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Abstract

Knowledge distillation (KD) attempts to compress a deep teacher model into
a shallow student model by letting the student mimic the teacher’s outputs. How-
ever, conventional KD approaches can have the following shortcomings. First,
existing KD approaches align the global distribution between teacher and stu-
dent models and overlook the fine-grained features. Second, most of existing
approaches focus on classification tasks and require the architecture of teacher
and student models to be similar. To address these limitations, we propose a con-
trastive adversarial knowledge distillation called CAKD for time series regression
tasks where the student and teacher are using different architectures. Specifi-
cally, we first propose adversarial adaptation to automatically align the feature
distribution between student and teacher networks respectively. Yet, adversarial
adaptation can only align the global feature distribution without considering the
fine-grained features. To mitigate this issue, we employ a novel contrastive loss
for instance-wise alignment between the student and teacher. Particularly, we
maximize similarity between teacher and student features that originate from the
same sample. Lastly, a KD loss is used to for the knowledge distillation where the
teacher and student have two different architectures. We used a turbofan engine
dataset that consists of four sub-datasets to evaluate the model performance. The

Email addresses: xu_qing@i2r.a-star.edu.sg (Qing Xu),
chen0832@e.ntu.edu.sg (Zhenghua Chen), mohamedr002@e.ntu.edu.sg
(Mohamed Ragab), cswang@ustc.edu.cn (Chao Wang), wumin@i2r.a-star.edu.sg
(Min Wu), xlli@i2r.a-star.edu.sg (Xiaoli Li)

Preprint submitted to Elsevier January 25, 2021



results show that the proposed CAKD method consistently outperforms state-of-
the-art methods in terms of two different metrics.

Keywords: Knowledge Distillation, Contrastive Learning, Adversarial Learning,
Time Series Regression

1. Introduction

Recent years have witnessed a significant achievement of deep neural net-
works (DNNs) in various real-life applications, such as face recognition, machine
translation, autonomous vehicles, etc. With the increasing concerns on data pri-
vacy, energy efficiency and communication latency, lots of these DNNs are re-
quired to be deployable on edge devices, e.g., mobiles and Internet of Things
(IoT) devices. However, a deep learning model with better performance often
comes with more complex architecture, resulting millions of model weights and
tons of floating-point operations [1]. It hinders the deployment of complex deep
models on resource-limited environments like edge devices.

A real industry case is prognostic and health management (PHM) for intelli-
gent industrial manufacturing. As an essential part of PHM, machine remaining
useful life (RUL) prediction is crucial for reducing maintenance cost and improv-
ing system reliability [2, 3]. The RUL prediction algorithms are often required
to run on edge devices for real-time processing and fast decision-making in smart
factories [4]. However, most of previous works pay much more attention on pre-
diction accuracy than model complexity. Long short-terms memory (LSTM) and
convolutional neural network (CNN) are two commonly-used deep learning net-
works for RUL prediction. Moreover, LSTM has exhibited outstanding capability
on extracting informative features and outperformed CNN based models [5, 6, 7].
However, the LSTM generally has much higher computational complexity than
CNN due to its unique structure of cascade connections. Hence, a question comes
up: is there a deep learning algorithm that can achieve similar performance as
LSTM but also as compact as CNN?

To address the conflict between model performance and model efficiency,
many advanced techniques have been proposed to compress deep learning models,
such as parameter pruning [8], parameter quantization [9, 10], low-rank factoriza-
tion [11], and knowledge distillation (KD) [12, 13]. Among them, KD is partic-
ularly effective due to the paradigm of transferring knowledge (soft logits) [13]
and/or intermediate representations [14] from a large network (termed Teacher)
to a small network (termed Student). Previous works have shown that the com-
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pact student trained with KD can converge faster and achieve a better performance
than an independent network trained without a teacher’s supervision [15]. How-
ever, there are still some challenges by using KD for model compression. Firstly,
previous KD research mainly focuses on classification tasks and few of them focus
on regression tasks like object localization [16] and camera pose regression[17].
There is lack of research on KD methods for time-series regression tasks. Sec-
ondly, as aforementioned, for time-series regression tasks, it is more practical to
transfer knowledge between disparate network architecture (e.g., from a LSTM
based network to a CNN based network). But students in previous works usually
share a similar network architecture as teachers, either shallower [18, 19] or thin-
ner but deeper [14]. Thirdly, most existing methods either only align the global
feature distributions between teacher and student models [20, 21], or only con-
sider the sample-wise feature alignment [22, 23]. We show that the integration of
distribution-wise and sample-wise feature alignment outperforms other state-of-
the-art KD methods in cross-architecture knowledge distilling scenario.

