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Abstract—Code pre-trained models (CodePTMs) have recently
exhibited remarkable accomplishments in the realm of software
engineering. However, there are still limited advancements in un-
derstanding the inner mechanism of these models, as well as their
sensitivity to samples of varying quality. Codes have a more rigid
and structured syntax compared to natural languages; hence,
leveraging and understanding structural information becomes
essential for analyzing, interpreting, and utilizing CodePTMs.
While previous studies have verified models’ ability to acquire
knowledge from code structure through techniques such as
attention analysis and probing tasks, the specific roles it plays
in downstream tasks have yet to be explored. In this work,
we propose a set of novel and practical methods for probing
and exploiting the structural information within the code. In
particular, dataflow perturbation experiments are first employed
to explore the sensitivity of models with varying levels of struc-
tural information when confronted with input changes. Based on
our findings, structure-aware exemplars selection strategies are
proposed for both code generation and understanding, aiming to
recover the model performance at minimal cost under perturbed
conditions. Moreover, efficient fine-tuning can be achieved by
utilizing exemplars instead of full fine-tuning.

Index Terms—Pre-trained Language Models, Software Engi-
neering, Code Intelligence

I. INTRODUCTION

The remarkable achievements of pre-trained language mod-
els (1) have catalyzed the development of their counterparts
for programming languages (PLs). Under the assumption
of “Software Naturalness” hypothesis (2; 3), which posits
that PLs can be processed similarly to natural languages
(NLs), researchers have treated source codes as sequential
data. Consequently, sequential neural architectures, such as
the transformer-based models (4; 5), have been implemented
to understand and generate programs (6; 7). Owing to the vast
training corpora (8), Code pre-trained models (CodePTMs)
demonstrate outstanding capabilities in various downstream
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tasks (9) of code intelligence, e.g., defect detection, code
translation, and code summarization (10).

Beyond learning from code tokens, it is worth noticing
that code can be represented in two modals: the source code
and the structure of code extracted from their parsed abstract
syntax tree (AST). Thus, these models further leverage code
structures, such as data flow (11) and AST itself (12; 13;
14; 15; 16), to learn code representation. Previous work has
demonstrated that integrating the aforementioned structural
information during the pre-training stage can enhance the
model’s performance across various tasks, leading to a better
understanding of code. Subsequently, researchers have made
progress in studying how models learn structural information.
These studies primarily focus on three aspects: [1] Probing
tasks, which involve designing specific tasks to test the code’s
understanding of the structure (17; 18). [2] Attention analysis,
which aims to find the relationship between attention scores
and structure (19). [3] Performance analysis, which seeks to
establish the connection between the level of code’s structural
understanding and its performance in downstream tasks (20).
Yet, there is a critical gap that lingers in existing research.
While substantial insights have been gleaned on the model’s
ability to capture structural information, less is known about
how structure information can be harnessed in practice.

From a psychological perspective, the order of words usu-
ally does not significantly affect the reading process (21).
During reading, the brain does not process the text in a “word-
by-word” manner. Instead, it scans sentences or paragraphs,
comprehending them based on the context and prior knowl-
edge (22). In the same vein, perturbations in the sequence
of text elements often yield marginal impacts on NLP task
performance (23). However, regarding CodePTMs, it’s reason-
able to surmise that they may perform “regional scans” of the
underlying structure when dealing with highly structured text
like code, such as identifying a subtree within the textual data
that corresponds to a syntactic and semantic unit (24; 25). In
this intricate landscape, the rigid syntax of code is likely to



exacerbate the impacts of token-level perturbations.
In this paper, we first conduct exploratory perturbation

experiments on codes at the textual level, evaluating the
impact of input features and dataflow information on code
representation learning. Then, we discuss and analyze whether
the model can further utilize the structural information of the
code. Upon confirming the influence of code structure, we
design a structure-aware exemplars selection method based on
the complexity of code snippets, which aims at selecting the
samples with “rich” structure information. These exemplars
can be used to recover or approximate the original perfor-
mance of fine-tuned CodePTMs and enable us to perform
efficient fine-tuning. Furthermore, through the evaluation of
multiple downstream tasks across multiple backbones, we
unveil models’ capability to utilize structural information. Our
main contributions are summarized as follows:

• This is the pioneering research to validate CodePTMs’ ca-
pability to harness structural information in downstream
tasks, by subjecting the code to textual perturbations. Ad-
ditionally, we provide interpretations from the perspective
of dataflow.

