
1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2552176, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Protein Complex Detection via Effective
Integration of Base Clustering Solutions and

Co-complex Affinity Scores
Min Wu, Le Ou-Yang, and Xiao-Li Li

Abstract—With the increasing availability of protein interaction data, various computational methods have been developed to predict
protein complexes. However, different computational methods may have their own advantages and limitations. Ensemble clustering has
thus been studied to minimize the potential bias and risk of individual methods and generate prediction results with better coverage and
accuracy. In this paper, we extend the traditional ensemble clustering by taking into account the co-complex affinity scores and present
an Ensemble Hierarchical Clustering framework (EnsemHC) to detect protein complexes. First, we construct co-cluster matrices by
integrating the clustering results with the co-complex evidences. Second, we sum up the constructed co-cluster matrices to derive a
final ensemble matrix via a novel iterative weighting scheme. Finally, we apply the hierarchical clustering to generate protein complexes
from the final ensemble matrix. Experimental results demonstrate that our EnsemHC performs better than its base clustering methods
and various existing integrative methods. In addition, we also observed that integrating the clusters and co-complex affinity scores from
different data sources will improve the prediction performance, e.g., integrating the clusters from TAP data and co-complex affinities
from binary PPI data achieved the best performance in our experiments.

Index Terms—Protein complex, ensemble clustering, hierarchical clustering, weighted consensus matrix.
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1 INTRODUCTION

P ROTEIN complexes are of great importance for
understanding the structural and functional

architecture of the cells [1]. Specifically, protein complexes
can help us to understand protein interactions [2], functions,
diseases [3], etc. Nowadays, many important protein
complexes have been detected by the wet-lab experiments.
However, as these small-scale experimental techniques are
time-consuming and tedious, there are still many protein
complexes that have not been detected. Therefore, we
are highly motivated to detect protein complexes with
computational methods.

Recently, high-throughput screening (HTS) experiments
have provided us with a large amount of protein-protein
interaction (PPI) data. It thus becomes more prevalent to
detect protein complexes in PPI networks where nodes are
proteins and edges are protein interactions. For example,
various graph clustering algorithms and tools, such as
MCODE [4], CFinder [5], MCL [6], RNSC [7], IPCA [8],
COACH [9], HC-PIN [10], ClusterONE [11], DCU [12] and
ClusterViz [13], have been designed for detecting protein
complexes from PPI networks [14], [15]. On the other hand,
another track of methods [16], [17], [18], [19], [20] were
proposed to detect protein complexes on tandem affinity
purification (TAP) data as two large-scale TAP data were
released in 2006.
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As more genomic and proteomic data are becoming
available, data integration is thus a promising strategy to
improve the coverage and accuracy for predicting protein
complexes. For example, DECAFF [21] and CPredictor
[22] exploited functional information of proteins together
with PPI data for protein complex detection. MATISSE
[23] and TS-OCD [24] integrated gene expression data
with PPI data to identify protein complexes. However,
the above mentioned methods usually integrate a single
data source (e.g., functional annotations or gene expression
profiles) with PPI data. Later on, heterogeneous data
sources are integrated for protein complex identification
[25], [26]. In [25], the authors integrated PPI data
with other heterogeneous data sources (i.e., functional
association from STRING database and PubMed abstracts)
and built a composite protein network. They further
weighted each edge in the network using a supervised
maximum-likelihood approach and then detected protein
complexes from the weighted composite protein network.
In [26], the authors integrated four diverse data sources
and constructed a final co-complex score matrix for proteins
using a supervised learning method. They applied the
hierarchical clustering on the final score matrix to generate
clusters as protein complexes.

On the other hand, with various methods proposed
above for protein complex detection, we are thus
able to generate diverse clustering results. Since each
computational method is designed to focus on one aspect
of the data and neglect other properties of the data, the
clustering results generated by different methods may have
different qualities and nature [27]. Ensemble clustering,
which aims to combine the clustering results, is thus
promising to improve the detection for protein complexes
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[28], [29], [30]. For example, to effectively utilize the
information provided by different clustering results, Greene
et al. [29] proposed an agglomerative algorithm to produce a
disjoint hierarchy of “meta-clusters” and predicted protein
complexes from these results; Ou-Yang et al. [30] introduced
a weighted ensemble clustering method to reconstruct a
consensus matrix and identified protein complexes based on
the complex information inherent in this consensus matrix.

