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ABSTRACT 
Internet search is one of the most important applications of the 
Web. A search engine takes the user’s keywords to retrieve and to 
rank those pages that contain the keywords. One shortcoming of 
existing search techniques is that they do not give due 
consideration to the micro-structures of a Web page. A Web page 
is often populated with a number of small information units, 
which we call micro information units (MIU). Each unit focuses 
on a specific topic and occupies a specific area of the page. 
During the search, if all the keywords in the user query occur in a 
single MIU of a page, the top ranking results returned by a search 
engine are generally relevant and useful. However, if the query 
words scatter at different MIUs in a page, the pages returned can 
be quite irrelevant (which causes low precision). The reason for 
this is that although a page has information on individual MIUs, it 
may not have information on their intersections. In this paper, we 
propose a technique to solve this problem. At the off-line pre-
processing stage, we segment each page to identify the MIUs in 
the page, and index the keywords of the page according to the 
MIUs in which they occur. In searching, our retrieval and ranking 
algorithm utilizes this additional information to return those most 
relevant pages. Experimental results show that this method is able 
to significantly improve the search precision. 

1. INTRODUCTION 
One of the most important applications of the Web is the 
search using search engines, e.g., AltaVista, Google, 
Yahoo, etc. These search systems allow the user to specify 
some keywords to retrieve those Web pages that contain 
the keywords. A major shortcoming of the current 
techniques is that they do not consider different topic areas 
of a page. Typically, the contents of a Web page 
encompass a number of related or even unrelated topics. 
Each topic usually occupies a separate area in the page. We 
call each topic area a micro information unit (or MIU in 
short). For example, a bookstore Web page selling books 
may include other diverse information like stock market 
quotations and weather forecasting. A personal homepage 
may contain information on different interests of its owner.  

A micro information unit (MIU) is a coherent topic area 
according to its content, and it is usually also a visual block 
from the display point of view. If the user’s query terms (or 
keywords) occur in a single MIU of a Web page, the pages 
returned by a search engine are generally relevant and 
useful. However, if the keywords scatter at different MIUs, 
it can cause low precision of the returned search results. 
Although many search engines are able to consider relative 
distances of keywords [4] (among others, e.g., word 
frequency, authority and hub scores, etc) in a Web page in 
their ranking processes, they do not consider whether these 
words occur in different MIUs or a single MIU.  

Let us use an example to illustrate the problem. For 
instance, we wish to find some free downloadable videos. 
We issue the search query “free download video” to the 
search engine Google. Google returns a large number of 

Web pages. However, most top ranking pages do not offer 
any free downloadable videos. For example, the first page 
returned by Google does contain the three keywords “free”, 
“download” and “video” (Figure 1). It is a site that sells 
software for playing audio and video. It does not have any 
free video for downloading. From Figure 1, we observe 
that “free”, “download” and “video” (circled in the figure) 
appear in different MIUs or topic areas. 

In this paper, we propose a technique to deal with the 
problem. The key idea is to segment each Web page to 
identify different micro information units or topic areas 
according to its HTML tags and contents. In searching, if 
the keywords of a query occur in the same MIU, the Web 
page will be given a higher ranking score. Otherwise, it 
will be given a lower ranking score. In the proposed 
technique, page segmentation and indexing according to 
MIUs in a Web page is done in off-line pre-processing. We 
show that the additional information on MIUs can be 
naturally integrated with inverted lists indexing commonly 
used by Web search engines. In on-line search, our 
retrieval and ranking algorithm makes use of this MIU 
information to sort the relevant pages. Due to seamless 
integration of MIUs with inverted lists, additional 
computation required during searching is minimum.  

The proposed technique is intended to be used as an 
advanced search option for a search engine (which we also 
call the base search engine). That is, when the precision of 
the results returned by the base search engine is low, we 
can employ the proposed technique to re-rank the results.  