• We propose a novel structure-aware exemplars selection
strategy that leverages ASTs to choose representative
code snippets that possess rich code structural informa-
tion. By carefully selecting these exemplars, we success-
fully recover the performance of the perturbed model and
enable efficient fine-tuning.

• Experimental results across prevailing backbones demon-
strate the effectiveness of our proposed method on rep-
resentative downstream tasks.

II. PRELIMINARIES AND PILOT EXPERIMENTS

We first conduct pilot experiments to show the effect
of textual perturbation across tasks and models, laying the
groundwork for subsequent research.

A. Criteria for Perturbations

The exploration of textual perturbations designed for code
remains in its nascent stages, with no well-established guide-
lines or criteria currently in place. Nevertheless, perturbation
of code data is a real-world problem, occurring either inten-
tionally or unintentionally. Following previous research (26),
we consider these perturbations should be label-consistent,
non-adversarial and can be generated at scale automatically.
Therefore, we adopt a straightforward approach of randomly
swapping code tokens, particularly identifiers in AST. More
specifically, we implement two types of perturbations, apply-
ing them to 50% and 100% of the identifiers, respectively1.

B. Exploration of Code Perturbation

We begin by conducting perturbation experiments on four
representative CodePTMs, covering both code understanding

1For all experiments involving perturbation, we mitigate the impact of
randomness by conducting two independent trials and taking the average
value.

Methods
Clone Defect Code Translation

F1 Acc BLEU EM

GraphCodeBERT
Fine-Tuning 95.00 62.88 77.49 59.85
Fine-Tuning (Pert.) 94.75 -0.25 61.86 -1.02 59.04 -18.45 47.15 -12.7
PLBART
Fine-Tuning 93.60 63.16 81.13 63.35
Fine-Tuning (Pert.) 93.99 +0.33 62.48 -0.68 74.96 -6.17 57.85 -5.50
CodeT5
Fine-Tuning 95.00 65.78 81.63 65.85
Fine-Tuning (Pert.) 95.16 +0.41 63.03 -2.75 77.52 -4.11 61.60 -4.25
UniXcoder
Fine-Tuning 91.36 62.34 76.59 63.45
Fine-Tuning (Pert.) 89.77 -1.59 60.94 -1.40 69.64 -6.95 57.80 -5.65

TABLE I
PILOT EXPERIMENTS ON CODE PERTURBATION. FOR CODE

TRANSLATION, WE REPORT THE AVERAGE PERFORMANCE ON THE TASKS
OF C# ↔ JAVA TRANSLATIONS.

and generation tasks. Concretely, the models are first fine-
tuned on the whole set of perturbed training data and subse-
quently evaluated on testing data2. The results are presented in
Table I, revealing that textual perturbations have disrupted the
performance obtained from fine-tuning the model on golden
data for all CodePTMs. Moreover, it is important to note
that different models and tasks exhibit significant variations
in performance losses due to these perturbations. Notably,
the clone detection task, which primarily relies on semantics
rather than code structure comprehension, is least affected by
the perturbation. In contrast, tasks such as defect detection
which necessitates an understanding of code logic, or the code
translation task that involves grasping the correspondence of
code tokens across two languages, are substantially influenced
by the perturbation. Based on the insights gained from our
pilot experiments, we aim to investigate the following three
research questions (RQs):

• RQ1: What is the interplay between the model’s charac-
teristics and the results of perturbations among various
code-related tasks?

• RQ2: The perturbation of code tokens also disrupts the
structure of the code. Can we restore the performance
of the perturbed model from the perspective of code
structure?

• RQ3: Is it possible to facilitate the model’s acquisition
of knowledge for downstream adaptation through the use
of limited samples rich in structural information?