Given a clustering method, its co-cluster matrix
demonstrates which protein pairs are co-clustered in the
same clusters/complexes by this method. Consensus matrix
is further constructed to measure the co-cluster relationship
among proteins by combining the co-cluster matrices of
various clustering methods. A simple way to combine the
co-cluster matrices is to treat them equally [31]. Such a
simple consensus matrix may not be accurate to measure the
co-cluster propensity among proteins as different clustering
methods generate co-cluster matrices with different quality.
Some heuristics, e.g., the intra-cluster distance [28] and
Normalized Mutual Information (NMI) scores [32], were
then proposed to assign different weights to individual
clustering methods and build the weighted consensus
matrices. However, these weights for clustering methods
are not able to measure the quality of co-cluster matrices
accurately as they rely solely on the cluster topology [28]
or consistency to other clustering methods [32]. It is thus
highly desirable to design a direct and accurate weighting
scheme to build the weighted consensus matrices.

In addition, the above co-cluster matrices and consensus
matrices are based on the clustering results from various
clustering methods. Such result-level integration may miss
the underlying co-complex information which exist in the
original data sources. It is thus necessary to integrate both
the clustering results and the co-complex information (e.g.,
co-complex affinity scores) directly derived from various
data sources to facilitate the detection of protein complexes.

To address the above issues, we propose an Ensemble
Hierarchical Clustering framework (EnsemHC) to detect
protein complexes. First, we construct co-cluster matrices
by leveraging the clustering results and the co-complex
evidences from two different data sources, i.e., PPI and
TAP data. Second, we integrate the co-cluster matrices to
derive a final ensemble matrix via an iterative weighting
scheme. Third, we apply the hierarchical clustering [26]
to generate protein complexes from the final ensemble
matrix. Experimental results demonstrate that our proposed
EnsemHC method performs much better than its base
clustering methods. EnsemHC also performs better than
various existing integrative methods like ENMF [29],
EC-BNMF [30] and InteHC [26].

2 METHODS

In this section, we will introduce our proposed EnsemHC
method in details.

2.1 Weighted Co-cluster Matrices

Given n proteins and a set of base clustering solutions,
E = {C1, C2, · · · , C |E|}, each clustering solution Ce (1 ≤
e ≤ |E|) groups the n proteins into |Ce| clusters, i.e., Ce =

{ce1, · · · , ce|Ce|}. With respect to a clustering solution/result
Ce, we define its co-cluster matrix Me in the following
Equation (1).

Me(i, j) =

{
1, if ∃cek ∈ Ce such that{i, j} ⊆ cek ;
0, otherwise.

(1)

In the co-cluster matrix Me, Me(i, j) = 1 means that
two proteins i and j are co-clustered in Ce. Currently, we
can drive co-complex information directly from the raw data
sources. For example, TAP data can measure the co-complex
propensity for proteins based on its purification records
[33]. Therefore, we can further integrate these data sources
together with the co-cluster matrix in Equation (1) to better
understand the co-complex relationship among proteins. In
Equation (2), we refined the Equation (1) by taking into
account the co-complex affinity scores. In particular, τij is
the co-complex affinity score between proteins i and j, e.g.,
the C2S score derived from TAP data [19], the FSweight
score from PPI networks [26], [34], [35], etc.

Me(i, j) =

{
1+τij

2 , if ∃cek ∈ Ce such that{i, j} ⊆ cek ;
0, otherwise.

(2)

2.2 Iterative Weighting for Final Ensemble Matrix
Each clustering solution provides a co-cluster matrix as
shown in Equation (2). Thus, we can obtain a final score
matrix M via weighted sum, i.e., M =

∑
e we · Me. The

weight for each clustering solution would be very important
to compute the final ensemble matrix and generate protein
complexes.

A simple weighting scheme is to equally set the weights
for different clustering solutions, i.e., we = 1/|E|, 1 ≤ e ≤
|E| [31]. However, such equal weights may lead to poor
results when the base clustering solutions differ much in
performance. Another straightforward weighting scheme is
to learn the weights using the supervised information (e.g.,
the benchmark protein complexes). The drawback of such
supervised weighting scheme is that it is not applicable to
those species without benchmark complexes.

Next, we will introduce a novel weighting scheme,
which will evaluate the difference among various clustering
solutions in an unsupervised manner.

