prediction of sL in human cancers. In addition to pre-
dicting new SL pairs from yeast datasets, we also strive to dis-
cover new SL gene pairs of human cancer as potential drug 
targets. Our strategy to predict SL pairs in human cancer is 
through transferring the knowledge from yeast to human via 
comparative genomics. In fact, several existing studies trans-
fer the knowledge from yeast to human beings,9,27–29 based on 
the conservation of genes related to genome integrity and cell 
cycles. In particular, RAD54 and RAD27 form an SL inter-
action in yeast. The authors in Ref. 29 observed that RAD54B-
deficient human colorectal cancer cells can be killed by 
FEN1 silencing, indicating that RAD54B and FEN1 are SL 
partners. This provides us with a successful example of such 
knowledge transfer for SL prediction in human cancers.

In this paper, a human gene pair will be predicted as an 
SL pair in cancer if the following requirements are satisfied. 
First, this human gene pair has a conserved SL interaction 
in yeast. Second, one of these two genes is a gene mutated 
in cancer. For example, two yeast genes yi and yj form an SL 

Table 1. Data sources and features for predicting yeast sL pairs.

dATA SoURCES FEATURES # oF FEATURES REMARk CATEGoRY

Gene ontology semantic similarity 3 3 sub-ontologies s

PPI network topological similarity
Degree in PPI network

1
2

fs-weight
for individual protein

s
L

taP-ms Similarity based on purifications 1 C2s scores s

Protein complexes Co-complex membership 2 real and predicted
complexes

s

Pathways Co-pathway membership 1 s

Gene expression Gene expression correlation 1 Pearson correlation s

Paralog Paralog pair
the number of paralogs

1
2

for individual protein s
L

Domain Common/interacting domains
the number of domains

1
2

for individual protein s
L
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relationship while two human genes hi and hj are orthologs of 
yi and yj, respectively. If hi or hj is a gene that is observed to be 
mutated in a certain type of cancer, (hi, hj) is then a predicted 
as SL pair in the human cancer. As such, we prepare the yeast 
SL pairs, various types of orthologs, and the list of human 
cancer genes as follows for SL prediction in human cancer.

First, we collected two sets of yeast SL pairs, ie, yeast 
ground (YG) truth collected from BioGrid and yeast pre-
dicted (YP) SL pairs.

Second, we use the ortholog pairs based on DNA 
sequences, which were downloaded from Ensembl, to map 
genes from yeast to human beings. In order to map more genes 
between yeast and human beings, we also define the following 
two types of functional orthologs in this paper to map more 
genes orthologous between yeast and human beings.

•	 Functional ortholog, Type 1: To be a pair of this type of 
functional ortholog, two genes from human beings and 
yeast are required to have at least a common domain and 
a GO term in common.

•	 Functional ortholog, Type 2: First, two genes must 
have a domain in common. Second, instead of sharing 
a common GO term, two genes are required to have a 
GO similarity larger than a pre-defined threshold. If the 
threshold value for the GO similarity is high, the second 
type of functional ortholog should be more stringent than 
the first type. In addition, we calculate the GO similarity 
by following the method in Ref.18

Lastly, we collected 507 human cancer genes from COS-
MIC: Cancer Gene Census via the link http://cancer.sanger.
ac.uk/cancergenome/projects/census/. With the list of genes 
mutated in cancer, we can then generate candidate SL pairs in 
human cancer and each pair has one gene from this list.

results
experimental data. Yeast SL data were downloaded 

from BioGRID.30 Originally, there were 10,885 SL pairs in 
total. However, some of them contain essential genes, which  
should be excluded because by the definition of SL each sin-
gle gene in an SL should be non-essential. With the list of 
essential genes downloaded from http://bioinfo.mbb.yale.edu/
genome/yeast/cluster/essential/, we collected 7,347 SL pairs 
where every gene is non-essential. To train various classifiers, 
we considered these 7,347 SL pairs as positive data and gener-
ated the same number of random pairs (they are not involved in 
the positive data and have no essential genes) as negative data.

