
Using Micro Information Units for Internet Search
Xiaoli Li, Bing Liu*, Tong-Heng Phang, and Minqing Hu

School of Computing
National University of Singapore

* Department of Computer Science
University of Illinois at Chicago

ABSTRACT
Internet search is one of the most important applications of the
Web. A search engine takes the user’s keywords to retrieve and to
rank those pages that contain the keywords. One shortcoming of
existing search techniques is that they do not give due
consideration to the micro-structures of a Web page. A Web page
is often populated with a number of small information units,
which we call micro information units (MIU). Each unit focuses
on a specific topic and occupies a specific area of the page.
During the search, if all the keywords in the user query occur in a
single MIU of a page, the top ranking results returned by a search
engine are generally relevant and useful. However, if the query
words scatter at different MIUs in a page, the pages returned can
be quite irrelevant (which causes low precision). The reason for
this is that although a page has information on individual MIUs, it
may not have information on their intersections. In this paper, we
propose a technique to solve this problem. At the off-line pre-
processing stage, we segment each page to identify the MIUs in
the page, and index the keywords of the page according to the
MIUs in which they occur. In searching, our retrieval and ranking
algorithm utilizes this additional information to return those most
relevant pages. Experimental results show that this method is able
to significantly improve the search precision.

1. INTRODUCTION
One of the most important applications of the Web is the
search using search engines, e.g., AltaVista, Google,
Yahoo, etc. These search systems allow the user to specify
some keywords to retrieve those Web pages that contain
the keywords. A major shortcoming of the current
techniques is that they do not consider different topic areas
of a page. Typically, the contents of a Web page
encompass a number of related or even unrelated topics.
Each topic usually occupies a separate area in the page. We
call each topic area a micro information unit (or MIU in
short). For example, a bookstore Web page selling books
may include other diverse information like stock market
quotations and weather forecasting. A personal homepage
may contain information on different interests of its owner.

A micro information unit (MIU) is a coherent topic area
according to its content, and it is usually also a visual block
from the display point of view. If the user’s query terms (or
keywords) occur in a single MIU of a Web page, the pages
returned by a search engine are generally relevant and
useful. However, if the keywords scatter at different MIUs,
it can cause low precision of the returned search results.
Although many search engines are able to consider relative
distances of keywords [4] (among others, e.g., word
frequency, authority and hub scores, etc) in a Web page in
their ranking processes, they do not consider whether these
words occur in different MIUs or a single MIU.

Let us use an example to illustrate the problem. For
instance, we wish to find some free downloadable videos.
We issue the search query “free download video” to the
search engine Google. Google returns a large number of

Web pages. However, most top ranking pages do not offer
any free downloadable videos. For example, the first page
returned by Google does contain the three keywords “free”,
“download” and “video” (Figure 1). It is a site that sells
software for playing audio and video. It does not have any
free video for downloading. From Figure 1, we observe
that “free”, “download” and “video” (circled in the figure)
appear in different MIUs or topic areas.

In this paper, we propose a technique to deal with the
problem. The key idea is to segment each Web page to
identify different micro information units or topic areas
according to its HTML tags and contents. In searching, if
the keywords of a query occur in the same MIU, the Web
page will be given a higher ranking score. Otherwise, it
will be given a lower ranking score. In the proposed
technique, page segmentation and indexing according to
MIUs in a Web page is done in off-line pre-processing. We
show that the additional information on MIUs can be
naturally integrated with inverted lists indexing commonly
used by Web search engines. In on-line search, our
retrieval and ranking algorithm makes use of this MIU
information to sort the relevant pages. Due to seamless
integration of MIUs with inverted lists, additional
computation required during searching is minimum.

The proposed technique is intended to be used as an
advanced search option for a search engine (which we also
call the base search engine). That is, when the precision of
the results returned by the base search engine is low, we
can employ the proposed technique to re-rank the results.