III. AN ALTERNATIVE VIEW ON PERTURBATION

A. Dataflow Perturbation

In section II-A, we propose two levels of identifier pertur-
bations. While these modifications are visible at the textual
level, their impact extends beyond that. The models’ unusual
performance in clone detection indirectly supports this obser-
vation. Dataflow, a graph that represents variable dependency
relationships, plays a crucial role. Its nodes represent variables,

2For a fair comparison, the experimental settings of pilot experiments
remain consistent with those of the main experiments.



and edges indicate the source of each variable’s value. Unlike
the AST, dataflow remains consistent across different abstract
grammars for the same code snippet. This inherent structure
of the code provides essential semantic information, which is
vital for understanding the code.

For natural languages, the structure and semantics of the
text are more flexible and diverse, potentially maintaining their
basic meaning and readability even after certain perturbations.
In contrast, such perturbations can be detrimental to source
codes, as the execution sequence may be altered, leading to
errors such as “using a variable before defining it” or creating
incorrect dependencies between functions. These impacts are
reflected in the dataflow, as shown in Figure 1.

def max(a, b):
     x = 0 
  if b > a:
     x = b
  else:
     x = a
  return x

def x(x, a):
     b = a 
  if 0 > a:
     x = x
  else:
     b = b
  return max
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Fig. 1. A comparison of the dataflow graphs from the same code snippet
before and after perturbation (swap max and x partially), where the corrupted
one fails to illustrate the dependency relationships among variables.

B. Explaining Perturbation Effects in CodePTMs

Based on the above analysis, we can now elucidate the
implications of perturbations across different CodePTMs and
various tasks. It becomes evident that perturbations have a
relatively minimal impact on the performance of the clone
detection task. Even when presented with perturbed samples,
the model exhibits the capability to predict code similarity at
a semantic level that remains consistent. In contrast, for defect
detection task, the performance degradation due to perturba-
tion is more significant because the swapped identifiers disrupt
dependency relationships among variables, making it more
challenging for the model to identify defects such as logical
flaws accurately. For the code translation task, we observe a
notable decline in performance on both evaluation metrics.
Clearly, for generation task, perturbations in the training
samples significantly impede the model’s ability to construct
coherent code sequences. We also see similar phenomena in
subsequent code summarization experiments. Contrasting the
learning dynamics associated with NL representations, the
impact of perturbed data extends beyond impairing syntactic

coherence—it also predisposes the model to assimilate erro-
neous code structure.

IV. UTILIZING THE STRUCTURE-AWARE OF CODEPTMS

After conducting the analysis of the perturbation results
based on dataflow, we demonstrate dataflow structures play
significant role in code representation learning. As in RQ3, we
now utilize these findings to identify representative samples
from dataflow perspective. This serves dual purposes: 1)
recovering the performance of the perturbed model, and 2)
facilitating efficient fine-tuning.

A. Beyond Abstract Syntax Tree

The Abstract Syntax Tree (AST) encapsulates rich structural
information, but its tree structure may lead to long-range
problems due to the significant distance between leaf nodes.
As such, we incorporate data flow edges to trace variable tran-
sitions (27; 28), and establish connections between adjacent
leaf nodes to bolster the overall connectivity of the AST, thus
creating a novel version called Upgraded AST (U-AST).

function_definition

blockparameters

expression_
statement call

attibute argument_list

writedef

self temp

attibute append. ( )data

.

self ,( )data :

# Code snippet
def write (self, data):
  self.temp.append(data)
  ...

Non-leaves Leaves AST-edeges Dataflow-edegesLeaf-edeges

Fig. 2. A Python code snippet and its parsed AST, with connected Dataflow
edges and Leaf edges.

B. Evaluate Code’s Structural Information

Previous experiments have confirmed the significance of
dataflow across a range of coding tasks. Next, we further ex-
plore, evaluate, and utilize the structural information inherent
in the code.

In a program, dataflow connectivity is instrumental in
outlining control flow, which represents the sequence and
organization of operations. It also reveals data dependencies,
signifying how changes in one section of code can impact
other interconnected sections. Viewing U-AST as a strongly
connected graph and inspired by the efficiency of communi-
cation network (29), we adopt a quantitative metric for the
structural information of the code. This metric is designed to
measure the communication efficiency between pairs of nodes
(e.g., identifier tokens), rather than merely the connectivity
between adjacent nodes.