To address the above issues, in this paper, we propose a novel contrastive ad-
versarial knowledge distillation (CAKD) approach for model compression in the
regression task of machine RUL prediction. In particular, the proposed approach
aims to distill knowledge from a complex LSTM-based teacher to a simple CNN-
based student for RUL prediction. The adversarial loss is used for the automatic
alignment of global features, while the contrastive loss is used to align fine-grained
features by instance-wise discrimination.

The main contributions of the proposed method are summarized as follows.

• We propose an adversarial learning based approach to automatically mini-
mize the discrepancy of feature distributions between the student and teacher.
Meanwhile, we propose a fine-grained sample-wise feature adaptation be-
tween the student and teacher models by using contrastive learning.

• The integration of distribution-wise and sample-wise feature alignment can
effectively transfer the knowledge between disparate network architectures,
which is more practical in time series regression tasks.

• Extensive experiments demonstrate that the propose CAKD method achieves
better performance than state-of-the-art KD methods.

The rest of the paper is organized as follows. Section 2 reviews some related
works on knowledge distillation and RUL prediction. Section 3 presents the de-
tails of our proposed CAKD method. Section 4 introduces our experimental setup,
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followed by experimental results, ablation study and sensitivity analysis. Finally,
Section 5 concludes this work.

2. Related Works

Knowledge Distillation. The authors in [12] first introduced the idea of using
a compact model to approximate the function learned by a larger and better-
performing model. The authors in [13] further extended this idea by making the
student mimic teacher’s soften logits and termed it as knowledge distillation. In
addition to just mimicking the logits, Romero et al. proposed to adopt hint-based
training scheme for aligning the feature maps [14] (i.e., feature distillation), where
the L2 distance was chosen as the metric for measuring the distance between two
feature maps.

Recently, feature distillation has attained more attention. Zagoruyko and Ko-
modakis proposed to transfer the spatial attention maps from a powerful teacher
network to a smaller student network [21]. A novel pairwise similarity matrix
was proposed in [20] to preserve interrelationships of similar samples in student’s
representation space as those in teacher’s. Yim et al. defined the inner product be-
tween features from two layers as flow and transferred the flow to student instead
of knowledge [24]. Nikolaos et al. directly matched the probability distribution
of the data between teacher’s and student’s feature spaces [25]. Instead of hand-
crafting the knowledge, adversarial methods are introduced in [26, 27, 28, 29] for
feature alignment between teacher and student networks. Another work closely
related to our research is the contrastive distillation approach introduced in [22]. It
aims to maximize similarity between teacher and student’s representations that are
originated from the same instance while minimizing similarity between teacher
and student’s representation that come from different samples. Above adversarial
methods and contrastive learning method work with the configuration that teacher
and student share a similar network architecture for classification tasks. In our
work, we extend the adversarial learning to cross-architecture scenario for feature
alignment in time-series regression tasks. Besides, the success of KD methods is
due to the informative knowledge lying in the logits from teacher. Hence, most of
previous works focus on classification task. Meanwhile, KD methods have also
been demonstrated to be suitable for regression tasks like object localization [16]
and camera pose regression [17]. We empirically show that for time-series regres-
sion problems, the ‘Soft Labels’ from teacher can also provide an approximate
solution space to effectively train a compact student.
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RUL Prediction. In the regression task of machine RUL prediction, deep learning
methods have been attracting remarkable attentions due to their superior capabil-
ity of automatically mapping the input sensory data to the corresponding RUL
values. [30] was the first attempt to employ a CNN for RUL prediction. The con-
volution operations were applied along the temporal dimension over all the input
sensor data to learn high-level abstract features. Thereafter, different CNN vari-
ants were proposed for RUL prediction, such as NB-CNN [31], Deep-CNN [32],
Double-CNN [33], etc. Another popular deep learning architecture of LSTM has
also been widely explored for RUL prediction as LSTM can capture the temporal
dependency among sequential sensory data. Many works have shown that LSTM-
based models can outperform CNN-based models in the task of RUL prediction
[5, 6, 7]. However, LSTM-based models often have higher computational com-
plexity and require much more memory compared with CNN-based models. In
this paper, we aim to propose a method to bridge the gap between model perfor-
mance and model complexity.