We assume that there is a set LC of latent clusters.
Given a base clustering solution Ce, we will map it to the
latent clusters in LC to assess its quality and determine its
weight we. Generally, a higher percentage of clusters in Ce

matching with latent clusters indicates that we will have a
higher portion of real co-complex interactions in Me. Hence,
Me is likely to be more reliable and thus we should assign a
higher weight we to Ce. The PPV value [19], [26] in Equation
(3) measures the percentage of the clusters in Ce that are
matched by clusters in LC . Thus, we intuitively set we as
PPV (Ce, LC) to compute the final ensemble matrix.

PPV (Ce, LC) =

∑
j maxi |bi ∩ cej |∑
j | ∪i (bi ∩ cej)|

, (3)

where cej ∈ Ce and bi ∈ LC .
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Algorithm 1 demonstrates our iterative weighting
scheme for the base clustering solutions. Initially, we set
equal weights for the base clustering solutions and calculate
an ensemble matrix M in Line 2. We generate initial latent
clusters LC by applying hierarchical clustering on the
calculated ensemble matrix M in Line 3 (the hierarchical
clustering will be introduced in next subsection). Then, we
derive a new weight vector in Line 5 and calculate the
Pearson correlation between the new weight vector (W ′)
and the previous weight vector (W ) in Line 6. If they are
similar enough (e.g., their Pearson correlation is larger than
0.9 in our experiments), we will output W . Otherwise, we
will keep calculating the ensemble matrix and generating
the latent clusters in Line 8.

Algorithm 1 Iterative Weighting for Base Clustering
Solutions
Input: Base clustering solutions E = {C1, C2, · · · , C |E|}.
Output: Weight vector for base clustering solutions:

W = {w1, w2, · · · , w|E|}.
1: ∀Ce ∈ E, construct co-cluster matrix Me for Ce;
2: W = { 1

|E| , · · · ,
1

|E|}; M = 1
|E|

∑
e M

e;
// Line 2: set equal weights for base solutions

3: LC = HC(M);
// Line 3: derive latent clusters via hierarchical clustering

4: while(true)
5: Calculate W ′: ∀Ce ∈ E, w′

e = PPV (Ce, LC);
// Line 5: W ′ = {w′

1, w
′
2, · · · , w′

|E|}
6: if pearson(W,W ′) < σ
7: W = W ′;
8: M =

∑
e we ×Me; LC = HC(M);

9: else
10: break;
11: end while

Basically, the latent clusters are generated by integrating
various base clustering results and they are supposed to be
better than the base clustering results. It thus makes sense
to assign a higher weight to a base clustering, which is more
consistent with the latent clusters. Algorithm 1 will then
help us to iteratively obtain a better weighting and further
refine the quality of the latent clusters.

2.3 Hierarchical Clustering on Final Ensemble Matrix
The hierarchical clustering algorithm is applied to detect
protein complexes on the final ensemble matrix M . First, it
considers all singleton proteins as initial clusters. Second, it
iteratively merges two clusters with the highest similarity
in each iteration. The detailed procedure for the hierarchical
clustering is illustrated in Algorithm 2. In addition, the
similarity between clusters is defined in Equation (4) and
the quality function for a clustering C = {c1, c2, · · · , cn}
[26] is defined in Equation (5) as follows.

sim(ci, cj) =
1

|ci| × |cj |
∑

p∈ci,q∈cj

M(p, q), (4)

Q(C) =

∑n
i=1

1√
|ci|

∑
p,q∈ci

M(p, q)∑n
i=1

√
|ci| × (|ci| − 1)

. (5)

In the below Algorithm 2, the hierarchical clustering will
keep running, i.e., it runs from the start with all individual
proteins as clusters to the end with all the proteins as a
whole cluster. During this process, we will keep track of the
quality scores for the generated clusters and we finally will
output the set of clusters with the maximal quality score
(Line 13).