To evaluate the proposed technique, we used Google as
the base search engine. When the precision of the returned
results by Google is low, we re-rank its top 200 pages.
Experimental results (including comparison with
AltaVista) show that our method is able to improve the
search precision dramatically, i.e., after re-ranking the
number of relevant pages at the top of the list increases
significantly.
2. RELATED WORK
The key issue in Web search is how to efficiently retrieve
relevant Web pages with high precision for its top ranking
results. The main technique used in current search engines
is keyword matching. In recent years, a number of works
were reported to improve search by using additional
information from Web pages. [4] presents the Google
search engine, which employs link structures and anchor
text in addition to the traditional factors such as word
occurrence and frequency to make relevance judgments.
[18] presents a similar link-based search method. [16]
examines the actual pages suggested by multiple search
engines and then displays the results according to the user’s
query. Clever search engine [6] incorporates several
algorithms (i.e. HIT algorithm) that make use of hyperlink
structure for discovering high-quality information on the

Web. [
input is
informa
differen
to iden
the sear
 [26]
informa
consisti
informa
 [5]
tree) an
HTML
hub sco
pages a
to find
text con
 Seg
extensi
roughly
and m
coheren
15,23].
indicato
two sta
[11], H
full-len
using lo
 The
method
[14, 21
user to
to his t
passage
the qu
relevan
 Our

9] describes a Web searching method where the
 the URL of a page. It only uses the connectivity
tion to identify related pages. These works are all
t from ours, as they do not segment each Web page

tify different MIUs and then use these MIUs to aid
ch.
 presents an algorithm to efficiently retrieve
tion units, which are logical Web document
ng of multiple physical pages. Our micro
tion unit is a topic area within a physical Web page.
uses the Document Object Model (or HTML tag
d hyperlinks for topic distillation. It segments the

 tag tree for the purpose of computing authority and
res of the intermediate subtrees in relation to other
nd links. This is different from our work as we aim
coherent topic areas of the current page using both
tents and display properties.

mentation of text documents has been studied
vely in information retrieval. Existing techniques
 fall into two categories: lexical cohesion methods
ulti-source methods [7]. The former identifies
t blocks of text with similar vocabulary [2, 10,

 The latter combines lexical cohesion with other
rs of topic shift, such as relative performance of
tistical language models and cue words [1, 3]. In
earst discussed the merits of imposing structure on
gth text documents and reported good results of
cal structures for information retrieval.

re are also several works on passage retrieval
 although mostly applied in the area of text retrieval
]. [24] proposes sub-document access: it allows the
zoom in on parts of the full text that are meaningful
ask. [8] utilizes the reciprocal of the length of each
 as an estimate of its relevance. [20] discusses that
ery occurs in unrelated context results in non-
t document return.
 Web search based on MIUs is different from the

research above. The nature of Web pages differs from a
static text document. Web contents can switch from one
topic to a completely different topic abruptly without
requiring additional textual cues to “bridge the topic shift”.
Gradual topic shifts in text documents are often indicated
by certain textual cues (e.g., “next, consider…”, “firstly…
secondly...”). Such cues, employed by text segmentation,
are not applicable to Web pages. In our case, we
considered the changes in visual cues (e.g., bold emphasis,
sudden increase in font-size, change in font-color) of Web
pages. Visual cues offer indications that a topic may have
shifted within a Web page. In our Web page segmentation,
we make use of both contents and presentation styles or
visual features of the Web page to segment the page.

Figure 1: The first page from Google for the query, “free download video”

3. PRE-PROCESSING WEB PAGES
We now present the proposed technique. This section
focuses on pre-processing of each Web page, i.e., building
a HTML tag tree and segmenting the Web page into MIUs
using the tag tree. The next section describes our ranking
algorithm. All the procedures discussed in this section are
done off-line. Since the proposed technique is used as an
advanced search method or option for a base search engine,
all the required information is assumed to be stored at the
base search engine site.
3.1 Building HTML tag trees
Web pages are hypertext documents written in HTML that
consists of plain text, tags and links to image, audio, and
video files, etc. Like most search engines, our technique
only uses plain text and tags in search. Plain text are strings
of characters not embedded within any tags. It can have
different appearances in terms of color, font, size and style
as specified by tags. Tags (enclosed by a pair of angular
brackets) define the display properties and characteristics
of a Web page. In general, most Web documents are
constituted of opening and closing pairs of HTML tags
(indicated by < > and </> respectively). Within each

corresponding tag-pair, it can contain other pairs of tags,
resulting in nested blocks of HTML codes.
 Based on the nature of nested structure of HTML codes,
a HTML Tag Tree can be built in a fairly straightforward
manner for each Web page using its HTML source. A node
in the tag tree contains a tag name, content text and its
display attributes (color, font, size, etc).
3.2 Segmenting the Tag Tree into MIUs
We now segment the Web page into various MIUs using
the tag tree. Although the tag tree already gives us an initial
segmentation of the page, it is often too refined and is
solely based on presentation features of the page. We need
to merge some nodes in the tree to form coherent topic or
information units. Our segmentation technique is based on
both content and display similarities.