To evaluate the proposed technique, we used Google as 
the base search engine. When the precision of the returned 
results by Google is low, we re-rank its top 200 pages. 
Experimental results (including comparison with 
AltaVista) show that our method is able to improve the 
search precision dramatically, i.e., after re-ranking the 
number of relevant pages at the top of the list increases 
significantly.  
2. RELATED WORK 
The key issue in Web search is how to efficiently retrieve 
relevant Web pages with high precision for its top ranking 
results. The main technique used in current search engines 
is keyword matching. In recent years, a number of works 
were reported to improve search by using additional 
information from Web pages. [4] presents the Google 
search engine, which employs link structures and anchor 
text in addition to the traditional factors such as word 
occurrence and frequency to make relevance judgments. 
[18] presents a similar link-based search method. [16] 
examines the actual pages suggested by multiple search 
engines and then displays the results according to the user’s 
query. Clever search engine [6] incorporates several 
algorithms (i.e. HIT algorithm) that make use of hyperlink 
structure for discovering high-quality information on the 
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tion to identify related pages. These works are all 
t from ours, as they do not segment each Web page 
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ng of multiple physical pages. Our micro 
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 tag tree for the purpose of computing authority and 
res of the intermediate subtrees in relation to other 
nd links. This is different from our work as we aim 
coherent topic areas of the current page using both 
tents and display properties. 

mentation of text documents has been studied 
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ulti-source methods [7]. The former identifies 
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tistical language models and cue words [1, 3]. In 
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gth text documents and reported good results of 
cal structures for information retrieval.  
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zoom in on parts of the full text that are meaningful 
ask. [8] utilizes the reciprocal of the length of each 
 as an estimate of its relevance. [20] discusses that 
ery occurs in unrelated context results in non-
t document return.  
 Web search based on MIUs is different from the 

research above. The nature of Web pages differs from a 
static text document. Web contents can switch from one 
topic to a completely different topic abruptly without 
requiring additional textual cues to “bridge the topic shift”. 
Gradual topic shifts in text documents are often indicated 
by certain textual cues (e.g., “next, consider…”, “firstly… 
secondly...”). Such cues, employed by text segmentation, 
are not applicable to Web pages. In our case, we 
considered the changes in visual cues (e.g., bold emphasis, 
sudden increase in font-size, change in font-color) of Web 
pages. Visual cues offer indications that a topic may have 
shifted within a Web page. In our Web page segmentation, 
we make use of both contents and presentation styles or 
visual features of the Web page to segment the page.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The first page from Google for the query, “free download video” 

3. PRE-PROCESSING WEB PAGES 
We now present the proposed technique. This section 
focuses on pre-processing of each Web page, i.e., building 
a HTML tag tree and segmenting the Web page into MIUs 
using the tag tree. The next section describes our ranking 
algorithm. All the procedures discussed in this section are 
done off-line. Since the proposed technique is used as an 
advanced search method or option for a base search engine, 
all the required information is assumed to be stored at the 
base search engine site. 
3.1 Building HTML tag trees 
Web pages are hypertext documents written in HTML that 
consists of plain text, tags and links to image, audio, and 
video files, etc. Like most search engines, our technique 
only uses plain text and tags in search. Plain text are strings 
of characters not embedded within any tags. It can have 
different appearances in terms of color, font, size and style 
as specified by tags. Tags (enclosed by a pair of angular 
brackets) define the display properties and characteristics 
of a Web page. In general, most Web documents are 
constituted of opening and closing pairs of HTML tags 
(indicated by < > and </> respectively). Within each 



corresponding tag-pair, it can contain other pairs of tags, 
resulting in nested blocks of HTML codes.  
    Based on the nature of nested structure of HTML codes, 
a HTML Tag Tree can be built in a fairly straightforward 
manner for each Web page using its HTML source. A node 
in the tag tree contains a tag name, content text and its 
display attributes (color, font, size, etc). 
3.2 Segmenting the Tag Tree into MIUs  
We now segment the Web page into various MIUs using 
the tag tree. Although the tag tree already gives us an initial 
segmentation of the page, it is often too refined and is 
solely based on presentation features of the page. We need 
to merge some nodes in the tree to form coherent topic or 
information units. Our segmentation technique is based on 
both content and display similarities.  