Gene ontology (GO) data were downloaded from http://
www.geneontology.org/. The yeast PPI data (eg, DIP data31), 
gene expression profiles for yeast genes, and their protein 
domain information were downloaded from Ref.20. The real 
complexes were downloaded from the website of Wodak’s 
lab,32 and the predicted complexes were generated by the 
COACH algorithm33 from DIP data. The sequence orthologs 

between yeast and human genes and the paralogs for yeast 
genes were downloaded from the Ensembl database. The 
pathways for yeast were collected from SGD database, while 
364 pathways for human beings were collected with GeneGO 
MetaCore (https://portal.genego.com).

Table 2 shows some statistics for three types of orthologs. 
For example, there are 5,481 sequence ortholog pairs between 
2,571 yeast proteins and 4,372 human proteins. “Functional” 
and “FunctionalSim” in row 3 and 4 refer to the first and 
second types of functional orthologs, respectively. Here, 
the threshold for generating the second type of functional 
orthologs is set as 0.6. For results with other threshold values, 
refer to Supplementary Table.

Feature importance analysis for yeast sL prediction. In 
our dataset, 17 features are used for predicting yeast SL pairs 
as shown in Table 1. Next, we aim to answer the question – 
which features are most important for SL prediction?

After training the linear SVM, the absolute values of the 
feature weights or coefficients show the importance of these 
features,34 ie, the larger the |cj| is (cj is the coefficient for the 
jth feature), the more important is the jth feature in SL pre-
diction. In addition, the coefficients from LASSO22,35 also 
indicate the importance of individual features. Table 3 shows 
the feature importance indicated by both SVM and LASSO 
coefficients, in which the first column shows individual fea-
tures. For instance, GO_BP_Sim, GO_CC_Sim, and GO_
MF_Sim represent the semantic similarities between two 
genes based on the three GO sub-ontologies – BP, CC, and 
MF, respectively. In addition, Paralog_A and Paralog_B are 
the numbers of paralogs of two genes, while Paralog_AB rep-
resents whether these two genes themselves are paralogs of 
each other. The second and fourth columns are the coefficients 
from linear SVM and LASSO, respectively. For LASSO, the 
shrinkage parameter is set as 0.0134 and we did not perform 
feature normalization. Refer to Supplementary materials for 
shrinkage parameter setting and more results collected by dif-
ferent types of feature normalizations.

For these two feature rankings in Table 3, their Spearman 
correlation coefficient is 0.8554, and such a high Spearman 
correlation demonstrates that they are quite consistent. For 
example, the C2S scores from TAP-MS data are both ranked 
first by the two methods. In addition, the lethality-based 
features, such as degree, paralog, and domain for individual 
genes, have similar importance indicated by both methods. 
The C2S score21 was originally proposed to measure the  

Table 2. statistics for ortholog pairs between yeast and human.

oRTHoLoG  
TYPES

# YEAST  
PRoTEINS

# HUMAN  
PRoTEINS

# oRTHoLoG  
PAIRS

Sequence 2571 4372 5481

functional (type 1) 2281 3800 30498

functionalsim (type 2) 1909 3018 13081
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co-complex membership between two proteins. It is ranked as 
the most important feature, indicating that co-complex infor-
mation would be important for SL prediction. However, two 
features based on the co-complex membership in both real 
and predicted complexes have low importance  demonstrated 
by both SVM and LASSO coefficients. The reason could be 

that only a small number of positive and negative SL pairs are 
co-complex pairs, eg, 167 out of 7,347 positive SL pairs  and 
5 out of 7,347 negative SL pairs are co-complex pairs in real 
complexes. Interestingly, the significant difference between 
the numbers of positive and negative co-complex SL pairs 
(167 vs. 5 in real complexes and 154 vs. 4 in predicted 
complexes) leads to high gain ratio scores (another indica-
tor of feature importance) for these co-complex-based fea-
tures. In particular, the two features of co-complex-real and  
co-complex-pre have gain ratio scores of 0.104 (ranked forth) 
and 0.105 (ranked third), respectively. Therefore, the two fea-
tures based on co-complex memberships have high gain ratio 
scores, which is consistent with the high rank of C2S scores 
measured by SVM and LASSO coefficients. As described 
above, our 17 features can be divided into two categories, ie, 
similarity-based features (S features) and lethality-based fea-
tures (L features). Figure 1 shows the performance of individ-
ual classifiers on the S and L features, from which we can thus 
make the following two observations. First, various classifiers 
achieve significantly higher performance (ie, AUC) on S fea-
tures than L features, implicating that S features are likely to 
be more important for the prediction of SL pairs. Second, indi-
vidual classifiers generally achieve better performances after we 
combined both S and L features (except for two classifiers J48 
and RBFNetwork). This demonstrates that L features are also 
helpful although S features are relatively more important.