Merging of nodes is done in two steps: (1) merging each
heading and its immediate content paragraph (note that a
content paragraph may not have the <p> and </p> tags); (2)
merging two adjacent text paragraphs. Below, we discuss
these steps in turn.
Step 1 - Merging each heading and its immediate content
paragraph: In this step, we scan all the sibling nodes of a
sub-tree from left to right to find all heading and paragraph
pairs. This is performed in 2 sub-steps:
(i)Identifying all potential heading and content paragraph
pairs: Let A and B be any two different leaf nodes of a sub-
tree. We use Len to denote the length (number of words) of
the text string stored in A or B. We use tagRank to denote
the font emphasis given to the text strings stored in A or B.
The value of tagRank is based on the priority. The highest
value of tagRank is assigned to header tags (e.g..: <h1>,
<h2> and so on), followed by formatting tags (e.g. ,
, <blink>) and enlarged font sizes (<big>,
<size…>). All the other tags are assigned the same rank
value that is lower than the three types above. In general, a
paragraph heading tends to be more prominent and distinct
in terms of font size or appearance as compared to its
content paragraph.
 We use Neig(A, B) to denote the neighboring relation of
A and B, and node A is the left neighbor of B. The
following condition is used to determine whether A is a
potential heading for B (or B is A’s immediate content
paragraph). ((A∩B) ≠ ∅) means at least one word (term) in
A (node A) also occur in its immediate text paragraph B).

(tagRank(A) >= tagRank(B)) ∧ (Len(A)
<Len(B)) ∧ Neig(A, B) ∧ (A∩B) ≠ ∅) (1) 9 endfor

 Here, we use the length of A and B, font size attributes of
A and B, and their neighborhood relation to check whether
A is potentially a heading for B. Note that this is computed
after stop-words elimination and word stemming have been
performed. We use the Porter’s algorithm given in [22] for
the purposes.
(ii) Further evaluation: After (i), we have identified all the
potential pairs. This sub-step further evaluates them using
their display properties. For each (A, B) pair, we try to find
the next pair (C, D) which also has a possible heading and
content paragraph relationship as computed in sub-step (i).
We then evaluate A, B, C and D using the display
similarity, DisplaySim. DisplaySim counts the number of
identical features (display properties) of any two nodes. We
use the following condition:
 ∃(C, D), Neig(C, D) ∧ (DisplaySim(A, C) >= δ)
 ∧ (DisplaySim(B, D) >= δ) (2)

where DisplaySim(X, Y) = |X.features ∩ Y.features| (which
is the size of the intersection). The set of features includes
font, size, color, tag name, and default. We set 3=δ
(determined from experimental observations), which means
if (DisplaySim(A, C) >= 3) we consider they have high
display similarity (this also applied to B and D).
 This condition basically tries to see whether A and B
have a parallel pair (C, D). If so, we confirm the heading
and content paragraph relationship of A and B, and that of
C and D. We believe that the display property comparison
is more meaningful here since people often are able to
segment a Web page correctly even they do not know the
content of the page.
 If conditions (1) and (2) are both satisfied, we merge
nodes A and B, and at the same time nodes C and D, i.e., to
put the attributes of B into A, and the attributes of D into C.
Nodes B and D are deleted.
Step 2 - Merging two adjacent text paragraphs: Here, we
wish to join similar text paragraphs (some paragraphs may
contain their headings after step 1). Let X and Y be two text
paragraph nodes within the same sub-tree. We now
compute their degree of content similarity, ContentSim(X,
Y). The inner product [17] is employed for the purpose (m
is the total number of terms or keywords in X ∪ Y). If term
i exists in X, then xi = 1, otherwise xi = 0. If i exists in Y, xi’
= 1, otherwise xi’ = 0.
 (3)∑=

m

ii x'xY)(X,ContentSim
If ContentSim(X,Y) ≥ ϖ , we say that nodes X and Y

have a high similarity. We can combine their contents, i.e.,
placing the content Y of into X. We set ϖ = 2, which is
determined from experiments that reflect the acceptable
level of similarity among various nodes well.