3. Methodology

In this section, we first give an overview of our proposed CAKD method and
then present the details of each component in CAKD.

3.1. Overview of CAKD
The overall structure is illustrated in Figure 1. Specifically, our method trans-

fers the feature representations and the final knowledge from a cumbersome teacher
to a compact student with disparate network architectures. It consists of two main
steps, namely, 1) feature distillation through adversarial and contrastive learning,
and 2) knowledge distillation learning. Both the Teacher (T ) and Student (S)
models include two modules, i.e., feature extractor and regressor. The feature ex-
tractor is to learn a valuable feature map for the final regression task. Let x ∈ Rk×l

represent the input sample with k input sensors and l time steps, ψT (x) and ψS(x)
represent the feature maps from the feature extractors ψT and ψS , respectively. As
shown in Figure 1(a), both adversarial learning and contrastive learning are de-
signed to learn the student’s feature extractor. The extracted feature maps are then
fed into the regressors of T and S, and generate the outputs ŷT , ŷS respectively.
Here, we consider the teacher output ŷT as ‘Soft Label’, while the actual label
(i.e., ground truth) is denoted as ytrue. Given the soft labels and actual labels, the
KD learning part in Figure 1(b) can thus minimize both the soft loss LSoft and the
hard loss LHard to update the student’s feature extractor and regressor.
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Note that the architectures of teacher and student could be similar or dissimilar.
For example, a similar CNN-based structure could be employed for both teacher
and student models in an image classification task, except that model depth or
weights in the student network are less than those in the teacher network. How-
ever, transferring knowledge between dissimilar network architectures are gener-
ally considered more challenging than similar network architectures as the latent
feature spaces learnt by teacher and student with dissimilar architectures could
be totally different. In this work, we employ dissimilar structures for teacher’s
and student’s feature extractors, i.e., a complex LSTM-based structure for teacher
and a CNN-based structure for student. For the regressors, we use stacked fully-
connected layers for both teacher and student, except that student’s regressor has
less hidden units.

3.2. Feature Distillation
Intuitively, distilling features between dissimilar network architectures is more

challenging since the feature spaces could be totally disparate. As aforemen-
tioned, most of previous works focus on pre-defining a decent metric to measure
the disparity between teacher’s and student’s feature spaces [14, 20]. Those met-
rics have been shown to be effective in related areas, such as image classification
and natural language processing. However, it is not clearly stated whether these
pre-defined metrics are also feasible for other tasks. Therefore, we are motivated
to design an automatic process that can learn such a metric to align the feature
maps from the teacher and student.
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Figure 1: The proposed CAKD method with a two-stage training scheme: (a) feature distillation
by adversarial and contrastive learning, and (b) Knowledge distillation Learning.
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3.2.1. Adversarial Learning
Inspired by [34], the adversarial learning scheme is exploited in this paper

to automatically learn this metric for feature distillation. As depicted in Figure
1(a), a binary classification network Discriminator, denoted as Fd, is employed
to discriminate whether the input feature map is from the teacher or student net-
work. Considering the fact that the feature maps dimensions of teacher and student
generally are different, we add a single-layer linear network (named Adaptor) to
match them. The adversarial learning can be formulated as follows:

min
Fd

LD = −Ex[log(Fd(ψT (x))) + log(1− Fd(f(ψS(x))))], (1)

min
ψS ,f

LG = Ex[log(1− Fd(f(ψS(x))))]. (2)

Here, ψS and ψT represent the feature extractors of the student and teacher
networks, respectively. ψS(x) and ψT (x) represent the feature maps from stu-
dent’s and teacher’s feature extractors, respectively. f represents the adaptor and
is trained together with ψS . Note that the parameters of ψT are always fixed during
the training stage.