E(G) = 1

N(N − 1) ∑
i≠j

dij (1)

The equation 1 demonstrates the underlying concept, where
G represents the AST, N denotes the total number of nodes



Algorithm 1 Exemplars Selection Process
Input:

Code snippets C = [c1, c2, . . . , cn]
Empty exemplar list E
Desired number of exemplars k

Output:
Updated exemplar list E = [e1, e2, . . . , ek]

0: procedure SELECTEXEMPLARS(C, k)
0: for i = 1 to n do
0: T ← ConvertToAST(ci)
0: G ← AugmentToUAST(T )
0: ge ← ComputeGE(G)
0: li ← 1/ge {Compute the inverse of global efficiency}
0: if length(E) < k then
0: AddToExemplars(E, (li, ci)) {Add to exemplars if not

full}
0: else if li > GetTopPriority(E).l then
0: ReplaceTopPriority(E, (li, ci)) {Replace top priority if

new one is higher}
0: end if
0: end for
0: return E {Return the selected exemplars}
0: end procedure=0

in the AST, and dij signifies the pairwise distances between
any two tokens. Global Efficiency (GE) quantifies the average
inverse shortest path length between all pairs of nodes within
the AST.

We select exemplars from the training set for each task. As
demonstrated in Algorithm 1, we first convert code snippets
into ASTs and augment them by incorporating leaf node
connections and data flow edges to construct U-ASTs. Sub-
sequently, we compute the global efficiency of each U-AST,
and sort them in ascending order, establishing the basis for
selecting exemplars. It’s worth noting that our computation of
E(G) is based on the U-AST, as shown in Section IV-A. While
calculations can be performed directly using the AST, the
greater distances between leaf nodes in the AST often impede
the effective representation of data flow information. To vali-
date our perspective, we have conducted ablation studies, the
comprehensive results of which are presented in Section V-D.

C. Exemplar-based Fine-Tuning

With the aid of our structure-aware exemplars selection
method, we can identify representative samples that help
restore the model’s performance.

a) Performance Recovery: The exemplars selection is
based on a code snippet, while our representative downstream
tasks involve both multi-code tasks and natural language text.
Therefore, it’s necessary to clarify the subtle differences in
exemplar selection across different tasks. For Code Under-
standing tasks that only include code data, the selection of
exemplars is based directly on the training set. For generative
tasks, such as code translation, the selection process depends
on the code to be translated. For instance, in the case of Java
→ C# translation, the selection is based on Java code, and
vice versa. As for the code summarization task, the selection
process is based on the code being summarized.

b) Efficient Fine-Tuning: Employing exemplar selection
to help efficient fine-tuning is straightforward, with the sample
selection method being essentially the same as that in Perfor-
mance Recovery.

V. EXPERIMENTS

A. Experimental Setup

a) Backbone Models.: In our experiments, we em-
ploy a wide range of CodePTMs with different architec-
tures and scales to substantiate the universality of our find-
ings and the efficacy of our approach. Specifically, we em-
ploy GraphCodeBERT-base (11),PLBART-base (30), CodeT5-
base (31), UnixCoder-base (15), as our backbones. It is worth
noticing that these models utilize code structural information
to varying degrees and through different approaches.

b) Tasks and Datasets: We conduct our experiments on
four code representation learning tasks from the CodeXGLUE
benchmark (9). For code generation, we first employ code
summarization (32) that aims to generate natural language
comments for the given code snippet in a different program-
ming language. The second code generation task is code trans-
lation (33), which involves translating a code snippet from one
programming language to another. For code understanding,
Clone detection (34; 35) quantifies the similarity between code
snippets. Defect detection (36) seeks to predict the presence
of vulnerabilities in the source code that could pose threats to
software systems.

c) Implementation Details: We utilize Tree-sitter3 to
parse source codes into ASTs. For the experiments on both
performance recovery and efficient fine-tuning, we adopt the
existing framework (37) for training.

Due to page limitations, we follow the configurations
established by CodeXGLUE (9) across all tasks to ensure
a fair comparison in terms of hyperparameter settings. For
experiments involving CodeBLEU (38), we apply the same
settings as stated in the literature.