i=1

 The overall algorithm is given in Figure 2. maxDepth is
the maximum depth of the original tag tree. treeDepth is
the depth of the tree that is being worked on. Stree is the
set of all sub-trees at depth treeDepth. Each subtreei only
contains leaf nodes, and no sub-trees below.
1 for (treeDepth = maxDepth –1; treeDepth < 0; treeDepth--) do
2 Stree ={subtreei| subtreei is a sub-tree at level treeDepth};
3 while |Stree| > 0 do /* |Stree| is the size of the set Stree */
4 for each subtreei ∈ Stree do
5 for each Neig(A, B) do
6 if conditions (1) is satisfied then
7 if ∃pair(C, D) & conditions (2) is satisfied then
8 Merge node A and B;

10 endfor
11 for each subtreei ∈ Stree do
12 Scan all the nodes and their sibling nodes;
13 if ContentSim(X,Y) ≥ ϖ ,then
14 Merge node X and Y;
15 endfor
16 for each subtreei ∈ Stree do
17 If A has no sibling then
18 move its content into its parent and delete it
19 endfor
20 endwhile
21 endfor
Figure 2: Merging nodes of a tag tree (segmenting a page)

4. THE RANKING ALGORITHM
After obtaining the MIUs from each page through
segmentation, we index the Web pages in such a way that
they can be retrieved and ranked quickly. As in normal

 ……

search, we also use inverted lists to store the information of
the Web pages. Thus, the search technique we adopted is
similar to those in a normal search engine [4]. The main
difference is that in our technique we need to index and
retrieve MIUs of each page. We simply add an extra data
structure to each inverted list node to indicate in which
MIUs each word appears. Figure 3 illustrates the inverted
lists indexing with the data structures for MIUs:

Here Itemi (i =1, 2, …) is a word, Dij is the j-th
document that Itemi occurs in and MIUxy is the y-th MIU in
the x-th subtree of the page Di1. Each node includes three
fields: ID (document ID), seg (a pointer to all the MIUs of
the page containing Itemi), next (a pointer to next page).
Note Dij in an inverted list is stored in the increasing order.
For any user query, Q = {k1, k2 …… , kn}, we will consider
if the words occur in the same or neighboring MIUs in the
same subtree of the same page.
 A search engine typically considers many factors in its
ranking algorithm, e.g., hyperlink information (such as
authority score and hub score), word count-weight, type-
weight (title, anchor, URL, font size, etc), and type-prox-
weight (how close multi-words occur in every type) [4]. In
our ranking algorithm, we only focus on whether the query
terms occur in a single MIU (or 2 neighboring MIUs within
the same sub-tree) of a page. Since the proposed technique
is intended to be used as an advanced search method for a
base search engine, we utilize our MIU-based information
and also the ranking information from the base search
engine in our ranking process. The reason that we need
ranking information from the base search engine is because
we do not need to consider other factors except our MIU-
based factor in our ranking algorithm. However, since we
do not have access to any existing search engine program,
only the ordering information of the pages returned by the
base search engine is employed in our current ranking
algorithm. If a search engine system is available, all factors
should be integrated in a more sophisticated manner.
Section 5 shows that even this simple approach is already
able to produce remarkably good results.

The proposed ranking method aims to re-rank the
results returned by the base search engine when the
precision of its results is poor. The number of pages to be
re-ranked is specified by the user. In our experiments, we
re-rank the first 200 pages from Google. Re-ranking is
done on-line at query time. Pre-processing as discussed in
Section 3 is done off-line for all the pages at the search
engine site, as it is not possible to know what queries will
be issued by users, and it is too slow to do pre-processing
of the top ranking pages from the base search engine at
query time.

Our ranking algorithm basically computes two scores
for each page, a primary score and a secondary score. The
primary score is the maximum number of query terms that
occur in a MIU of the page p. Let segi be the terms
contained in i-th MIU of p, and queryTerms be the set of

terms in the user query. The primary score of page p
(denoted by prScore(p)) is computed as follows:
 maxarg segprScore ∩=
 If the primary score of page p is less than the number of
query terms (i.e., not all query terms are covered), we
compute the secondary score, which takes into account of
the neighboring MIU on the right of each MIU in the same
sub-tree. Let segji be the set of terms in the ith MIU of the
sub-tree j. The secondary score of p (denoted by
seScore(p)) is computed with:

ii

 arg=

The overall ranking algorithm is given in Figure 4.
1 Create a set of variables pageSeti, i = 1, …, n;
2 pageSeti =∅;
3 for all p ∈ AllPages do prScore[p] = 0, seScore[p] = 0;
4 Retrieve the inverted lists of the query words k1, k2, ……, kn;
5 Initialize pointer set: L={p1, p2, …, pn}, here each pi point to

the first node in the corresponding link list;
6 while ∃pi ≠ Nil, pi ∈ L do
7 md = min(pi.id), pi ∈ L;
8 Construct a pointer set LS from L: {pj|pj.id = md};
9 if |LS| = 1 then
10 prScore[pj.id] = 1, seScore[pj.id] = 1;
11 else scan all the MIUs to compute prScore and seScore

of the page by checking if the query words occur
in the same or neighboring MIUs.

12 for all pj ∈ LS do pj = pj.next;
13 endwhile;
14 for each p ∈ AllPages do
15 if prScore(p) = n then pageSetn = pageSetn ∪ {p};
16 else if seScore(p) = i then pageSeti = pageSeti ∪ {p};
17 endfor
18 Rank pages in the order of pagesetn, pagesetn-1 and so on.

For the pages in each pageseti, we follow their relative
ranking in the results produced by the base search engine;

Figure 4: The ranking algorithm
 In Figure 4, n is the number of query terms. AllPages is
the set of top ranking pages (to be re-ranked) from the base
search engine. Lines 1 and 2 create and initialize a set of
set-variables to store the resulting pages as the first level
ranking (which will become clear below). Line 3 initializes
two arrays used to store the final Web page scores. Given
user’s query, lines 4 and line 5 retrieve the inverted lists of
the query words and then create a pointer set. Each pointer
in the pointer set points to the first Web page of an inverted
list. From line 6 to line 13, we compute prScore and
seScore for all the Web pages. The loop ends when all the
pointers reach the end of the inverted lists, which means we
have already finished processing all the Web pages in the
inverted lists. In each loop, for all retrieved inverted lists,
we first find the page with smallest document ID (md).
After we process it (give this page the prScore and seScore
scores), we move the pointers that point to the smallest

) | | ()(queryTermsp

|)))((|max(argmax
)(

)1(, queryTermssegseg
pseScore

ijjiij
∩∪ +

 miu11 miu12 …… …… …… ……

Itemi Di1 Di2 Dir

Figure 3: An inverted list with data structures for MIUs

(4)

(5)

document IDs to the next node to begin the next loop. In a
loop, if the page contains only one query word, both
prScore and seScore are given the score of 1. Otherwise,
the page contains at least two words in the user’s query.
Then, we need to check if they occur in the same or
neighboring MIUs. In this process, we update the maximal
number of query words contained in a single MIU and two
neighboring MIUs. In line 15, if prScore(p) = n, p should
be one of the top ranking pages, stored in pageSetn (since
we believe that a MIU in a Web page that contains all the
query terms is very likely to be relevant to the user). If
prScore(p) is less than n, we store p into pagesetn-i
according to its seScore, where n-i indicates how many
keywords are found in two neighboring MIUs (line 16).
Finally, we have a two-level ranking (line 18). The first
level ranks the sets of pages in the order of pagesetn,
pagesetn-1 and so on. The second level ranks all the pages
in each pagesetl according to their relative ranking in the
results produced by the base search engine.

The complexity of our algorithm is similar to the
complexity of a normal search engine. In a normal search
engine, given a query, its main task is to check if the query
terms occur in the same page, so the complexity is
|query|*v on average (we ignore the other cost in
computing authority score, hub score, word count etc).
Here |query| is the number of query words, and v is the
average length of all inverted lists. In our algorithm, we
also need to check in each page whether the query words
occur in the same or neighboring MIUs. Thus, it needs to
traverse the MIU list of each page. Then complexity of our
algorithm is |query|*v*q. Here q is the average number of
MIUs in all the pages. Since q is normally very small, thus
little extra time is needed by our new search technique.

5. EXPERIMENTAL RESULTS
This section evaluates the proposed technique. We first
compare the precision results of our method with those
from Google, and then discuss its running efficiency.

Evaluation of the ranking effectiveness is difficult in the
context of web search because of the difficult tasks in (i)
choosing queries and (ii) evaluating the relevance of
search results. Our criteria for choosing queries are: they
should be from diverse areas and unambiguous. By
unambiguous, we mean that the intent of each query is
agreed upon by a panel of 3 judges. We used queries from
two independent sources, the entire collection of queries
(351-400) from TREC-7 [25], and 30 queries from
Metaspy of MetaCrawler [19] (which allows users to view
others’ queries being submitted to the system). For queries
from Metaspy, we first collected a list of continuous
queries and then removed those queries that are ambiguous,
i.e., our panel of judges could not decide the intension of
the user.