Algorithm 2 HC(M): Hierarchical Clustering for Protein
Complexes

Input: M , the final ensemble matrix;
L, the set of proteins in a given species (e.g., yeast)

Output: C, the set of predicted protein complexes.
1: C = {{p}|∀p ∈ L}, Cmax = ϕ, Qmax = 0;
2: while(true)
3: (c∗i , c

∗
j ) = argmax

ci,cj
sim(ci, cj);

// Line 3: find two most similar clusters
4: cmerge = c∗i ∪ c∗j ;

// Line 4: merge these two clusters
5: C = C + {cmerge} − {c∗i } − {c∗j};

// Line 5: remove two original clusters
6: if Q(C) > Qmax

7: Cmax = C, Qmax = Q(C);
8: end if
9: for each ck ∈ C

10: sim(ck, cmerge) =
|c∗i |×sim(c∗i ,ck)+|c∗j |×sim(c∗j ,ck)

|c∗i |+|c∗j |
// Line 10: update the similarity scores

11: end for
12: end while
13: C = Cmax;

As we know, the above hierarchical clustering generates
non-overlapping clusters. Hence, our EnsemHC has a
simple additional process to include overlapping proteins
after the hierarchical clustering. Given a PPI network G and
a cluster ck, we will augment ck and include proteins into
ck, which are in the PPI network G and connect to more
than half of the proteins in ck [9]. For the clusters which are
generated by the Algorithm 2 from either PPI data or TAP
data, we will augment them using the same PPI network
(i.e., DIP data in our experiments).

3 RESULTS

In this section, we first introduce the experimental data
and evaluation metrics. Then, we extensively compare
our EnsemHC with various methods for detecting protein
complexes.

3.1 Experimental data and evaluation metrics
In this study, we perform experiments on two different
data sources, i.e., PPI data and TAP data. The PPI data is
downloaded from the DIP database [36], which involves
with 17,201 interactions among 4,930 proteins. We also
collect the clustering results of 10 state-of-the-art methods
on DIP data, namely, CMC [35], COACH [9], ClusterONE
[11], DPClus [37], MCL [6], MCODE [4], RNSC [7], RRW
[38], SPICi [39] and PLW [40]. The TAP data is consolidated
from both [33] and [41], with 6,498 purifications involving
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2,996 bait proteins and 5,405 prey proteins. Similarly, we
collect the predicted complexes of 5 existing methods on
TAP data, namely, BT [18], C2S [19], CACHET [20], Hart [16]
and Pu [17]. We use PPI clusters and TAP clusters to denote
the base clustering results derived from PPI and TAP data,
respectively.

We utilize the sensitivity (Sn), positive predictive value
(PPV), Accuracy (Acc) [19] and FRAC [11] to evaluate the
predicted protein complexes. Given a benchmark complex
ri and a predicted complex cj , the sensitivity, PPV and
Accuracy are defined in Equation (6).

Sn =

∑
i maxj Ti,j∑

i |ri|
, PPV =

∑
j maxi Ti,j∑

j | ∪i (ri ∩ cj)|
,

Accuracy =
√
Sn× PPV , (6)

where Ti,j is the number of proteins shared by ri and cj ,
i.e., |ri ∩ cj |. Fraction of matched complexes (i.e., FRAC)
[11] is an indicator for prediction coverage, which measures
the percentage of benchmark protein complexes that are
matched by the predicted protein complexes. Given ri and
cj , they are matched if |ri∩cj |2

|ri||cj | ≥ ω (ω is usually set to
0.2 and we also fix it to be 0.2 in our experiments). The
definition of FRAC is shown in Equation (7), where R is the
set of benchmark complexes and P is the set of predicted
complexes. In particular, the CYC2008 catalogue [42] with
408 complexes is used as the benchmark for evaluation
in this study. All the experimental data and results, as
well as a binary executable, are available in our website
http://www1.i2r.a-star.edu.sg/%7exlli/EnsemHC/.

FRAC =
|{ri|ri ∈ R ∧ ∃cj ∈ P, cj matches ri}|

|R|
. (7)

In addition, in our experiments, we set τij in Equation
(2) as 1, FSweight [26] and C2S score [19], respectively.
Correspondingly, we have 3 types of co-cluster matrix
Me, i.e., binary co-cluster matrix, co-cluster matrix with
FSweight and co-cluster matrix with C2S score. Next, we
will show the results from different co-cluster matrices.

3.2 Comparison between Equal Weighting and Iterative
Weighting
We first evaluate the performance of equal weighting and
our iterative weighting for detecting protein complexes.