We train ψS and Fd in an adversarial manner. First, we fix the parameters of
ψS and f , and train the discriminator Fd. The goal of training discriminator Fd
is to maximize the probability of correctly classifying an input feature maps as
‘real’ (from teacher) or ‘fake’ (from student). It consists of two calculation steps
for training the discriminator as follows. First, a batch of ‘real’ samples are con-
structed from teacher’s feature extractor and forwarded pass through Fd. After the
loss log(Fd(ψT (x))) is calculated, the gradients are then calculated with a back-
ward pass. Secondly, a batch of ‘fake’ samples are constructed from the student’s
feature extractor, which are also forwarded pass through Fd. Then we calculate
the loss log(1−Fd(f(ψS(x))) and accumulate the gradients with a backward pass.
By minimizing loss Equation (1) with the gradients accumulated from both ‘real’
and ‘fake’ batches, we can maximize the probability that Fd correctly classifies
ψS(x) from student and ψT (x) from teacher. Second, we fix the parameters of Fd
and then train the ψS by minimizing log(1 − Fd(f(ψS(x))) in order to generate
better ‘fake’ feature maps as shown in Equation (2). It allows the student to gen-
erate feature maps more like the teacher’s such that Fd cannot tell whether they
are from ψS or ψT . By alternately applying above two steps, the discriminator
Fd eventually cannot distinguish whether the feature maps are from the teacher or
student network. In other words, the student’s feature extractor ψS can generate
features pretty close to the teacher’s.
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3.2.2. Contrastive Learning
Although the adversarial learning is capable of learning a promising latent

metric for feature distillation, there are still some challenges. First, according
to Equation (2), the optimization of ψS totally depends on the accuracy of the
discriminator Fd. The training loss of ψS is sometimes difficult to converge,
especially in the early training stage. Second, adversarial alignment can only
align the overall distribution and overlook the fine-grained features. To mitigate
these issues, we employ contrasting learning [22, 35, 36] for instance-wise feature
alignment between the teacher and student. Particularly, the contrastive loss aims
to maximize the mutual information between teacher and student features which
originate from same sample.

As aforementioned, the dimension of feature maps from teacher’s and stu-
dent’s feature extractors may be different. Given a sample xi, we employ a linear
Embedded network E to transform ψS(xi) and ψT (xi) as follows so that vi and
v+i have the same dimension.

vi = ES(ψS(xi)), (3)
v+i = ET (ψT (xi)). (4)

As shown in Equations (3) and (4), the feature vectors vi and v+i are from the
student and teacher, respectively. ES and ET are trainable. For vi, we consider v+i
as its positive vector, while we also derive K negative vectors {v−1 , v−2 , .., v−K} as
shown in Figure 1(a). vi and v+i should have a similar probability distribution if
the student can perfectly mimic the teacher, and vi and v−j should have different
distributions since they are from different samples. The objective of contrastive
learning is to push the vector vi close to its positive sample v+i and pull it away
from those K negative samples.

Following prior work [22], we formulate the posterior probability of two vec-
tors u and v from same data distribution in Equation (5).

H(u, v) =
exp(uTv)

exp(uTv) + K
N

(5)

Here, N is total number of training samples and K negative samples are for-
mulated as a random uniform distribution over totalN training samples. Our opti-
mization objective of contrastive learning is thus to maximize the above posterior
distribution of the positive and negative samples, which is equivalent to minimize
the contrastive loss function Lc defined in Equation (6) [22]. In Equation (6), v
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and its positive sample v+ are from the same distribution Pd, while v and its neg-
ative sample v− are from different distribution Pn. We can then update student’s
feature extractor ψS and Embedded network E by minimizing this contrastive
loss.

min
ψS ,ET ,ES

Lc = −E(v+,v)∼Pd
[log(H(v+, v)]−K ∗ E(v−,v)∼Pn [log(1−H(v−, v))]

(6)
A memory bank is used to store the embedded feature vectors of all training

samples from the previous learning iteration. Let V = {vj} be the memory bank,
where j ∈ [0, N). Suppose that the dimension of embedded feature vector vj ism,
hence the memory bank is a memory buffer with sizeN×m. During each learning
iteration, we use the alias method, i.e., an efficient sampling method with many
discrete outcomes introduced in [37], to select K vectors from memory bank V
as the negative samples v−j ∈ {v−1 , v−2 , .., v−K}. Here, for a specific feature vector
vi, we make sure the indexes of selected K negative vectors are not equal to i.