Performance of individual classifiers and MetasL. We 
divided our data into two parts, ie, two-thirds of the data for 
training and one-third for testing. On the training data, we per-
form 5-fold cross validation and then obtain the AUC for indi-
vidual classifiers. With the weights for classifiers based on their 

Table 3. feature importance for yeast sL prediction indicated by 
SVM and LASSO coefficients.

FEATURES SvM RANk LASSo RANk

C2s_sim 4.513 1 4.577 1

Degree_a 4.111 2 2.578 2

Degree_B 3.606 3 2.292 3

Paralog_a −2.497 4 −0.86 5

Paralog_B −2.257 5 −0.74 7

Paralog_aB 1.949 6 0.192 11

Domain_B 1.917 7 0.833 6

Go_CC_sim 1.421 8 0.690 8

Domain_a 1.129 9 0.432 9

Go_BP_sim 0.991 10 0 12

Go_mf_sim −0.814 11 −0.259 10

Domain_aB 0.713 12 0 13

PPI_fsweight 0.678 13 −2.099 4

Co-Pathway 0.579 14 0 14

Geneexpression 0.548 15 0 15

Co-Complex-real 0.453 16 0 16

Co-Complex-Pre 0.404 17 0 17
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Figure 1. The performance of various classifiers across different feature sets. The performance of individual classifiers on the S and L features was 
shown.
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AUC, we are then able to combine the results of various clas-
sifiers on the test set using Equation 2. We repeated the above 
process for 50 times. Table 4 shows the average AUC for various 
classifiers on the training data. Supplementary Tables S1 and 
S2 in the Supplementary Materials file show the average accu-
racy and F-measure for various classifiers. As shown in Table 4, 
SVM with RBF kernel (0.863), Bayesian network (BayesNet, 
0.853), and bagging (0.851) achieve higher AUC than other 
individual classifiers on the training data. Assume the ith clas-
sifier achieves an AUC of xi, its weight for MetaSL, wi, is scaled 
by (xi – min)/(max – min). In Table 4, the third column shows 
the AUC for various classifiers over the first run of the experi-
ment, where max = 0.863 (achieved by SVM with RBF kernel) 
and min = 0.679 (achieved by BayeLR).

Figures 2 and 3 show the average AUC and accuracy 
for individual classif iers as well as MNMC and MetaSL 
on the test data, respectively (Supplementary Fig. S1 shows 
the average F-measure). random forest, Bayesian network 
(BayesNet), bagging, and SVM with RBF kernels have 
good and comparable performance, eg, with AUC around 
0.85 and accuracy around 0.76. Meanwhile, MNMC 
achieves an AUC 0.84 and accuracy 0.735. MetaSL 
achieves an AUC 0.871 and accuracy 0.787, outperform-
ing MNMC and the 10 individual classif iers as shown in 
Figure 2. In addition, we also tried different weighting 
schemes for various classif iers. Refer to Supplementary 
f iles for detailed results.

results for predicted yeast sL pairs. We have intro-
duced the results on the training and testing data in the above 
subsections. Next, we show the results of novel yeast SL pairs 
predicted by MetaSL. In our experiments, there are 5,504 non-
essential yeast genes. The number of non-essential genes in 
reality may be less than 5,504 because the list of 694 essential 
genes here is still far from complete. We aim to make predictions 

for all the gene pairs, ie, 5504 * 5503 2 * 7347 15,129,562
2

− =

pairs. However, because of the large number of gene pairs, 
the computational cost would be formidable in terms of both 
running time and memory usage. Therefore, we only make 
predictions for a subset of candidate pairs (eg, 100,000 pairs). 
C2S score provides an accurate measurement for similarity 
between proteins,21 and it is the most important feature for 
predicting SL pairs as shown in Table 3. Hence, we select 
the first 100,000 pairs with the highest C2S scores, which 
are more likely to be true SL interactions than the remaining 
15,029,562 pairs.