Merging of nodes is done in two steps: (1) merging each 
heading and its immediate content paragraph (note that a 
content paragraph may not have the <p> and </p> tags); (2) 
merging two adjacent text paragraphs. Below, we discuss 
these steps in turn. 
Step 1 - Merging each heading and its immediate content 
paragraph: In this step, we scan all the sibling nodes of a 
sub-tree from left to right to find all heading and paragraph 
pairs. This is performed in 2 sub-steps:  
(i)Identifying all potential heading and content paragraph 
pairs: Let A and B be any two different leaf nodes of a sub-
tree. We use Len to denote the length (number of words) of 
the text string stored in A or B. We use tagRank to denote 
the font emphasis given to the text strings stored in A or B. 
The value of tagRank is based on the priority. The highest 
value of tagRank is assigned to header tags (e.g..: <h1>, 
<h2> and so on), followed by formatting tags (e.g. <b>, 
<strong>, <blink>) and enlarged font sizes (<big>, 
<size…>). All the other tags are assigned the same rank 
value that is lower than the three types above. In general, a 
paragraph heading tends to be more prominent and distinct 
in terms of font size or appearance as compared to its 
content paragraph.  
    We use Neig(A, B) to denote the neighboring relation of 
A and B, and node A is the left neighbor of B. The 
following condition is used to determine whether A is a 
potential heading for B (or B is A’s immediate content 
paragraph). ((A∩B) ≠ ∅) means at least one word (term) in 
A (node A) also occur in its immediate text paragraph B). 

(tagRank(A) >= tagRank(B)) ∧ (Len(A)  
<Len(B)) ∧ Neig(A, B) ∧ (A∩B) ≠ ∅)               (1)                          9                endfor 

    Here, we use the length of A and B, font size attributes of 
A and B, and their neighborhood relation to check whether 
A is potentially a heading for B. Note that this is computed 
after stop-words elimination and word stemming have been 
performed. We use the Porter’s algorithm given in [22] for 
the purposes.  
(ii) Further evaluation: After (i), we have identified all the 
potential pairs. This sub-step further evaluates them using 
their display properties. For each (A, B) pair, we try to find 
the next pair (C, D) which also has a possible heading and 
content paragraph relationship as computed in sub-step (i). 
We then evaluate A, B, C and D using the display 
similarity, DisplaySim. DisplaySim counts the number of 
identical features (display properties) of any two nodes. We 
use the following condition: 
       ∃(C, D), Neig(C, D) ∧ (DisplaySim(A, C) >= δ )  
       ∧ (DisplaySim(B, D) >= δ )       (2) 

where DisplaySim(X, Y) =  |X.features ∩ Y.features| (which 
is the size of the intersection). The set of features includes 
font, size, color, tag name, and default. We set 3=δ  
(determined from experimental observations), which means 
if (DisplaySim(A, C) >= 3) we consider they have high 
display similarity (this also applied to B and D). 
    This condition basically tries to see whether A and B 
have a parallel pair (C, D). If so, we confirm the heading 
and content paragraph relationship of A and B, and that of 
C and D. We believe that the display property comparison 
is more meaningful here since people often are able to 
segment a Web page correctly even they do not know the 
content of the page.  
    If conditions (1) and (2) are both satisfied, we merge 
nodes A and B, and at the same time nodes C and D, i.e., to 
put the attributes of B into A, and the attributes of D into C. 
Nodes B and D are deleted.  
Step 2 - Merging two adjacent text paragraphs: Here, we 
wish to join similar text paragraphs (some paragraphs may 
contain their headings after step 1). Let X and Y be two text 
paragraph nodes within the same sub-tree. We now 
compute their degree of content similarity, ContentSim(X, 
Y). The inner product [17] is employed for the purpose (m 
is the total number of terms or keywords in X ∪ Y). If term 
i exists in X, then xi = 1, otherwise xi = 0. If i exists in Y, xi’ 
= 1, otherwise xi’ = 0. 
                                                                                         (3)∑=

m

ii x'xY)(X,ContentSim
If ContentSim(X,Y) ≥ ϖ , we say that nodes X and Y 

have a high similarity. We can combine their contents, i.e., 
placing the content Y of into X. We set ϖ = 2, which is 
determined from experiments that reflect the acceptable 
level of similarity among various nodes well.  

i=1

    The overall algorithm is given in Figure 2. maxDepth is 
the maximum depth of the original tag tree. treeDepth is 
the depth of the tree that is being worked on. Stree is the 
set of all sub-trees at depth treeDepth. Each subtreei only 
contains leaf nodes, and no sub-trees below.  
1  for (treeDepth = maxDepth –1; treeDepth < 0; treeDepth--) do  
2    Stree ={subtreei| subtreei is a sub-tree at level treeDepth}; 
3    while |Stree| > 0 do /* |Stree| is the size of the set Stree  */ 
4          for each subtreei ∈ Stree do 
5               for each Neig(A, B) do 
6                  if conditions (1) is satisfied  then 
7                     if ∃pair(C, D) & conditions (2) is satisfied then 
8                         Merge node A and B; 