After each iteration, we update the memory bank with the corresponding entry
of each sample with a momentum m. Empirically, we observe that momentum m
barely affects the final performance. Hence we setm = 0.9 in all the experiments.
Another hyper-parameter in contrastive learning is the negative sample sizeK and
we will show its impact on the final results in Section 4.

Finally, we combine both LG from adversarial learning and LC from con-
trastive learning together to train the student’s feature extractor ψS . The overall
loss LG−overall for training student’s feature extractor is defined as Equation (7).
We will show how model is sensitive to hyper-parameter β in experiments. We
set β = 1.0 in all of our experiments.

LG−overall = LG + β ∗ LC (7)

3.3. Knowledge Distillation
Logits from the teacher model contain useful information among classes for a

classification task [13]. The ‘soften’ logits controlled by a ‘Temperature’ parame-
ter are often used to guide the student’s training in a classification task. However,
the prediction output of regression tasks is a single value, but not a probability dis-
tribution over classes in classification tasks. There are no such logits being soften
in regression tasks, hence, we discard the ‘Temperature’ parameter in Equation
(8). But the predictions from teacher are still helpful as it provides an approxi-
mate solution space where student can easily get to. Therefore, we consider the
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predictions/outputs from teacher, ŷT , as the soft labels to guide the training for
student. The KD loss LKD can thus be defined as follows:

LKD = α ∗ ‖ŷS − ŷT‖2 + (1− α) ∗ ‖ŷS − ytrue‖2 (8)

The first term in Equation (8) is the ‘soft loss’ as stated in Figure 1(b), which
measures the L2 distance between student’s predictions ŷS and the soft labels ŷT .
The second term is the hard loss, which measures the distance between ŷS and
the actual labels ytrue. A hyperparameter α adjusts each term’s contribution to
the finial loss. Empirically, a higher α often yields a better student as shown in
our experiments later, which demonstrates the effectiveness of the soft labels (i.e.,
teacher’s predictions) in assisting student’s training.

4. Experiments

In this section, we conduct several experiments to evaluate the effectiveness
of our proposed method in the regression task of RUL prediction.

4.1. Experimental Setup
4.1.1. Dataset and Pre-Processing

In this paper, the proposed method is evaluated with the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) dataset [38]. The C-MAPSS
dataset contains four sub-datasets with different engine operating conditions and
faulty modes. Each sub-dataset can be further divided into training and test data.
For training data, each trajectory represents an engine unit with varying initial
state and consists of 21 run-to-failure sensor measurements. While the trajectory
in test data represents measurements at certain degradation period. The objective
of this dataset is to precisely predict the remaining useful life of turbofan engines.
The details of each sub-dataset are shown in Table 1.

Table 1: C-MAPSS - NASA’s Turbofan Engine Dataset

Dataset FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248

Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

In our experiments, we further separate the training dataset into training set
and validation set with a ratio of 9:1 in terms of the number of engines, and we
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use the validation set to select model parameters. For example, we randomly se-
lect 90 engine trajectories for training and 10 trajectories for validation on FD001
and FD003. Similar to previous works [6, 7], we discard 7 out of 21 sensor mea-
surements (i.e., sensors T2, P2, P15, epr, farB, Nf-dmd and PCNfR-dmd) whose
readings remain constant in the data collection process and thus the number of
input sensors k is 14. Then, a sliding window method with window size l and
step size s is applied to segment the training data as illustrated in Figure 2. For
example, the RUL for the first sample is C− l, and the (i+1)th sample has a RUL
of C − l − s ∗ i. Here, C is the total cycle life of an engine. For the test data,
we only extract the last segmentation with the same window size to estimate its
RUL. The degradation of engine is usually negligible at the beginning stage and
linearly increases when engine gets to the end-of-life. Therefore, the piece-wise
linear method [39, 6, 7] is employed to label the RUL, where the true RUL is set to
the maximal RUL value RULmax if it is larger than RULmax. In our experiments,
we set window size l = 30 (the dimension of input samples k × l is thus 14×30),
step size s = 1, RULmax = 130, following the previous studies [39, 6, 7].