Among 10 methods on DIP PPI data, their performance
is quite different from each other as shown in Table 1 in
Subsection 3.4. For example, PLW and MCL both achieve
an accuracy 0.624, while DPClus and MCODE are 0.309 and
0.339, respectively. Our iterative weighting can effectively
adjust the weights for individual methods based on their
own characteristics (i.e., their PPV values to the latent
clusters). As such, we observe that iterative weighting
performs much better than equal weighting for PPI clusters
as shown in Figure 1.

Figure 2 shows the comparison of the two weighting
schemes for TAP clusters. For the co-cluster matrices with
C2S scores, iterative weighting performs better than equal
weighting as shown in Figures 2(a) and 2(c). For the
co-cluster matrix with FSweight scores, iterative weighting
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Fig. 1: Comparison of two weighting schemes on PPI
clusters.

and equal weighting have comparable performance in terms
of the average of Accuracy and FRAC. In particular, we also
learnt the weights for individual methods in a supervised
manner by using the information of benchmark complexes
(please refer to our supplementary for more details and
results for the supervised weighting scheme). For these 5
methods on TAP data (i.e., BT, C2S, CACHET, Hart and
Pu), their weights learnt by the supervised method are
1.03, 1.02, 1.08, 1.05 and 1.0, respectively. That is, the equal
weighting is actually very close to the supervised weighting.
Overall, our iterative weighting achieves even better results
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in Figures 2(a) and 2(c) and comparable results in Figure
2(b), demonstrating that it is effective to assign the weights
for individual clustering methods.
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Fig. 2: Comparison of two weighting schemes on TAP
clusters.

In addition to the equal weighting, we also compare
our iterative weighting with an existing weighting scheme
based on the Normalized Mutual Information (NMI) [32].
Given a set of clustering solutions E = {C1, C2, · · · , C |E|},
the NMI score between Ci and Cj demonstrates their
consistency. The weight we for the clustering solution Ce is
defined as its total NMI scores to other clustering solutions

(we denote this weighting scheme as NMI weighting). NMI
weighting is even worse than equal weighting for PPI
clusters. However, our iterative weighting scheme achieves
comparable results when its initial weights are set as equal
weights and NMI weights as shown in Figure S1 in the
supplementary. This observation indicates that our iterative
weighting is robust to its initial weights.

3.3 Comparison of various evidences for Co-cluster
matrices
Figure 3 compares the results of our EnsemHC on the
co-cluster matrices with different co-complex evidences,
e.g., FSweight scores based on PPI network topology and
C2S scores based on the TAP purifications. We have two
interesting findings from Figure 3 as follows.
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Fig. 3: Comparison of various evidences for co-cluster
matrices.

First, the co-cluster matrices with additional evidences
perform much better than binary co-cluster matrices for TAP
clusters. Meanwhile, the results of EnsemHC on PPI clusters
are quite different — binary co-cluster matrices can achieve
very good performance. Let’s consider a simple example
to explain the above results, where the final ensemble
matrices are derived from binary co-cluster matrices via
equal weighting. Figure 4 shows the distribution of the
scores in the final ensemble matrices from TAP clusters
(left figure) and PPI clusters (right figure). For the final
ensemble matrix from TAP clusters, there are about 2,800
co-cluster pairs with score 1.0 (i.e., predicted by all the 5
methods on TAP data). Recall that the hierarchical clustering
in Algorithm 2 will merge two proteins with the maximum
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score into a cluster. As we have a large number of pairs
with the maximum score 1.0, the merge operation would
thus be arbitrary. In this situation, the additional evidences
(e.g., FSweight and C2S scores) would help to guide the
merge operations towards a better clustering. On the other
hand, the number of pairs with score 1.0 in the ensemble
matrix derived from PPI clusters is much smaller (less than
200) and the top co-cluster pairs (e.g. top 2,800 pairs) in
this matrix already have different scores. This would explain
why binary co-cluster matrices for PPI clusters can achieve
good performance.
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Fig. 4: The distribution of the co-cluster scores in the final
ensemble matrices.

Second, the co-cluster matrices integrated with the
evidences from other data sources would be more
promising. For example, FSweight is better than C2S on TAP
clusters in Figure 3(a), while C2S is better than FSweights
on PPI clusters in Figure 3(b). In Figure 3(a), co-clusters
matrices for TAP clusters would be redundant with C2S
scores which are also derived from TAP data. Meanwhile,
FSweight scores are likely to be complement to these
co-cluster matrices and thus achieve better performance
for protein complex detection. This would explain why
FSweight is better than C2S on TAP clusters. The case for the
PPI clusters in Figure 3(b) is similar. Hereafter, EnsemHC
on TAP clusters refers to the case we integrate co-cluster
matrices with FSweight scores, while EnsemHC on PPI
clusters refers to the case we integrate co-cluster matrices
with C2S scores.