B. Performance Recovery

Building upon our pilot experiments, we designate code
data that has undergone perturbation as noise-infused data. We
first use the selected exemplars to recover the performance of
the perturbed CodePTMs, as illustrated in Table II. For the
perturbation part, the models display a decline in performance
when encountering perturbations in general. However, CodeT5
appears to be the most robust model, showing stable per-
formance of code understanding and only slight performance
decreases among other selected code-related tasks.

For almost all perturbed models and tasks involved, we
can reach noticeable performance enhancements across various
tasks using only a minor portion of exemplars (merely 10%
of the total number of training data samples). This shows the
power of carefully chosen exemplars in mitigating the impacts
of perturbation. Nevertheless, the amount of recovery varies
among the models and tasks. In particular, CodeT5 series

3https://github.com/tree-sitter



Tasks Clone Defect Java to C# C# to Java Code Summarization

Metrics F1 Accuracy BLEU EM BLEU EM BLEU (Averaged)

Fine-Tuning with Perturbation

GraphCodeBERT 94.75 -0.25 61.86 -1.02 62.75 -17.83 46.30 -13.10 55.33 -17.31 48.00 -18.80 17.59 -0.54
PLBART 93.99 +0.39 62.48 -0.40 76.60 -6.42 55.00 -9.60 73.31 -5.04 60.70 -4.30 17.84 -0.48
CodeT5 95.16 +0.16 63.03 -2.75 79.71 -4.32 60.40 -5.50 75.33 -4.54 62.80 -4.10 19.17 -0.38
UniXcoder 89.77 -1.59 60.94 -1.40 72.17 -6.78 57.40 -5.90 67.11 -7.11 58.20 -5.40 18.71 -0.52

Performance Recovery: Random Samples

GraphCodeBERT 94.38 -0.37 60.91 -0.95 62.97 +0.22 50.10 +3.80 57.64 +2.31 48.30 +0.30 17.44 -0.15
PLBART 93.29 -0.70 61.16 -1.32 78.91 +2.31 56.40 +1.40 76.17 +2.86 61.70 +1.00 17.68 -0.16
CodeT5 95.46 -0.30 60.11 -2.92 80.11 +0.40 61.00 +0.60 74.34 -0.99 62.10 -0.70 19.04 -0.13
UniXcoder 89.40 -0.37 59.88 -1.06 72.92 +0.75 57.60 +0.20 67.19 +0.08 59.10 +0.90 18.88 +0.17

Performance Recovery: Exemplars

GraphCodeBERT 94.36 -0.39 62.31 +0.45 70.10 +7.35 52.50 +6.20 59.15 +3.82 47.30 -0.70 17.66 +0.07
PLBART 94.10 +0.11 62.78 +0.30 79.91 +3.31 57.40 +2.40 76.54 +3.23 62.20 +1.50 17.94 +0.10
CodeT5 95.18 +0.02 63.20 +0.17 81.49 +1.78 62.60 +2.20 76.98 +1.65 64.20 +1.40 19.23 +0.06
UniXcoder 90.37 +0.60 61.15 +0.21 73.40 +1.23 58.80 +1.40 67.77 +0.66 59.10 +0.90 19.10 +0.39

TABLE II
THE IMPACT OF PERTURBATION ON THE MODEL’S PERFORMANCE IS FIRST PRESENTED (COMPARING WITH NORMAL FINE-TUNING), THEN IT

DEMONSTRATES THE MODEL’S PERFORMANCE CAN BE SWIFTLY RECOVERED BY FINE-TUNING WITH A SMALL NUMBER OF EXEMPLARS (COMPARING
WITH RANDOM SAMPLES). DUE TO SPACE LIMITATIONS, HERE WE PRESENT THE MEAN PERFORMANCE OF THE CODE SUMMARIZATION.

perform the best in this regard, often achieving improvements
over their perturbed performance, and occasionally even show-
ing significant leaps. When it comes to the two code generation
tasks, the performance recovery is conspicuous, suggesting
that well-chosen exemplars can effectively guide models back
to generate coherent sequences.

C. Exemplars-based Efficient Fine-Tuning

Fine-tuning pre-trained language models is quite expensive
in terms of computational cost and GPU memory. Therefore,
we employ the exemplars for fine-tuning with the aim of
achieving comparable performance to full fine-tuning. We con-
sider two scenarios for fine-tuning, namely using exemplars
equivalent to 10% and 20% of the training set size.