10        endfor 
11        for each subtreei ∈ Stree do 
12               Scan all the nodes and their sibling nodes; 
13               if ContentSim(X,Y) ≥ ϖ ,then 
14                   Merge node X and Y;  
15        endfor 
16        for each subtreei ∈ Stree do 
17               If A has no sibling then   
18                   move its content into its parent and delete it    
19       endfor                 
20   endwhile 
21 endfor 
Figure 2: Merging nodes of a tag tree (segmenting a page) 

4. THE RANKING ALGORITHM 
After obtaining the MIUs from each page through 
segmentation, we index the Web pages in such a way that 
they can be retrieved and ranked quickly. As in normal 
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search, we also use inverted lists to store the information of 
the Web pages. Thus, the search technique we adopted is 
similar to those in a normal search engine [4]. The main 
difference is that in our technique we need to index and 
retrieve MIUs of each page. We simply add an extra data 
structure to each inverted list node to indicate in which 
MIUs each word appears. Figure 3 illustrates the inverted 
lists indexing with the data structures for MIUs: 

Here Itemi (i =1, 2, …) is a word, Dij  is the j-th 
document that Itemi occurs in and MIUxy is the y-th MIU in 
the x-th subtree of the page Di1. Each node includes three 
fields: ID (document ID), seg (a pointer to all the MIUs of 
the page containing Itemi), next (a pointer to next page). 
Note Dij in an inverted list is stored in the increasing order. 
For any user query, Q = {k1, k2 …… , kn}, we will consider 
if the words occur in the same or neighboring MIUs in the 
same subtree of the same page.   
    A search engine typically considers many factors in its 
ranking algorithm, e.g., hyperlink information (such as 
authority score and hub score), word count-weight, type-
weight (title, anchor, URL, font size, etc), and type-prox-
weight (how close multi-words occur in every type) [4]. In 
our ranking algorithm, we only focus on whether the query 
terms occur in a single MIU (or 2 neighboring MIUs within 
the same sub-tree) of a page. Since the proposed technique 
is intended to be used as an advanced search method for a 
base search engine, we utilize our MIU-based information 
and also the ranking information from the base search 
engine in our ranking process. The reason that we need 
ranking information from the base search engine is because 
we do not need to consider other factors except our MIU-
based factor in our ranking algorithm. However, since we 
do not have access to any existing search engine program, 
only the ordering information of the pages returned by the 
base search engine is employed in our current ranking 
algorithm. If a search engine system is available, all factors 
should be integrated in a more sophisticated manner. 
Section 5 shows that even this simple approach is already 
able to produce remarkably good results.  

The proposed ranking method aims to re-rank the 
results returned by the base search engine when the 
precision of its results is poor. The number of pages to be 
re-ranked is specified by the user. In our experiments, we 
re-rank the first 200 pages from Google. Re-ranking is 
done on-line at query time. Pre-processing as discussed in 
Section 3 is done off-line for all the pages at the search 
engine site, as it is not possible to know what queries will 
be issued by users, and it is too slow to do pre-processing 
of the top ranking pages from the base search engine at 
query time.    

Our ranking algorithm basically computes two scores 
for each page, a primary score and a secondary score. The 
primary score is the maximum number of query terms that 
occur in a MIU of the page p. Let segi be the terms 
contained in i-th MIU of p, and queryTerms be the set of 

terms in the user query. The primary score of page p 
(denoted by prScore(p)) is computed as follows:  
  maxarg segprScore ∩=
    If the primary score of page p is less than the number of 
query terms (i.e., not all query terms are covered), we 
compute the secondary score, which takes into account of 
the neighboring MIU on the right of each MIU in the same 
sub-tree. Let segji be the set of terms in the ith MIU of the 
sub-tree j. The secondary score of p (denoted by 
seScore(p)) is computed with:  

ii

 
 
  arg=

The overall ranking algorithm is given in Figure 4.  
1      Create a set of variables pageSeti, i = 1, …, n; 
2 pageSeti =∅; 
3 for all p ∈ AllPages do prScore[p] = 0, seScore[p] = 0; 
4 Retrieve the inverted lists of the query words k1, k2, ……, kn; 
5 Initialize pointer set: L={p1, p2, …, pn}, here each pi point to 

the first node in the corresponding link list; 
6 while ∃pi ≠ Nil, pi ∈ L do   
7         md = min(pi.id), pi ∈ L; 
8         Construct a pointer set LS from L: {pj|pj.id = md}; 
9         if |LS| = 1 then  
10                prScore[pj.id] = 1, seScore[pj.id] = 1; 
11 else scan all the MIUs to compute prScore and seScore 

of the page by checking if the query words occur 
in the same or neighboring MIUs. 