Table 5 shows the top 10 yeast SL interactions predicted 
by MetaSL. We observe that in these gene pairs, the two genes 
tend to have high functional similarity, eg, 9 out of these 10 
pairs have GO similarity higher than 0.65 as shown in the 
third column. In particular, it is interesting to notice that the 
following three pairs: (YNL104C, YOR108W), (YLR186W, 
YPL217C) and (YBR009C, YNL030W) have already been 
reported as genetic interactions in BioGRID.30 Moreover, 
the two genes in the pair (YNL104C, YOR108W), which is 
ranked as second in Table 5, have relation of synthetic growth 
defect as validated by experiments.36 In addition, for all the 
three pairs of genes (YNL104C, YOR108W), (YBR009C, 
YNL030W) and (YLR270W, YOR173W), each pair shares 
common protein domains. Therefore, we believe that gene 
pairs ranked high by MetaSL provide good candidates for 
experimental screening of SL in the future.

Predicted sL pairs in human cancers. As introduced in 
the “Prediction of SL in human cancers” section, we aimed 
to predict SL pairs in human cancers from yeast SL pairs via 
knowledge transfer. In this paper, we have 7,347 yeast SL 
pairs collected from BioGrid, which serve as training data for 
MetaSL. We denote this set of yeast SL pairs as YG, which 
stands for yeast ground truth. We can also select the same 
number of SL pairs with top scores, which are predicted by 
MetaSL. We denote this set as YP representing yeast predicted 
SL pairs. With these yeast SL pairs, the orthologs between 
yeast and human beings in Table 2, as well as the genes mutated 
in cancer from COSMIC, we can thus collect six sets of human 
SL pairs in cancer as shown in Table 6. In Table 6, the first 
column shows various sets of human SL pairs. For example, 
“HumanSL-YG-Functional” refers to the set of human SL 
pairs predicted from YG using functional orthologs for map-
ping. The other five sets of human SL pairs are named similarly. 
In addition, we also downloaded 113 human SL pairs from the 
Syn-Lethality database,37 which were collected from literature 
on wet-lab experiments. The second column is the number of 
SL pairs in each dataset and the third column shows the num-
ber of SL pairs whose two proteins are involved in the same 
pathways. Each SL pair has a semantic similarity based on the 
GO annotations of the proteins. The last column is the average 
GO similarities for all the SL pairs in each dataset.

For six predicted SL sets, two proteins of an SL pair 
are rarely involved in the same pathways, eg, “HumanSL-
YP-Functional” has only 3.48% (537 out of 15,432) SL pairs 

Table 4. Average AUC for various classifiers on the training yeast 
data over 50 repeated experiments.

CLASSIFIERS AvERAGE AUC AUC  
(RoUNd 1)

wEIGHTS  
(RoUNd 1)

random forest 0.841 ± 0.0029 0.843 0.922

J48 0.776 ± 0.0062 0.775 0.391

BayesLr 0.721 ± 0.0029 0.725 0

Bayesnet 0.853 ± 0.0023 0.851 0.984

Part 0.834 ± 0.0043 0.833 0.844

rBfnetwork 0.733 ± 0.0146 0.792 0.523

Bagging 0.851 ± 0.003 0.853 1

ClassViareg 0.838 ± 0.0033 0.846 0.945

sVm 0.792 ± 0.0029 0.795 0.546

sVm-rBf 0.863 ± 0.0026 0.849 0.969
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whose two proteins co-occur in the same pathways, and the 
percentages of co-pathway pairs in the other five sets are even 
lower. However, in the Syn-Lethality database, 17 out of 113 
real SL pairs have two proteins from the same pathways. The 
ratio for the Syn-Lethality database (ie, 15.04%) is much 
higher than the predicted datasets, implying that we should 
explore more pathway information for SL prediction.