The performance of exemplar-based efficient fine-tuning in
code understanding and code generation tasks is demonstrated
in Table III and Table IV, respectively. The effectiveness
of fine-tuning with exemplars has been validated in both
scenarios. Among them, the performance gains provided by
different tasks vary, with generation tasks generally exhibit-
ing greater performance gains than tasks focused on code
understanding. When utilizing 20% random training data,
CodeT5 (trained with dataflow information) outperforms other
comparable models, underscoring its innate ability to capture
key information from a modest amount of data.

Moreover, the performance gain is further enhanced as the
scale of our model increases, thereby validating the scalability
of structural information utilization. This improvement can
be partially attributed to the enhanced model capacity, which
allows for effective learning of the underlying structures from
more complex samples. In summary, the use of exemplars
for training steadily contributes to the overall performance
improvement across all methods on both tasks. Besides, it
can be observed that the CodeT5 series with a shallow

Tasks Clone Defect

Metrics F1 Accuracy

10% Training Data (Random)

GraphCodeBERT 91.28 58.75
PLBART 91.93 60.43
CodeT5 91.62 60.58
UniXcoder 87.26 59.11

10% Training Data (Exemplars)

GraphCodeBERT 91.96 +0.68 59.22 +0.47
PLBART 92.62 +0.69 60.54 +0.11
CodeT5 92.51 +0.89 60.63 +0.05
UniXcoder 87.37 +0.11 59.40 +0.29

20% Training Data (Random)

GraphCodeBERT 94.17 60.32
PLBART 94.01 60.96
CodeT5 95.13 61.04
UniXcoder 88.58 59.35

20% Training Data (Exemplars)

GraphCodeBERT 94.29 +0.12 60.67 +0.35
PLBART 94.15 +0.14 61.10 +0.14
CodeT5 91.48 -0.03 61.12 +0.08
UniXcoder 88.79 +0.22 59.48 +0.13

TABLE III
EFFECTIVENESS OF USING EXEMPLARS FOR DOWNSTREAM TASKS

ADAPTATION ON CODE UNDERSTANDING TASKS ON VARIOUS BACKBONES.

encoder is capable of capturing more structural information
for downstream tasks.

It’s worth noting that under our scenario of fine-tuning
with 20% of exemplars, backbones like PLBART and CodeT5
can achieve performance on two code generation tasks nearly
equivalent to full fine-tuning, which requires a much larger
dataset. This further illustrates the efficacy of our method
which is capable of extracting useful information from a
smaller set of highly representative data.



Methods Java to C# C# to Java Code Summarization

BLEU EM BLEU EM Ruby JavaScript Go Python Java PHP

10% Training Data (Random)

GraphCodeBERT 79.81 59.60 75.00 59.00 11.99 15.06 18.43 19.15 18.57 25.22
PLBART 82.28 59.70 78.51 64.50 13.01 15.66 18.60 19.52 18.89 23.83
CodeT5 83.79 65.20 78.35 65.30 15.22 15.12 19.06 19.20 19.32 24.95
UniXcoder 78.09 62.10 74.67 63.60 14.59 16.12 18.71 19.62 20.31 25.84

10% Training Data (Exemplars)

GraphCodeBERT 80.19 +0.38 60.00 +0.40 75.29 +0.29 60.20 +1.20 11.90 -0.09 15.23 +0.17 18.53 +0.08 19.18 +0.03 18.86 +0.29 25.41 +0.19
PLBART 82.72 +0.44 60.90 +1.20 78.88 +0.37 64.20 -0.30 13.47 +0.46 16.57 +0.91 19.03 +0.20 19.55 +0.03 19.09 +0.20 23.90 +0.07
CodeT5 84.40 +0.61 65.70 +0.50 79.17 +0.82 65.90 +0.60 15.48 +0.26 16.22 +1.10 19.57 +0.51 19.96 +0.76 20.38 +1.06 26.09 +1.14
UniXcoder 78.79 +0.70 63.00 +0.90 74.78 +0.11 65.00 +1.40 14.81 +0.22 16.14 +0.02 18.82 +0.03 19.73 +0.11 20.49 +0.18 25.92 +0.08