12         for all pj ∈ LS do pj = pj.next; 
13 endwhile;  
14 for each p ∈ AllPages do 
15      if  prScore(p) = n then pageSetn = pageSetn ∪ {p}; 
16      else   if seScore(p) = i then pageSeti = pageSeti ∪ {p}; 
17 endfor 
18 Rank pages in the order of pagesetn, pagesetn-1 and so on. 

For the pages in each pageseti, we follow their relative 
ranking in the results produced by the base search engine; 

Figure 4: The ranking algorithm 
    In Figure 4, n is the number of query terms. AllPages is 
the set of top ranking pages (to be re-ranked) from the base 
search engine. Lines 1 and 2 create and initialize a set of 
set-variables to store the resulting pages as the first level 
ranking (which will become clear below). Line 3 initializes 
two arrays used to store the final Web page scores. Given 
user’s query, lines 4 and line 5 retrieve the inverted lists of 
the query words and then create a pointer set. Each pointer 
in the pointer set points to the first Web page of an inverted 
list. From line 6 to line 13, we compute prScore and 
seScore for all the Web pages. The loop ends when all the 
pointers reach the end of the inverted lists, which means we 
have already finished processing all the Web pages in the 
inverted lists. In each loop, for all retrieved inverted lists, 
we first find the page with smallest document ID (md). 
After we process it (give this page the prScore and seScore 
scores), we move the pointers that point to the smallest 
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Figure 3: An inverted list with data structures for MIUs 
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document IDs to the next node to begin the next loop. In a 
loop, if the page contains only one query word, both 
prScore and seScore are given the score of 1. Otherwise, 
the page contains at least two words in the user’s query. 
Then, we need to check if they occur in the same or 
neighboring MIUs. In this process, we update the maximal 
number of query words contained in a single MIU and two 
neighboring MIUs. In line 15, if prScore(p) = n, p should 
be one of the top ranking pages, stored in pageSetn (since 
we believe that a MIU in a Web page that contains all the 
query terms is very likely to be relevant to the user). If 
prScore(p) is less than n, we store p into pagesetn-i 
according to its seScore, where n-i indicates how many 
keywords are found in two neighboring MIUs (line 16). 
Finally, we have a two-level ranking (line 18). The first 
level ranks the sets of pages in the order of pagesetn, 
pagesetn-1 and so on. The second level ranks all the pages 
in each pagesetl according to their relative ranking in the 
results produced by the base search engine.  

The complexity of our algorithm is similar to the 
complexity of a normal search engine. In a normal search 
engine, given a query, its main task is to check if the query 
terms occur in the same page, so the complexity is 
|query|*v on average (we ignore the other cost in 
computing authority score, hub score, word count etc). 
Here |query| is the number of query words, and v is the 
average length of all inverted lists. In our algorithm, we 
also need to check in each page whether the query words 
occur in the same or neighboring MIUs. Thus, it needs to 
traverse the MIU list of each page. Then complexity of our 
algorithm is |query|*v*q. Here q is the average number of 
MIUs in all the pages. Since q is normally very small, thus 
little extra time is needed by our new search technique. 

5. EXPERIMENTAL RESULTS 
This section evaluates the proposed technique. We first 
compare the precision results of our method with those 
from Google, and then discuss its running efficiency.  

Evaluation of the ranking effectiveness is difficult in the 
context of web search because of the difficult tasks in (i) 
choosing queries and (ii) evaluating the relevance of 
search results. Our criteria for choosing queries are: they 
should be from diverse areas and unambiguous. By 
unambiguous, we mean that the intent of each query is 
agreed upon by a panel of 3 judges. We used queries from 
two independent sources, the entire collection of queries 
(351-400) from TREC-7 [25], and 30 queries from 
Metaspy of MetaCrawler [19] (which allows users to view 
others’ queries being submitted to the system). For queries 
from Metaspy, we first collected a list of continuous 
queries and then removed those queries that are ambiguous, 
i.e., our panel of judges could not decide the intension of 
the user.   