3.4 Comparison with various base clustering methods

Table 1 shows the performance of various base methods on
DIP PPI data. Here, as mentioned above, the results of our
EnsemHC on DIP data are generated based on the co-cluster
matrices for PPI clusters with the C2S scores as additional
evidence.

Among 10 base clustering methods as shown in Table 1,
PLW and MCL achieve the same best Accuracy and COACH
has the best FRAC. Our EnsemHC achieves an Accuracy
score 0.662, which is 6.09% higher than PLW. Meanwhile,
EnsemHC’s FRAC is 0.591, 12.14% higher than COACH.

TABLE 1: Comparison between EnsemHC and various
methods on DIP data.

Methods # complexes # proteins Acc FRAC Avg
EnsemHC 1155 3303 0.662 0.591 0.627

ClusterONE 342 1366 0.557 0.328 0.442
CMC 423 1831 0.613 0.458 0.535

COACH 746 1838 0.617 0.527 0.572
DPClus 301 1177 0.309 0.066 0.188

MCL 600 4101 0.624 0.404 0.514
MCODE 58 754 0.339 0.0931 0.216

RNSC 541 2095 0.605 0.375 0.49
RRW 248 1174 0.538 0.348 0.443
SPICi 412 2113 0.591 0.382 0.487
PLW 576 1747 0.624 0.444 0.534

Table 2 shows the comparison among various methods
on TAP data. Similarly, EnsemHC on TAP data refers to
the co-cluster matrices derived from TAP clusters with
FSweight scores as additional evidence. EnsemHC achieves
an Accuracy 0.762 and FRAC 0.779, 0.66% and 23.65%
higher than C2S, respectively.

TABLE 2: Comparison between EnsemHC and various
methods on TAP data.

Methods # complexes # proteins Acc FRAC Avg
EnsemHC 1869 4768 0.762 0.779 0.771

BT 409 1692 0.73 0.598 0.664
C2S 1035 5094 0.757 0.63 0.694

CACHET 449 1110 0.666 0.512 0.589
Hart 390 1689 0.725 0.593 0.659
Pu 400 1913 0.738 0.591 0.665

In addition, we observe that the results of EnsemHC on
TAP clusters in Table 2 are much better than that on PPI
clusters in Table 1. Given a pair of proteins not co-clustered,
we will actually not consider their FSweight or C2S scores
in the co-cluster matrices. After such an intersection-based
integration in Equation (2), the performance of EnsemHC is
still mainly determined by the quality of its input clusters.
As TAP clusters in Table 2 have much higher Accuracy and
FRAC than PPI clusters in Table 1, it is reasonable that
EnsemHC on TAP clusters are much better than that on
PPI clusters. In this study, we focus on the co-clustered
protein pairs with an intersection-based integration of
clustering results and other co-complex affinity scores. In the
future, it would be interesting to investigate an union-based
integration for protein complex detection.

3.5 Comparison with ensemble clustering methods
Table 3 shows the comparison between our EnsemHC and
two ensemble clustering methods, i.e., ENMF [29] and
EC-BNMF [30]. The parameter settings for ENMF and
EC-BNMF are introduced in our supplementary materials.

TABLE 3: Comparison among EnsemHC, ENMF and
EC-BNMF.

Input Data Methods Acc FRAC Avg

DIP Clusters
EnsemHC 0.662 0.591 0.627
EC-BNMF 0.677 0.561 0.619

ENMF 0.650 0.583 0.617

TAP Clusters
EnsemHC 0.762 0.779 0.771
EC-BNMF 0.737 0.593 0.665

ENMF 0.710 0.541 0.626
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On DIP clusters, EC-BNMF achieves the best Accuracy,
while EnsemHC performs the best in term of FRAC and
the average of Accuracy and FRAC. On TAP clusters, our
EnsemHC achieves the highest Accuracy, FRAC and their
average score. For example, EnsemHC on TAP clusters
achieves an Accuracy 0.762, which is 3.4% and 7.3% higher
than EC-BNMF (0.737) and ENMF (0.710), respectively.