Two proteins with SL interactions are often backup of 
each other for some important function and are thus supposed 
to have high functional similarity. However, YG for yeast and 
the Syn-Lethality database for human beings, as the benchmark 

datasets for SL pairs, have low average GO similarity scores 
0.355 and 0.390, respectively. Meanwhile, we observe in 
Table 6 that two datasets “HumanSL-YG-FunctionalSim” 
and “HumanSL-YP-FunctionalSim” have not only the highest 
average GO similarities but also the lowest ratio of pairs whose 
two proteins are from the same pathways. These results suggest 
that we should not rely too much on functional information, but 
integrate these two data sources (ie, pathways and GO annota-
tions) in an effective manner for SL prediction in the future.

case studies for human sL pairs. Note that two dif-
ferent SL pairs in YG and YP may predict the same human 
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Figure 2. Average AUC of various classifiers including MNMC and our MetaSL on the test data.
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SL via ortholog mapping. Such SL pairs are considered to 
more promising as they have evidence from YG and YP. In 
particular, two datasets “HumanSL-YG-Functional” and 
“HumanSL-YG-Functional” in Table 6 have 10,834 SL pairs 
in common. Six out of these 10,834 SL pairs are also involved 
in the Syn-Lethality database. These six SL pairs are between a 
proto-oncogene EGFR and other six genes, namely AURKA, 
PRKACB, PRKCD, PRKCE, PRKCZ, and RPS6KA5 
(S6K). In addition, Figure 4 shows a predicted human SL rela-
tionship between EGFR and PRKCZ. Next, our case studies 
are focused on these SL pairs with EGFR. EGFR as a proto-
oncogene belongs to a family of four transmembrane receptor 
tyrosine kinases that mediate the growth, differentiation, and 
survival of cells. It is associated with a number of human cancers 
and is a validated cancer therapeutic target.38,39 Figure 5 shows 
several EGFR related pathways, which lead to tumorigen-
esis, tumor proliferation, metastasis, chemoresistance, and 
radioresistance.40 In Ref.38, the authors constructed a protein 
network centered on EGFR and designed siRNA screens for 
this network. They found that the drugs targeting the pro-
teins connecting to EGFR, such as protein kinase C family 
(eg, PRKCD and PRKCE) and Aurora kinase A (AURKA), 
synergized with EGFR inhibitors to reduce cell viability and 
tumor size. For example, co-inhibition of EGFR and AURKA 

would reduce SRC family kinase activity. In addition, siRNA 
hits on RPS6KA5 and PRKACB also enhances apoptosis in 
the presence of EGFR inhibitor.38 It is interesting that most 
of these EGFR-related SL pairs (EGFR and red proteins) are 
involved in the pathways in Figure 5. It may indicate that sig-
naling pathways are promising for us to understand and inter-
pret the underlying mechanisms of SL.

discussion and conclusions
SL based anti-cancer treatment is an emerging strategy that 
targets critical difference between normal and tumor cells, 
thereby killing tumor cells selectively. The sequencing tech-
nologies have provided new data about somatic mutations 
and other alterations in cancer. Finding SL partners of these 
cancer-specific mutated genes would provide promising can-
didates of drug targets. However, because of the high cost of 
wet-lab screening of genetic interactions, there is a dearth of 
confirmed SL in human cancer. With abundant benchmark 
data, yeast is a good model organism for the study of SL. But 
even for yeast, the number of benchmark SL may be still low. 
Thus, computational methods are expected to play important 
roles for large-scale discovery of SL.

In this paper, we proposed an integrative approach 
that combines multiple genomic and proteomic features and 

Table 5. top 10 predicted yeast sL pairs and their Go term similarity.