As for evaluating the relevance or correctness of the
search results, the web pages produced should satisfy the
conditions pre-defined by our judges or correspond to the
standard narratives provided by TREC [25]. For example,
TREC Query 354: Journalist Risks, the narratives stated are
“any document identifying an instance where a journalist
has been killed, arrested or taken hostage in the
performance of his work is relevant.” Our judges evaluate
the relevance of the search results with such narratives to
obtain a consensus on the search precision.

The choice of using Google as a basis for re-ranking
(base search engine) is because of its state-of-the-art
search mechanism. In general, Google performs very well
as a general-purpose search engine. However, there exist
query phrases that it fails to perform satisfactorily. Our
purpose is to provide advanced re-rankings for queries
whose Google’s precisions are low. For each query, we re-
rank the first 200 search results from Google, after
crawling and pre-processing the pages.

In general, information retrieval systems are evaluated
using both precision and recall measures. However, in the
context of Web search, the precision of the top-ranking
results returned by a search engine is more important since
most people only see the top 20-30 results [12, 13]. That is,
even if a search engine has high recall, but if most of the
relevant results are located below 20-30 top ranking results,
there is little chance that the user will see them. Thus, many
researchers believe that high precision is important even at
the expense of recall [4]. In our experiments, we are only
using precision of top 20 ranking results to evaluate the
performance of our system.

The precisions of the top 20 ranking results from
Google and our method (MIU) are compared in Table 1.
The first column states the source of queries. The second
and third columns list the average precisions of the top 20
results from Google and our method respectively. The
fourth column provides the improvement percentage of
MIU over Google on the average precision. Tables 3 and 4
in the Appendix list all the search queries and the
corresponding precision for both data collections.

Average Precision
Data Collections

Google MIU
Improvement

TREC-7 (351-400) 0.50 0.59 18.00 %
MetaSpy 0.54 0.63 16.67 %

Table 1: Average precision comparison for TREC-7 and MetaSpy

Figure 5: Average precision comparison per 5 returned pages of
MIU and Google for TREC7 queries

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20

MIU

Google

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20

MIU

Google

Figure 6: Average precision comparison per 5 returned pages of
MIU and Google for MetaSpy queries

From Table 1, we observe that the average precision
after our re-ranking is substantially higher. The
improvement in precision by our system over that of
Google is 18% for TREC-7 queries and 16.67% for

Metaspy queries. Figures 5 and 6 give the graphical
comparison of the average precision of every 5 returned
pages for both data collections. We observe that in general
MIU is superior to Google for any number of top-ranked
pages (used in computing precision).

Table 2 presents the won-lost-tied record of MIU
against Google. For the Trec-7 data collection, 58% of the
total number of queries increased in precision; 20% of
queries remained unchanged and 22% of queries decreased
in precision after applying our MIU method as compared to
Google’s ranking results. For the MetaSpy query
collection, the precisions of 67% of the queries increased;
the precisions of 3% of the queries remain unchanged and
30% of queries decreased. We observe that most instances
of MIU performing worse than Google occur when the
precisions of Google's results tend to be rather high. For
example, for those queries that Google has better results, its
average precision is 0.73 for the MetaSpy data collection.
This precision value of Google should be highly
satisfactory for most users and does not require additional
MIU processing. That is why we say that our MIU method
can be seen as an advanced search option. It should be used
when Google’s results are not satisfactory.

Data Collections Increase Draw Decrease
TREC-7 (351-400) 58 % 20 % 22 %

MetaSpy 67 % 3 % 30 %
Table 2: Won-lost-tied record for TREC-7 and MetaSpy queries

We now briefly discuss the running efficiency of our
system. We use a single machine (Sun E450 250MH with
500MB memory and a single processor) for all our
experiments. In pre-processing, the major operations
involved are crawling and indexing. It is difficult to
measure how long crawling took overall because of
complications like bandwidth limitations, crashed name
servers, congested network and others. For indexing, the
indexer runs at roughly 4 pages per second. Our indexer is
not running in parallel, which affects the speed. All these
pre-processing are mostly duplicated works of Google.
They can be easily incorporated into Google, which will
improve the performance significantly. For ranking, our
ranking procedure handles roughly 50 pages per second, or
2 to 10 seconds for each query (which is mostly dominated
by disk IO). Improving the efficiency of crawling, indexing
and searching was not the main focus of this research. With
further optimization and more powerful machines, the
running speed can be improved significantly.