S
e
n
s
o
rs

Window size l

Step size s
RUL=C-l-s*i

RUL=C-l-s*(i+1)

Total Cycle Life C

Figure 2: Data Pre-processing

4.1.2. Evaluation Metrics
To quantify the performance of various models, we adopt two commonly used

evaluation metrics, i.e., Root Mean Square Error (RMSE) and Score function.
Their definitions are shown in Equation (9) and Equation (10), where di = ŷi−yi,
ŷi is the model prediction and yi is the ground truth for the ith sample. Note
that the score function is used to penalize late predictions which may cause worse
catastrophe than early predictions in real world.
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RMSE =

√√√√ 1

N

N∑
i=1

(di)2 (9)

Score =

{∑N
i=1(e

− di
13 − 1) di < 0∑N

i=1(e
di
10 − 1) di ≥ 0

(10)

4.1.3. Network Architecture
To validate our proposed CAKD approach, we firstly pre-train a powerful but

luxurious teacher network with 5 LSTM layers (32 hidden units in each layer) as
feature extractor and 2 fully-connected (FC) layers as regressor. With proper pa-
rameter tuning, we obtain a teacher with decent performance on each sub-dataset
and its model weights are then fixed when guiding the student’s training.

For the student’s feature extractor, we adopt a dilated CNN structure as [40].
This simple CNN architecture has shown promising capability of dealing with
long-range temporal dependencies for time series sensory data. Figure 3 illustrates
the details of student’s feature extractor and regressor. Note that, 1D CNN(3,2,1)
represents a 1-Dimension convolutional operation with the kernel size of 3, the
stride size of 2 and the dilation of 1. We apply different kernel size with different
dilation size to ensure that the student’s feature extractor has a large receptive
field.

The two fully-connected (FC) layers of both teacher’s and student’s regressors
can be denoted as freg : RD FC1−→ R

D
2

FC2−→ R, where D is the dimension of the
flattened feature vector. For example, D is 42 for student’s output feature vector
as shown in Figure 3. A non-linear activation function (i.e., ReLU) and a dropout
layer with dropout rate of 0.5 are added between the two FC layers.

4.2. Comparison with Benchmark Approaches
In this section, we compare our proposed method with various benchmark ap-

proaches, including Standard KD [13], hint based transfer (FitNet) [14], FitNet-
L1 [16], activation-based Attention Transfer (AT) [21], Probability Knowledge
Transfer between intermediate layers of teacher and student (PKT) [25], Distance-
wise and Angle-wise Relational Knowledge Distillation (RKD-DA) [41], Varia-
tional Information Transfer between Intermediate layers (VID-I) [42], and Deep
Mutual Learning (DML) [43]. In particular, FitNet-L1 [16] is a variant of FitNet

12



1D CNN(3,2,1)

Relu

(None,42)

1D CNN(3,2,4)

Relu
Maxpool

Concatenate

FC1

1D CNN(5,2,2)

Relu
Maxpool

1D CNN(7,2,1)

Relu
Maxpool

1D CNN(3,2,1)

Relu

1D CNN(3,2,1)

Relu

(None,21) FC2

RUL

Feature Extractor

Regressor

Input

Figure 3: Student Network Architecture

usingL1 to measure feature maps disparity on feature distillation stage. For RKD-
DA [41], we follow the original paper and set λRKD−D = 1 and λRKD−A = 2.
For DML [43], we use 2 networks by following the original paper.

We conducted the experiments with batch size of 64, optimizer of Adam,
learning rate of 1e-3 for the proposed method. We adopted a grid search for
negative sample size K ∈ [20, 21, · · · , 210], memory bank updating momentum
m ∈ [0.1, 0.99] and α ∈ [0.0, 1.0] in Equation (8). Considering the randomness
caused by factors like model initialization and dropout, the reported results are
averaged over 5 repeats. All experiments and algorithms are implemented with
Pytorch framework and the models are trained on a NVIDIA 2080Ti GPU.

Table 2 presents the evaluation results of different methods on the four sub-
datasets. The CNN-based student training from scratch (named Student Only) per-
forms the worst in terms of RMSE and Score. The teacher model performs much
better due to its superior model complexity. By using different KD methods, the
performances of the student are improved over all the four datasets, which explic-
itly indicates the effectiveness of the KD methods on regression tasks. Among all
the KD methods, our proposed CAKD approach performs the best. Moreover, it
even outperforms the teacher on FD002, FD003 and FD004 in terms of RMSE and
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Score. The phenomenons of compact student outperforming cumbersome teacher
are also observed in other works [14, 41, 44]. For our proposed CAKD, the pos-
sible reason is that the introduction of contrastive learning makes the student able
to learn some distinct features from other negative samples, which is not available
during teacher’s training process.