RANk GENE A GENE B Go  
SIMILARITY

CoMMoN Go TERMS

1 Ymr128W YPL217C 0.787

2 YnL104C Yor108W 1 leucine biosynthetic process

3 YLr186W YnL075W 0.652

4 YHr148W Yor310C 1 ribosome biogenesis and assembly

5 YLr186W YPL217C 0.525

6 YKL172W YLr276C 0.691 ribosome biogenesis and assembly

7 YLr270W Yor173W 1 deadenylation-dependent decapping

8 YBr065C YPL151C 0.707 nuclear mrna splicing, via spliceosome

9 YBr009C YnL030W 1 chromatin assembly or disassembly

10 YnL075W YPr144C 0.771 ribosome biogenesis and assembly
 

Table 6. Human sL pairs in cancers.

dATASETS oF HUMAN SL PAIRS # SL PAIRS # PAIRS wHoSE Two GENES ARE INvoLvEd  
IN THE SAME PATHwAYS (RATIo)

Go SIMILARITY

HumansL-YG-functional 44140 980 (2.2%) 0.352

HumansL-YG-functionalsim 2166 2 (0.09%) 0.647

HumanSL-YG-Sequence 1219 14 (1.15%) 0.323

HumansL-YP-functional 15432 537 (3.48%) 0.390

HumansL-YP-functionalsim 1544 1 (0.06%) 0.589

HumanSL-YP-Sequence 384 6 (1.57%) 0.369

HumansL-113 113 17 (15.04%) 0.390
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multiple machine learning methods into one meta-analysis 
system called “MetaSL” for yeast SL prediction. Our features 
consist of those depicting similarity between two genes and 
the lethality of single genes. As far as we know, only one pre-
vious method (called “MNMC”) combines multiple classifiers 
to predict SL.13 However, MNMC treats the results of dif-
ferent methods equally, despite their different performances. 
By contrast, our method of MetaSL takes into account the 
differences of predictive methods, using AUC-based weights 

learned from the training data of yeast SL. We have also 
analyzed the relative importance of features for the predictive 
performance, which sheds lights on causal factors of SL inter-
actions. Testing on the SL benchmark data of S. cerevisiae, 
MetaSL achieved an AUC of 87.1%, the highest among all 
methods of SL prediction. Furthermore, we designed various 
orthologous mappings between human and yeast genes, and 
then we identified SL in human cancer through knowledge 
transfer from yeast to human.

In spite of promising performance of MetaSL, we have 
noticed its limitations, which point to future work. First, 
although our feature weight ranking and GO analysis pro-
vide some clues about causal factors of SL, the underlying 
mechanisms of SL remain unclear. To address this issue in 
future, we will add pathway analysis to interpret the discov-
ered SL pairs. Using additional post-processing, we hope to 
filter out false positives and select top reliable SL candidates 
for experimental studies. Second, the number of features we 
have used here is still low, and there are inter-dependence 
among features. In future, we will collect a comprehensive 
set of features (eg, considering epigenetic features of histone 
modifications) and conduct feature selection before training 
our model.

 Overall, SL-based cancer medicine is still in its infancy. 
Our method of MetaSL combines strengths of previous com-
putational methods by meta-analysis of genome-wide features 
of yeast genes. By integrating additional data and knowledge, 
we will not only improve the predictive performance but also 
gain mechanistic understanding of SL, which will contribute 
to the design of next-generation anti-cancer therapies.

EGFR PRKCZ
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YDR477W YER129W

SL from YG

SL from YP

Predicted SL in 
human cancer

GO:0006468GO:0007165

GO:0006468 
GO:0007165

GO:0006468 
GO:0007165

Figure 4. a predicted human sL between eGfr and PrKCZ in cancer. 
the sL interaction between Yor231W and YPL140C is from the yeast 
ground-truth YG, while the one between YDr477W and Yer129W is a 
predicted sL pair (from YP). the arrowed lines show functional orthologs 
between proteins. In fact, all six proteins in this figure have a PFam 
domain in common, ie, Pf00069. In addition, Yor231W, YPL140C, 
eGfr, and PrKCZ have two Go terms in common, ie, Go:0006468 and 
Go:0007165. eGfr and YDr477 share Go:0007165 while PrKCZ and 
Yer129W share Go:0006468.
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Figure 5. Predicted human SL pairs involved in EGFR pathways. The figure shows several EGFR pathways,40 which often lead to tumorigenesis, tumor 
proliferation, metastasis, chemoresistance, and radioresistance. Receptor tyrosine kinase (RTK) includes EGFR and IGFR. In this figure, proteins in red 
including PrKC family, s6K (rPs6Ka5), and aUrKa are predicted as sL partners of eGfr.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Wu et al

80 CanCer InformatICs 2014:13(s3)

Acknowledgments
A preliminary version of this work was presented at the ACM 
Conference on Bioinformatics, Computational Biology and 
Biomedical Informatics (ACM BCB, 2013), Washington 
DC, USA, and included in its Proceedings, pp. 384–391.