6. CONCLUSION
In this paper, we presented a technique to improve the
precision of Web search. It is based on the idea of
segmenting each web page into different MIUs (topic
areas) according to its contents and HTML tags. In
searching, only the terms in a single unit or at most two
neighboring units of a page are used to match the user’s
query terms. This is different from existing techniques used
by current search engines, which typically employ all the
terms in the whole page to match the query terms. From the
experiment results shown in Section 5, we observe that the
precision of the ranking produced by our method is
substantially higher.

7. REFERENCES

[1]. J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y.
Yang. “Topic detection and tracking pilot study final
report.” DARPA Broadcast News Transcription and
Understanding Workshop, 1998.

[2]. D. Beeferman, A.Berger, and J. Lafferty, “A model of
lexical attraction and repulsion.” ACL-97, 1997.

[3]. D. Beeferman, A. Berger and J. Lafferty. “Statistical
models for text segmentation.” Machine learning, 34(1-3),
1999.

[4]. S. Brin, L. Page, “The anatomy of a large-scale
hypertexture Web search engine.” Computer Networks 30
(1-7), 1998.

[5]. S. Chakrabarti. “Integrating the document object model
with hyperlinks for enhanced topic distillation and
information extraction.” WWW10, 2001.

[6]. The CLEVER Project,
http://www.almaden.ibm.com/cs/k53/clever.html

[7]. F. Y. Choi. “Advances in domain independent linear text
segmentation.” NAACL’00, Seattle, USA, 2000.

[8]. G. V. Cormack, C.L.A. Clarke, C.R. Palmer and S.S.L. “To
Passage-Based Refinement (MultiText Experiments for
TREC-6).” In D. K. Harman and Ellen Voorhees, editors,
The Sixth Text REtrieval Conference (TREC-6), 1998.

[9]. J. Dean, M. R. Henzinger. “Finding Related Pages in the
World Wide Web,” WWW8, 1999.

[10]. D. Eichmann, M. Ruiz, and P. Srinivasan, “A Cluster-based
approach to tracking, detection and segmentation of
broadcast news.” DARPA Broadcast News Workshop, 1999.

[11]. M. Hearst. “Subtopic structuring for full-length document
access.” ACM SIGIR 93, 1993.

[12]. C. Hoelshher. “How Internet experts search for information
on the Web.” The World Conference of the World Wide
Web, Internet and Intranet, 1988, Orlando, FL.

[13]. B. J. Jansen, “The effect of query complexity on Web
searching results,” Information Research, 6(1), 2000.

[14]. M. Kaszkiel, J. Zobel, “Passage Retrieval Revisited.” ACM
SIGIR 97, Philadelphia, PA, USA.

[15]. S. Kaufmann. “Cohension and collocation: Using context
vectors in text segmentation.” ACL-99, 1999.

[16]. S. Lawrence, and L. Giles, “Context and page analysis for
improved web search.”IEEE Internet Computing,2(4) 1998.

[17]. D. D. Lewis, et al. “Training algorithms for linear text
classifiers.” ACM SIGIR 96,1996.

[18]. Y. Li. “Toward a qualitative search engine,” IEEE Internet
Computing, 1998, July.

[19]. MetaCrawler Search Engine www.metacrawler.com
Metaspy www.metaspy.com

[20]. M. Mitra, A. Singhal and C. Buckley. “Improving
Automatic Query Expansion.” SIGIR98, 1998.

[21]. E. Mittendorf and P. Schuble. “Document and Passage
Retrieval Based on Hidden Markov Models.” SIGIR96.

[22]. M. Porter. “An algorithm for suffix stripping.” Program,
14(3): 130-137, 1980.

[23]. J. C. Reynar, “Statistical models for topic segmentation.”
ACL-99, 1999.

[24]. G. Salton, J. Allan and C. Buckley, “Approaches to Passage
Retrieval in Full Text Information Systems.” SIGIR-93,
1993, pp. 49-58.