Another point to note is that combining feature distillation based on Euclidean
Distance with KD does not always guarantee better performance than standard
KD. For instance, on FD003 and FD004, Fitnet-L1 and FitNet achieve worse per-
formance than the Standard KD. Besides, transferring specific knowledge, like the
attention maps (AT), feature probabilistic distribution (PKT), mutual relations of
data samples (RKD-DA), can also help to improve the performance of compact
student. It reveals the difficulty on selecting a proper metric for features disparity
measurement and also motivates us on adopting adversarial learning to automati-
cally learn a latent metric.

Table 2: Summary of All Experimental Results

Methods
RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004
Student Only 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17

Teacher 13.17 14.47 13.57 16.11 276.39 982.53 349.30 1288.88
Standard KD 15.44 15.57 14.90 16.85 408.71 1130.57 565.58 1361.24

FitNet-L1 15.06 15.24 15.53 17.12 379.33 1160.58 619.64 1423.88
FitNet 15.00 15.15 15.10 16.99 384.20 1097.92 576.57 1369.45

AT 13.48 14.43 13.23 16.03 304.88 1012.43 366.61 1315.04
PKT 13.57 14.41 13.17 15.94 332.28 996.04 350.86 1291.87

RKD-DA 13.63 14.31 13.19 16.07 341.78 1007.93 354.68 1292.23
VID-I 13.68 14.45 14.46 16.09 333.07 1013.10 477.62 1316.60
DML 14.92 15.26 14.54 16.44 402.12 1191.95 480.21 1331.64

Proposed 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82

Table 3 compares the teacher and student networks from four perspectives: to-
tal number of model parameters, number of Floating-point Operations (FLOPs),
memory usage (including model size and extra memory requirement during infer-
ence), single sample inference time on edge device. Here, we employ Raspberry
Pi 3B+ as the edge device, which has a 64-bit ARMv8 SoC and 1GB RAM. We
deploy both the teacher network and the student network learned by our CAKD
method on Raspberry Pi 3B+ to compare their performance. The student can
achieve a comparable performance with the teacher as shown in Table 2, but re-
duces 12.8 times model parameters, 46.2 times FLOPs and 5.7 times memory us-
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age as shown in Table 3. Besides, the single sample inference time of the student is
7.5 times faster than that of teacher on the edge device. These results indicate the
effectiveness of our proposed method on compressing over-parameterized deep
learning models.

Table 3: Model Comparison Between Student and Teacher

No. of Model
Parameters

No. of
FLOPs

Memory
Usage

Inference Time
on Edge

LSTM-based Teacher 115 K 2.4 M 24.92 MB 1.372 s
CNN-based Student 9 K 0.052 M 4.38 MB 0.182 s

Rate 12.8× 46.2× 5.7× 7.5×

Moreover, to verify the effectiveness of dilated-CNN architecture for student
model, we further implemented a conventional-CNN [30]. Two scenarios are
compared between dilated-CNN and conventional-CNN as shown in Table 4. In
Case I, we train both networks from scratch. In Case II, we train both networks
using the proposed method with the help of same LSTM-based teacher. Note that
we implemented the conventional-CNN according to original paper. Due to differ-
ent data pre-processing, the performance of self-implemented conventional-CNN
which is trained from scratch is better than those reported in [30], and we report
the results derived from our implementation for a fair comparison. From Table
4, we can observe that the dilated-CNN performs better than conventional-CNN
in both two scenarios. Moreover, the proposed CAKD can also help to improve
the conventional-CNN student which implies the effectiveness of the proposed
method.

Table 4: Performance Comparison between Dilated-CNN and Conventional-CNN

Scenarios
RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004
Case I:

Student Only
Conventional-CNN 16.45 16.84 16.61 18.4 595.73 1705.02 756.06 1937.46

Dilated-CNN 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17
Case II:
CAKD

Conventional-CNN 15.04 15.44 15.04 16.5 411.16 1233.06 528.24 1409.45
Dilated-CNN 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82

4.3. Model Ablation Study
There are three key components in our CAKD method, i.e., adversarial and

contrastive learning in feature distillation (FD), and KD. To investigate the contri-
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bution of each component, we derived the following model variants for the abla-
tion study.