Author contributions
Conceptualized and designed the method: MW, JZ. Drafted 
the manuscript together: MW, XJL, JZ. Responsible for the 
implementation: MW, FZ. Participated in discussion and 
conceptualization as well as revising the draft: CKK, XLL. 
All authors read and approved the manuscript.

supplementary Materials
supplementary tables. This file contains a table for the 

Type II Functional Orthologs.
supplementary Materials. In this file, three results 

are shown: the average F-measure for individual classifiers, 
MNMC and MetaSL (in the main manuscript, we showed 
the average AUC); the LASSO coefficients for the feature 
importance; comparisons among various weighting schemes 
for MetaSL.

reFerences
 1. Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer 

drug discovery. Nat Rev Drug Discov. 2011;10:351–64.
 2. Iglehart JD, Silver DP. Synthetic lethality – a new direction in cancer-drug 

development. N Engl J Med. 2009;361:189–91.
 3. Hartman JL, Garvik B, Hartwell LH. Principles for the buffering of genetic 

variation. Science. 2001;291:1001–4.
 4. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH. Integrat-

ing genetic approaches into the discovery of anticancer drugs. Science. 
1997;278:1064–8.

 5. Tong AH, Evangelista M, Parsons AB, et al. Systematic genetic analysis with 
ordered arrays of yeast deletion mutants. Science. 2001;294:2364–8.

 6. Ooi SL, Shoemaker DD, Boeke JD. DNA helicase gene interaction net-
work defined using synthetic lethality analyzed by microarray. Nat Genet. 
2003;35:277–86.

 7. Collins SR, Schuldiner M, Krogan NJ, Weissman JS. A strategy for extracting 
and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 
2006;7:R63.

 8. Collins SR, Miller KM, Maas NL, et al. Functional dissection of protein com-
plexes involved in yeast chromosome biology using a genetic interaction map. 
Nature. 2007;446:806–10.

 9. Conde-Pueyo N, Munteanu A, Solé RV, Rodríguez-Caso C. Human synthetic 
lethal inference as potential anti-cancer target gene detection. BMC Syst Biol. 
2009;3:116.

 10. Qi Y, Suhail Y, Lin YY, Boeke JD, Bader JS. Finding friends and enemies in 
an enemies-only network: a graph diffusion kernel for predicting novel genetic 
interactions and co-complex membership from yeast genetic interactions. Genome 
Res. 2008;18:1991–2004.

 11. Paladugu S, Zhao S, Ray A, Raval A. Mining protein networks for synthetic 
genetic interactions. BMC Bioinformatics. 2008;9:426.

 12. Li B, Cao W, Zhou J, Luo F. Understanding and predicting synthetic lethal 
genetic interactions in Saccharomyces cerevisiae using domain genetic interactions. 
BMC Syst Biol. 2011;5:73.

 13. Pandey G, Zhang B, Chang AN, et al. An integrative multi-network and 
multi-classifier approach to predict genetic interactions. PLoS Comput Biol. 
2010;6(9):e1000928.

 14. Tseng G C, Ghosh D, Feingold E. Comprehensive literature review and 
statistical considerations for microarray meta-analysis. Nucleic Acids Res. 
2012;40(9):3785–99.

 15. Chang LC, Lin HM, Sibille E, Tseng GC. Meta-analysis methods for combin-
ing multiple expression profiles: comparisons, statistical characterization and an 
application guideline. BMC Bioinformatics. 2013;14:368.