As for evaluating the relevance or correctness of the 
search results, the web pages produced should satisfy the 
conditions pre-defined by our judges or correspond to the 
standard narratives provided by TREC [25]. For example, 
TREC Query 354: Journalist Risks, the narratives stated are 
“any document identifying an instance where a journalist 
has been killed, arrested or taken hostage in the 
performance of his work is relevant.” Our judges evaluate 
the relevance of the search results with such narratives to 
obtain a consensus on the search precision. 

The choice of using Google as a basis for re-ranking 
(base search engine) is because of its state-of-the-art 
search mechanism. In general, Google performs very well 
as a general-purpose search engine. However, there exist 
query phrases that it fails to perform satisfactorily. Our 
purpose is to provide advanced re-rankings for queries 
whose Google’s precisions are low. For each query, we re-
rank the first 200 search results from Google, after 
crawling and pre-processing the pages. 

In general, information retrieval systems are evaluated 
using both precision and recall measures. However, in the 
context of Web search, the precision of the top-ranking 
results returned by a search engine is more important since 
most people only see the top 20-30 results [12, 13]. That is, 
even if a search engine has high recall, but if most of the 
relevant results are located below 20-30 top ranking results, 
there is little chance that the user will see them. Thus, many 
researchers believe that high precision is important even at 
the expense of recall [4]. In our experiments, we are only 
using precision of top 20 ranking results to evaluate the 
performance of our system. 

The precisions of the top 20 ranking results from 
Google and our method (MIU) are compared in Table 1. 
The first column states the source of queries. The second 
and third columns list the average precisions of the top 20 
results from Google and our method respectively. The 
fourth column provides the improvement percentage of 
MIU over Google on the average precision. Tables 3 and 4 
in the Appendix list all the search queries and the 
corresponding precision for both data collections. 

Average Precision 
Data Collections 

Google  MIU 
Improvement 

TREC-7 (351-400) 0.50 0.59 18.00 % 
MetaSpy 0.54 0.63 16.67 % 

Table 1: Average precision comparison for TREC-7 and MetaSpy 

 

 

 
 

 
 

Figure 5: Average precision comparison per 5 returned pages of 
MIU and Google for TREC7 queries 
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Figure 6: Average precision comparison per 5 returned pages of 
MIU and Google for MetaSpy queries 

From Table 1, we observe that the average precision 
after our re-ranking is substantially higher. The 
improvement in precision by our system over that of 
Google is 18% for TREC-7 queries and 16.67% for 

 



Metaspy queries. Figures 5 and 6 give the graphical 
comparison of the average precision of every 5 returned 
pages for both data collections. We observe that in general 
MIU is superior to Google for any number of top-ranked 
pages (used in computing precision).  

Table 2 presents the won-lost-tied record of MIU 
against Google. For the Trec-7 data collection, 58% of the 
total number of queries increased in precision; 20% of 
queries remained unchanged and 22% of queries decreased 
in precision after applying our MIU method as compared to 
Google’s ranking results. For the MetaSpy query 
collection, the precisions of 67% of the queries increased; 
the precisions of 3% of the queries remain unchanged and 
30% of queries decreased. We observe that most instances 
of MIU performing worse than Google occur when the 
precisions of Google's results tend to be rather high. For 
example, for those queries that Google has better results, its 
average precision is 0.73 for the MetaSpy data collection. 
This precision value of Google should be highly 
satisfactory for most users and does not require additional 
MIU processing. That is why we say that our MIU method 
can be seen as an advanced search option. It should be used 
when Google’s results are not satisfactory.  

Data Collections Increase Draw Decrease 
TREC-7 (351-400) 58 % 20 % 22 % 

MetaSpy 67 % 3 % 30 % 
Table 2: Won-lost-tied record for TREC-7 and MetaSpy queries 

We now briefly discuss the running efficiency of our 
system. We use a single machine (Sun E450 250MH with 
500MB memory and a single processor) for all our 
experiments. In pre-processing, the major operations 
involved are crawling and indexing. It is difficult to 
measure how long crawling took overall because of 
complications like bandwidth limitations, crashed name 
servers, congested network and others. For indexing, the 
indexer runs at roughly 4 pages per second. Our indexer is 
not running in parallel, which affects the speed. All these 
pre-processing are mostly duplicated works of Google. 
They can be easily incorporated into Google, which will 
improve the performance significantly. For ranking, our 
ranking procedure handles roughly 50 pages per second, or 
2 to 10 seconds for each query (which is mostly dominated 
by disk IO). Improving the efficiency of crawling, indexing 
and searching was not the main focus of this research. With 
further optimization and more powerful machines, the 
running speed can be improved significantly. 