20% Training Data (Random)

GraphCodeBERT 79.97 60.10 75.14 60.30 12.07 14.82 18.45 19.04 18.73 25.11
PLBART 81.91 60.30 78.17 63.70 13.12 15.33 18.83 19.45 18.83 23.45
CodeT5 84.01 65.00 78.34 64.00 15.23 16.01 19.44 19.91 20.38 25.51
UniXcoder 78.12 62.40 77.23 64.80 14.95 15.70 18.79 19.57 19.71 24.91

20% Training Data (Exemplars)

GraphCodeBERT 80.20 +0.23 60.50 +0.40 74.85 -0.29 59.60 -0.70 11.87 -0.20 15.56 +0.74 18.66 +0.21 19.19 +0.15 18.66 -0.07 25.35 +0.24
PLBART 82.91 +1.00 61.50 +1.20 78.80 +0.62 64.50 +0.80 13.42 +0.30 15.96 +0.63 18.87 +0.04 19.49 +0.04 19.28 +0.45 23.75 +0.30
CodeT5 84.33 +0.32 65.50 +0.50 80.10 +1.76 67.40 +3.40 15.60 +0.37 16.08 +0.07 19.45 +0.01 19.82 -0.09 20.42 +0.04 26.14 +0.63
UniXcoder 78.97 +0.85 63.20 +0.80 77.30 +0.07 65.10 +0.30 14.99 +0.04 16.05 +0.35 18.84 +0.05 19.77 +0.20 20.14 +0.43 25.80 +0.89

TABLE IV
COMPARATIVE ANALYSIS OF USING SELECTED EXEMPLARS FOR DOWNSTREAM TASKS ADAPTATION ON CODE TRANSLATION AND CODE

SUMMARIZATION ACROSS FOUR CODEPTMS. WE CONDUCT COMPARISONS BETWEEN NORMAL FINE-TUNING AND EXEMPLAR-BASED FINE-TUNING
USING DATA THAT MAKEUP ONLY 10% AND 20% OF THE TOTAL TRAINING SET SAMPLE SIZE, RESPECTIVELY.

D. Further Analysis

We conduct the following studies to verify the effectiveness
of components in our methods.

a) Effectiveness of Exemplars: Considering that exem-
plars encapsulate “rich” code structural information, there
is potential to achieve performance comparable to, or even
surpassing, full fine-tuning with reduced computational over-
head. Here we compare the results obtained utilizing varying
quantities of exemplars against those achieved with the entire
dataset. As presented in Table V, it is evident that fine-
tuning based on exemplars requires only 20% of the entire
dataset’s volume to nearly match the performance achieved
with full fine-tuning. Remarkably, When we utilize exemplar
data equivalent to 30% of the whole dataset, the performance
surpasses full fine-tuning on certain metrics. This enhancement
could partially be attributed to our method’s innate capacity to
sift through and exclude low-quality samples from the training
set, effectively mitigating the potential interference of noise in
the model’s learning trajectory.

b) Effectiveness of U-AST: As mentioned in Sec-
tion IV-A, we employ a variant of AST to compute global
effectiveness, which aids in solving the problem of poor
connectivity among leaf nodes. Here we select exemplars
in the same manner while using raw ASTs and then make
comparisons to confirm the necessity, As shown in Table VI,
it is evident that incorporating U-AST significantly improves
CodeBLEU. This improvement underscores its capability to
exploit the code structure, aiding the model in generating code
that adheres more closely to established norms.

Manifestly, in code translation tasks (C# ↔ Java) that have

Tasks Code Translation (Avg.) Code Summarization

Metrics BLEU EM CodeBLEU BLEU (Avg.)

CodeGen

Full Fine-Tuning 80.46 65.70 81.42 20.57
10% Exemplars 77.07 64.05 79.25 19.95
20% Exemplars 80.07 65.80 81.46 20.35
30% Exemplars 80.89 67.20 81.78 20.76

CodeT5+
Full Fine-Tuning 83.97 63.91 84.52 21.75

10% Exemplars 81.24 65.40 83.29 20.62
20% Exemplars 82.00 66.60 85.19 21.08
30% Exemplars 83.46 66.45 85.61 21.56

TABLE V
COMPARING FULL FIN-TUNING WITH EXEMPLAR-BASED EFFICIENT
TUNING, WHERE THE PERCENTAGES INDICATE THE PROPORTION OF

EXEMPLAR DATA USED RELATIVE TO THE TOTAL NUMBER OF SAMPLES.