• KD only: student only trained with KD.

• Con-FD: student only trained with FD using contrastive learning.

• Adv-FD: student only trained with FD using adversarial learning.

• Con-FD+KD: student trained with contrastive FD and KD.

• Adv-FD+KD: student trained with adversarial FD and KD.

• CAKD: student trained with our proposed method, which combines KD
with contrastive and adversarial FD.

Table 5 presents the experimental results of different variant on all the four
sub-datasets. It is obvious that comparing with Student Only, all derived vari-
ants have consistent performance improvement except for Con-FD on FD001 and
FD003. We can find that both contrastive feature learning and adversarial feature
learning can further assist KD on improving model performance. Comparing with
contrastive learning, adversarial learning is more capable of automatically learn-
ing a latent suitable metric to align the feature maps especially when teacher and
student have dissimilar network architectures. This is also supported by our re-
sults in Table 5 that adversarial learning contributes more than contrastive learning
for performance improvement.

Table 5: Effect of Each Component on Model Performance

Methods
RMSE Score

FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004
Student Only 15.65 15.88 15.97 17.39 477.73 1404.68 603.55 1809.17

KD Only 15.44 15.57 14.90 16.85 408.71 1130.57 565.58 1361.24
Con-FD 16.02 15.4 16.71 16.46 548.9 1351.51 877.57 1394.84
Adv-FD 15.41 15.37 15.01 16.58 418.17 1343.41 575.57 1332.78

Con-FD+KD 14.68 14.85 14.87 16.25 384.08 1068.85 531.9 1330.35
Adv-FD+KD 14.12 14.38 14.63 16.10 375.18 976.16 506.05 1290.06

Proposed CAKD 13.41 14.23 12.95 15.85 293.82 975.96 325.29 1256.82
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Figure 4: Sensitivity analysis of parameters α and K.

4.4. Sensitivity Analysis
There are four important hyper-parameters in our proposed method, which are

listed as follows:

• α: smoothing parameter in Equation (8), which controls the contribution of
soft-loss and hard-loss.

• K: number of negative samples in contrastive learning.

• β: weight coefficient of contrastive loss in Equation (7).

• m: the momentum of updating the memory bank.

Figure 4 illustrates how parameter α (upper row) and K (lower row) affect
model performance in terms of RMSE and Score. It is clear that a higher α often
yields better results, indicating teacher’s soft labels are more informative. In our
experiments, we set α = 0.8 for FD001, FD002 and FD004, and α = 0.6 for
FD003. For the size of negative samples K, intuitively, the higher K values lead
to better model performance. However, we observed that the performance starts
to decrease on FD001, FD002 and FD004 when K is larger than 512. The reason
may be that the student network is too shallow to disparate all the negative samples
with the positive sample. Therefore, we set K = 512 in our experiments.

Figure 5 shows the impacts of β (upper row) and m (lower row) on model per-
formance in terms of RMSE and Score. It can be found that the RMSE and Score
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Figure 5: Sensitivity analysis of parameters β and m.

of CAKD start to decrease with the increment of β and achieve the lowest values
when β is around 1.0. The performance becomes worse if we further increase β.
It is clear that for β, a reasonable value range is [0.5, 2]. Therefore, we set β = 1.0
for all the experiments. Note that β = 0 is a special case that only using adversar-
ial learning in feature distillation. For the memory bank updating momentum m,
it is clear that model performance is not sensitive to this hyper parameter. In all
the experiments, we set m = 0.9.

5. Conclusion

In this paper, we proposed a contrastive adversarial knowledge distillation
(CAKD) method for model compression in a regression task, i.e., machine re-
maining useful life (RUL) prediction. Specifically, we distilled knowledge from
a complex long short-term memory (LSTM) network to an efficient convolutional
neural network (CNN) for RUL prediction task. Experiments have been conducted
with the popular C-MAPSS dataset which contains four sub-datasets. The results
show that the proposed CAKD significantly outperforms conventional KD meth-
ods for model compression in the regression task of RUL prediction. By using
the proposed CAKD, the student even performs better than the teacher in three of
four sub-datasets. This clearly indicates the effectiveness of the proposed method
in the regression task of RUL prediction.
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