6. CONCLUSION 
In this paper, we presented a technique to improve the 
precision of Web search. It is based on the idea of 
segmenting each web page into different MIUs (topic 
areas) according to its contents and HTML tags. In 
searching, only the terms in a single unit or at most two 
neighboring units of a page are used to match the user’s 
query terms. This is different from existing techniques used 
by current search engines, which typically employ all the 
terms in the whole page to match the query terms. From the 
experiment results shown in Section 5, we observe that the 
precision of the ranking produced by our method is 
substantially higher. 
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APPENDIX 
Search Query Google MIU Search Query Google MIU 
Falkland petroleum exploration 0.55 0.70 mercy killing 0.10 0.25 
British Chunnel impact 0.25 0.50 home schooling 0.20 0.30 
journalist risks  0.05 0.60 autombile recalls 0.15 0.25 
postmenopausal estrogen Britain 0.10 0.11 dismantling Europe's arsenal  0.20 0.60 
human smuggling 0.60 0.85 euro opposition 0.70 0.70 
transportation tunnel disasters  0.30 0.40 mainstreaming 0.35 0.35 
anorexia nervosa bulimia 0.70 0.80 piracy 0.15 0.15 
Food/drug laws 0.70 0.75 in vitro fertilization 1.00 1.00 
health insurance holistic 0.30 0.45 rabies 1.00 1.00 
Native American casino 0.45 0.60 El Nino 1.00 1.00 
encryption equipment export 0.70 1.00 robotics 0.45 0.45 
Nobel prize winners 0.85 0.95 tourism 0.00 0.00 
hydrogen energy 0.80 0.95 sick building syndrome 0.60 0.60 
World Court 0.75 0.90 amazon rain forest 0.10 0.10 
obesity medical treatment 0.65 0.85 ocean remote sensing 0.85 0.40 
alternative medicine 0.70 1.00 territorial waters dispute 0.60 0.55 
mental illness drugs 0.20 0.50 blood-alcohol fatalities 1.00 0.80 
space station moon 0.15 0.55 mutual fund predictors 0.50 0.20 
hybrid fuel cars 0.65 0.85 drug legalization benefits 0.90 0.79 
teaching disabled children 0.45 0.50 clothing sweatshops 0.80 0.75 
radioactive waste 0.45 0.55 antarctica exploration 0.70 0.53 
organic soil enhancement 0.45 0.60 commercial cyanide uses 0.68 0.63 
illegal technology transfer 0.30 0.45 cigar smoking 0.35 0.25 
orphan drugs 0.40 0.70 hydrogen fuel automobiles 0.90 0.85 
r&d drug prices 0.30 0.60 oceanographic vessels 0.20 0.15 

Table 3: Precision comparison using TREC-7 (we re-order the queries in TREC-7, i.e., putting those queries that MIU 
wins over Google first, then those tied queries and those queries that we lose) 

Search Query Google MIU Search Query Google MIU 
star wars wallpaper 0.85 1.00 free download music 0.30 0.70 
Free craft projects 0.60 0.80 information history tomatoes 0.45 0.65 
supermodel success stories 0.35 0.50 literary films list 0.10 0.35 
laser eye surgery 0.80 0.95 Singapore programming jobs 0.35 0.65 
accident death photo 0.25 0.50 red ladies t-shirt 0.40 0.55 
motorcycle dealers in Texas 0.45 0.55 html tag tree 0.50 0.50 
First Communion letters 0.20 0.50 crime rates and ethnicity 0.55 0.50 
entertainment in San Diego 0.45 0.85 Christmas island tour 0.60 0.55 
karaoke machine 0.65 0.75 Mickey mouse club 0.80 0.70 
growing marijuana 0.40 0.45 internet service provider illinois 0.75 0.65 
award winning web sites 0.45 0.70 studies on travel writing 0.45 0.20 
gall bladder surgery causes 0.50 0.70 California legal codes 0.90 0.70 
alternative music origins 0.35 0.50 plant pathology journals 0.89 0.75 
decorative candlestick sale 0.40 0.80 Michael Jordan shoes 0.95 0.70 
heavyweight boxing championship 0.55 0.85 organizational industrial psychology 0.70 0.40 

Table 4: Precision comparison using MetaSpy queries (the queries are also re-ordered according to the won-tied-lost 
record against Google) 
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