3.6 Comparison with other integrative methods
InteHC [26] is an integrative method which combines 4 data
sources, i.e., PPI data, gene expression profiles and gene
ontology annotations, for protein complex prediction. In
addition, the authors in [25] predicted protein complexes
leveraging both data-level integration and result-level
integration. They first built a composite network by
integrating PPI data, functional associations from STRING
database and co-occurrence information for proteins from
PubMed abstracts. They applied 6 clustering methods
on the composite network and designed a voting-based
aggregative strategy to combined their results to generate
the final set of protein complexes. Next, we denote the
method in [25] as “Combined” and show the comparison
among EnsemHC, InteHC and Combined in Table 4 (we
used EnsemHC on TAP clusters, which achieved the best
performance, to compare with InteHC and Combined).

TABLE 4: Comparison among EnsemHC, Combined and
InteHC.

Methods # complexes # proteins Acc FRAC Avg
EnsemHC 1869 4768 0.762 0.779 0.771

InteHC 860 2580 0.769 0.711 0.740
Combined 228 1173 0.462 0.25 0.356

As shown in Table 4, EnsemHC performs better than
InteHC and Combined in terms of the average of Accuracy
and FRAC. We also observed that Combined generates only
228 protein complexes as it requires that each complex
should have at least 4 proteins. Meanwhile, the number
of complexes predicted by EnsemHC and InteHC is much
larger as they generate quite a number of complexes with 2
or 3 proteins. For fair comparison, we further removed those
complexes with 2 or 3 proteins for EnsemHC and InteHC.
As such, EnsemHC has 261 complexes and InteHC has
246 (i.e., all the three methods have a comparable number
of predicted complexes). Figure 5 shows the comparison
among them and EnsemHC consistently performs better
than InteHC and Combined in term of Accuracy, FRAC and
the average.

Lastly, as we mentioned in the Introduction section,
both InteHC and Combined integrate heterogeneous data
sources using supervised learning methods, while our
EnsemHC works in an unsupervised manner. Moreover,
InteHC integrates 4 data sources and Combined integrates
3 data sources including a very comprehensive STRING
database. Meanwhile, EnsemHC only integrates the TAP
clusters with the FSweight scores derived from PPI data.
Nevertheless, EnsemHC still perform much better than
InteHC and Combined in terms of prediction accuracy
and coverage. Therefore, EnsemHC is more promising than
InteHC and Combined for integrative detection of protein
complexes.
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Fig. 5: Comparison among EnsemHC, InteHC and
Combined.

3.7 Complexity and running time for EnsemHC
The computational complexity of EnsemHC is O(K ×N3),
where K is the number of times running the hierarchical
clustering in Algorithm 1 and N is the dimension of the
final ensemble matrix (i.e., the number of proteins in the
data). Considering that K is usually small in our study and
N is not that huge (N is around 6,000 in yeast species),
the running time of EnsemHC is still affordable to predict
the complexes in the yeast species. For example, on a PC
with 3.4GHz CPU (8 cores) and 8G RAM, it takes about 295
seconds to generate complexes by integrating TAP clusters
and FSweight scores, and 247 seconds by integrating DIP
PPI clusters and C2S scores. In addition, Table S5 in our
supplementary file shows that K is equal to 2 when we
integrated 10 basic clustering solutions on DIP PPI data with
C2S scores, i.e., we only ran the hierarchical clustering twice
in the Algorithm 1.

4 CONCLUSION

In this paper, we present an Ensemble Hierarchical
Clustering framework (EnsemHC) to detect protein
complexes. First, we construct co-cluster matrices by
leveraging the clustering results and the evidences for
co-complex relationships from PPI and TAP data. Second,
we integrate the co-cluster matrices to derive a final
ensemble matrix via an iterative weighting scheme. Third,
we apply the hierarchical clustering [26] to generate protein
complexes from the final ensemble matrix. Experimental
results demonstrate that our EnsemHC performs much
better than its base clustering methods. EnsemHC also
performs better than existing integrative methods like
ENMF [29], EC-BNMF [30], Combined [25] and InteHC [26].

In this study, we focus on the co-clustered protein pairs
with an intersection-based integration of clustering results
and other co-complex evidences from PPI and TAP data.
Such an intersection-based integration would probably limit
the performance of EnsemHC. In the future, it would
be interesting to investigate an union-based integration
towards better protein complex detection.
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