Tasks Code Translation (Avg.) Code Summarization

Metrics BLEU EM CodeBLEU BLEU (Avg.)

CodeT5
Raw AST 81.47 64.70 82.39 19.06
U-AST 81.75 65.20 85.71 19.18

UniXcoder
Raw AST 77.79 63.42 80.98 19.22
U-AST 78.05 64.50 83.94 19.31

TABLE VI
ABLATION STUDIES ON THE EFFECTIVENESS OF USING U-AST FOR

EXEMPLARS SELECTION ON EFFICIENT FINE-TUNING WITH CODET5 AND
UNIXCODER BACKBONES.

a higher correlation with understanding the structure of the
code, models trained on our exemplars selected based on U-
AST consistently yield significantly better performance.



VI. RELATED WORKS

a) Code Pre-trained Models: Pre-trained language mod-
els have revolutionized the landscape of NLP (39; 40, inter
alia). Recent works have started utilizing widely-recognized
model architectures (1) and leveraging pretraining strategies
for code pre-trained models (CodePTMs). CuBERT (41) first
pre-train the BERT model on a large-scale Python cor-
pus. Then, GraphCoddeBERT (42) utilize masked language
model (MLM) and replaced token detection (RTD) tasks to
train CodeBERT in six programming languages. GraphCode-
BERT (11) is a variant that integrates structural information
to facilitate code representation learning. Besides the models
with encoder architecture, CodeT5 (31), PLBART (30) and
UniXcoder (15) are pre-trained based on encoder-decoder
architecture with multi-task training strategies. These mod-
els bring forth new possibilities for enhancing performance
across diverse code intelligence tasks. Recently, CodeGen (43)
release a series of models across different scales for program
synthesis, filling a gap between larger and smaller CodePTMs.

b) Textual Perturbations: It is a prevalent understanding
that the performance of language models may be compromised
when dealing with noisy data in real-world scenarios. Pertur-
bation experiments are always involved to detect unintended
model biases (44). Input perturbations are employed to evalu-
ate whether pre-trained models’ performance will be hampered
when small changes are introduced (45). Recently, quantitative
measures (26) have been proposed to explain why certain
models demonstrate less robustness to some perturbations than
others. We draw inspiration from these perturbation strategies,
and apply them to source code data without resorting to
methods such as adversarial sample generation (46).

c) Analyzing CodePTMs: Considering the differences
between code and NL, analysis of CodePTMs generally fo-
cuses on structural information. Probing techniques (17) are
first involved in explaining the models’ behaviours. Then, Di-
agnostic tasks (18) are designed about code syntactic structure.
After that, qualitative analyses are conducted to evaluate how
CodePTMs interpret code structure (19). CAT-probing (20)
innovatively establishes the relationship among AST, attention
mechanism and downstream tasks. Beyond understanding the
internal mechanisms. After that, diverse properties of source
code, i.e., lexical, syntactic, and structural information encoded
in different layers of CodePTMs are discovered (47). More-
over, evidence is presented that models trained on code can
comprehend meanings, despite their training being confined to
tasks such as next token prediction (48; 49).

VII. CONCLUSION

In this paper, we propose a collection of novel and practical
methods to delve into and leverage the structural information
within the code. Perturbation experiments of varying degrees
are first conducted to explore the impact of structural in-
formation on code representation learning. Subsequently, we
further scrutinize the phenomenon by examining the impact
of dataflow information from AST. Inspired by these insights,
we implement a novel metric to measure code structure

information and employ it to carry out exemplar selection.
By training on a minimal set of exemplars with rich structure
information, we not only recover the performance of models
affected by noise but also enable them to perform efficient
fine-tuning, which significantly reduces the computational cost
and data volume requirements for downstream tasks. Finally,
we achieve performance close to or even surpassing full fine-
tuning on generation tasks with minimal cost, indicating the
effectiveness of our utilization of structural information.
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