 16. Wu M, Li XJ, Zhang F, Li XL, Kwoh CK, Zheng J. Meta-analysis of genomic 
and proteomic features to predict synthetic lethality of yeast and human cancer. 
In: Proceedings of the International Conference on Bioinformatics, Compu-
tational Biology and Biomedical Informatics (ACM-BCB). Washington DC, 
USA: ACM; 2013:384–91.

 17. Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction essential-
ity and synthetic lethality analysis. Mol Syst Biol. 2009;5:301.

 18. Wang JZ, Du Z, Payattakool R, Yu P, Chen C. A new method to measure the 
semantic similarity of GO terms. Bioinformatics. 2007;23:1274–81.

 19. Chua HN, Sung WK, Wong L. Exploiting indirect neighbours and topo-
logical weight to predict protein function from protein-protein interactions. 
Bioinformatics. 2006;22:1623–30.

 20. Wu M, Li X, Chua H, Kwoh C-K, Ng S-K. Integrating diverse biological 
and computational sources for reliable protein-protein interactions. BMC 
Bioinformatics. 2010;11(S7):S8.

 21. Xie Z, Kwoh CK, Li X, Wu M. Construction of co-complex score matrix for 
protein complex prediction from AP-MS data. Bioinformatics. 2011;27:il59–66.

 22. Yuan Y, Xu Y, Xu J, Ball RL, Liang H. Predicting the lethal phenotype of the 
knockout mouse by integrating comprehensive genomic data. Bioinformatics. 
2012;28:1246–52.

 23. Hall M, Frank E, Holmes G, Plahringer B, Reutemann P, Witten IH. The 
WEKA data mining software: an update. SIGKDD Explor. 2009;11:10–18.

 24. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 25. Vapnik VN. The Nature of Statistical Learning Theory. New York, NY, USA: 

Springer-Verlag; 1995.
 26. Joachims T. Making large-scale SVM learning practical. Advances in Kernel Meth-

ods: Support Vector Machines. Cambridge, MA, USA: MIT Press; 1999:169–84.
 27. Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM. Protein inter-

action networks from yeast to human. Curr Opin Struct Biol. 2004;14:292–9.
 28. Yuen KW, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA. Systematic 

genome instability screens in yeast and their potential relevance to cancer. Proc 
Natl Acad Sci USA. 2007;104:3925–30.

 29. McManus KJ, Barrett IJ, Nouhi Y, Hieter P. Specific synthetic lethal killing of 
RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl 
Acad Sci USA. 2009;106:3276–81.

 30. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, et al. The BioGRID interaction 
database: 2011 update. Nucleic Acids Res. 2011;39:698–704.

 31. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The data-
base of interacting proteins: 2004 update. Nucleic Acids Res. 2004;30:449–51.

 32. Pu S, Wong J, Turner B, Cho E, Wodak SJ. Up-to-date catalogues of yeast pro-
tein complexes. Nucleic Acids Res. 2009;37:825–31.

 33. Wu M, Li X, Kwoh CK, Ng SK. A core-attachment based method to detect 
protein complexes in PPI networks. BMC Bioinformatics. 2009;10:169.

 34. Chang YW, Lin CJ. Feature ranking using linear SVM. J Mach Learn Res. 
2008;3:53–64.

 35. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series 
B Stat Methodol. 1996;58:267–88.

 36. DeLuna A, Vetsigian K, Shoresh N, et al. Exposing the fitness contribution of 
duplicated genes. Nat Genet. 2008;40:676–81.

 37. Li X, Mishra SK, Wu M, Zhang F, Zheng J. Syn-lethality: an integrative knowl-
edge base of synthetic lethality towards discovery of selective anticancer thera-
pies. BioMed Res Int J. 2014;2014:1–7.

 38. Astsaturov I, Ratushny V, Sukhanova A, et al. Synthetic lethal screen of an 
EGFR-centered network to improve targeted therapies. Sci Signal. 2010;3:ra67.

 39. Brand TM, Iida M, Li C, Wheeler DL. The nuclear epidermal growth factor 
receptor signaling network and its role in cancer. Discov Med. 2011;12:419.

 40. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for 
targeted therapy. Clin Cancer Res. 2006;12:5268–72.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