[25]. Text REtrieval Conference (TREC) Data - English Test
Questions (Topics) File List
http://trec.nist.gov/data/topics_eng/index.html

[26]. W. S Lee, K. S. Candan, V. Quoc and D. Agrawal.
“Retrieval and organizing Web pages by Information Unit.”
WWW10, Hongkong, 2001.

http://www.metacrawler.com/
http://www.metaspy.com/
http://trec.nist.gov/data/topics_eng/index.html

APPENDIX
Search Query Google MIU Search Query Google MIU
Falkland petroleum exploration 0.55 0.70 mercy killing 0.10 0.25
British Chunnel impact 0.25 0.50 home schooling 0.20 0.30
journalist risks 0.05 0.60 autombile recalls 0.15 0.25
postmenopausal estrogen Britain 0.10 0.11 dismantling Europe's arsenal 0.20 0.60
human smuggling 0.60 0.85 euro opposition 0.70 0.70
transportation tunnel disasters 0.30 0.40 mainstreaming 0.35 0.35
anorexia nervosa bulimia 0.70 0.80 piracy 0.15 0.15
Food/drug laws 0.70 0.75 in vitro fertilization 1.00 1.00
health insurance holistic 0.30 0.45 rabies 1.00 1.00
Native American casino 0.45 0.60 El Nino 1.00 1.00
encryption equipment export 0.70 1.00 robotics 0.45 0.45
Nobel prize winners 0.85 0.95 tourism 0.00 0.00
hydrogen energy 0.80 0.95 sick building syndrome 0.60 0.60
World Court 0.75 0.90 amazon rain forest 0.10 0.10
obesity medical treatment 0.65 0.85 ocean remote sensing 0.85 0.40
alternative medicine 0.70 1.00 territorial waters dispute 0.60 0.55
mental illness drugs 0.20 0.50 blood-alcohol fatalities 1.00 0.80
space station moon 0.15 0.55 mutual fund predictors 0.50 0.20
hybrid fuel cars 0.65 0.85 drug legalization benefits 0.90 0.79
teaching disabled children 0.45 0.50 clothing sweatshops 0.80 0.75
radioactive waste 0.45 0.55 antarctica exploration 0.70 0.53
organic soil enhancement 0.45 0.60 commercial cyanide uses 0.68 0.63
illegal technology transfer 0.30 0.45 cigar smoking 0.35 0.25
orphan drugs 0.40 0.70 hydrogen fuel automobiles 0.90 0.85
r&d drug prices 0.30 0.60 oceanographic vessels 0.20 0.15

Table 3: Precision comparison using TREC-7 (we re-order the queries in TREC-7, i.e., putting those queries that MIU
wins over Google first, then those tied queries and those queries that we lose)

Search Query Google MIU Search Query Google MIU
star wars wallpaper 0.85 1.00 free download music 0.30 0.70
Free craft projects 0.60 0.80 information history tomatoes 0.45 0.65
supermodel success stories 0.35 0.50 literary films list 0.10 0.35
laser eye surgery 0.80 0.95 Singapore programming jobs 0.35 0.65
accident death photo 0.25 0.50 red ladies t-shirt 0.40 0.55
motorcycle dealers in Texas 0.45 0.55 html tag tree 0.50 0.50
First Communion letters 0.20 0.50 crime rates and ethnicity 0.55 0.50
entertainment in San Diego 0.45 0.85 Christmas island tour 0.60 0.55
karaoke machine 0.65 0.75 Mickey mouse club 0.80 0.70
growing marijuana 0.40 0.45 internet service provider illinois 0.75 0.65
award winning web sites 0.45 0.70 studies on travel writing 0.45 0.20
gall bladder surgery causes 0.50 0.70 California legal codes 0.90 0.70
alternative music origins 0.35 0.50 plant pathology journals 0.89 0.75
decorative candlestick sale 0.40 0.80 Michael Jordan shoes 0.95 0.70
heavyweight boxing championship 0.55 0.85 organizational industrial psychology 0.70 0.40

Table 4: Precision comparison using MetaSpy queries (the queries are also re-ordered according to the won-tied-lost
record against Google)

	Xiaoli Li, Bing Liu*, Tong-Heng Phang, and Minqing Hu
	School of Computing
	INTRODUCTION
	RELATED WORK
	PRE-PROCESSING WEB PAGES
	Building HTML tag trees
	Segmenting the Tag Tree into MIUs

	THE RANKING ALGORITHM
	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES
	APPENDIX

