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Abstract. People regularly attend various social events to interact with other 
community members. For example, researchers attend conferences to present 
their work and to network with other researchers. In this paper, we propose an 
Event-based COmmunity DEtection algorithm ECODE to mine the underlying 
community substructures of social networks from event information. Unlike 
conventional approaches, ECODE makes use of content similarity-based virtual 
links which are found to be more useful for community detection than the 
physical links. By performing partial computation between an event and its 
candidate relevant set instead of computing pair-wise similarities between all 
the events, ECODE is able to achieve significant computational speedup. 
Extensive experimental results and comparisons with other existing methods 
showed that our ECODE algorithm is both efficient and effective in detecting 
communities from social networks.    
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1   Introduction 

In recent years, many real world networks, such as worldwide web [1], social 
networks [2] [3], biological networks [4] [5] [6] [7] [8] [9], citation networks [10], 
communication networks [11] etc, have become available for data mining. A key task 
of mining these networks is to unravel the underlying community substructures. 
Community detection can reveal important functional information about the real-
world networks. For example, communities in the biological networks usually 
correspond to functional modules or biological pathways that are useful for 
understanding the causes of various diseases [7]. In the social networks, knowledge 
about the underlying community substructures can be used for searching for potential 
collaborators, devising strategies to optimize the social relationships, identifying key 
persons in the various communities, etc.  

Qualitatively, detecting communities from networks involves dividing the vertices 
into groups such that there is a higher density of links within groups than between 
them [12] [13]. Numerous algorithms have been proposed to detect communities from 
various networks in recent years. However, detecting community substructures from 
large scale networks is still a challenging issue [12]. First of all, these algorithms are 



not very efficient as they either compute pair-wise similarities between all the entities 
or cliques (agglomerative methods), or iteratively calculate the cutting edges (divisive 
methods) based on the values of some measures, e.g. betweenness scores. Secondly, it 
is common in practice that the social entities only interact with a limited subset of 
community members. As such, there exist communities which do not have very dense 
connections among all its members. This will make existing algorithms, most of 
which are density-based, suffer.  

We observe that people regularly attend various social events to interact with other 
community members. Many communities are formed and strengthened during such 
events as the members are able to effectively interact en masse in addition to 
traditional one-on-one interactions with one another. For example, in the academic 
domain, researchers often attend conferences, seminars and workshops to network 
with other community members whom they may not yet have direct working 
relationships with, but who have common research background and interests with 
them. In such events, old links are strengthened while new links are formed as the 
community members present their work, talk about the possible technical solutions 
for specific problems, provide feedbacks and suggestions to their peers’ work, discuss 
the possibility of future research direction and the collaboration topics, etc, during the 
formal programs as well as the informal tea breaks, lunches, and dinners. Similarly, in 
business domain, professionals also often attend business meetings and trade 
exhibitions to find potential collaborators, discuss with their business plans, exchange 
ideas on the issues regarding the economic situation, and find commercial 
opportunities in current and/or emerging markets. Event information can thus be quite 
useful for inferring communities from social networks. 

In this paper, we have proposed a novel ECODE algorithm which detects 
community substructures from events. ECODE stands for Event-based COmmunity 
Detection. In ECODE, similar events are merged using hierarchical clustering to form 
bigger communities. We summarize the main contributions in this paper as follows: 

 For the first time, the event-based community detection problem is formally 
defined. This will facilitate the use of event data for better detection of community 
substructures in social networks. 

 Our proposed ECODE algorithm uses events instead of single persons or cliques as 
the basic unit to perform hierarchical clustering efficiently. In fact, ECODE only 
computes the similarity scores from a part of the selected potentially similar 
events, which further speeds up our algorithm.  

 A novel idea termed as virtual links has been proposed to enhance the connectivity 
among members within same communities. The virtual links, which are content-
based associations, can be used to enrich the potentially sparse connections 
amongst the community members, resulting in effective community detection.  

 Experimental results showed that our method that can effectively address the 
challenging problems in the community detection, namely, the issues of low 
efficiency and low connectivity within community. ECODE not only significantly 
outperformed the existing state-of-the-art community detection methods, but it also 
detects the hierarchical substructures of communities in the social networks, which 
can provide more insights on community formations. Our algorithm also allows the 
communities discovered to have overlapping structures. 



2   Related Work 

Detecting communities or modules from networks has attracted considerable attention 
in recent years [14]. The current research on community detection can be divided into 
two main thrusts, namely, agglomerative methods and divisive methods [13] [15].  

Agglomerative methods adopt bottom-up strategies to build a tree where the leaves 
can be either a single node or dense graphs [16] [12] [17] [18] [4] [19] [20]. The 
agglomerative methods proposed in [12], [16], [17] and [18] evaluate the pair-wise 
similarities or closeness s(i, j) for every pair of nodes i and j in the network. Starting 
from individual nodes as initial groups, the process involves iteratively merging the 
two most similar groups into larger and larger communities. A tree which represents 
the whole network is built from the bottom up to the root. In comparison, the 
agglomerative methods proposed in [4], [19] and [20] detect dense graphs, such as the 
maximal cliques [4] [19] and k-core [20], as the initial leaves. They then repeatedly 
join together the two most similar dense graphs to larger communities. 

Divisive methods, on the other hand, construct a tree in the reversed order [21] [22] 
[23] [15] [24] [25]. They start from the root, which represents the whole network, and 
divide the network progressively into smaller and smaller disconnected sub-networks 
which can correspond to the communities. The fundamental idea of the divisive 
methods is to select links that are inter-cluster links and not intra-cluster links to be 
cut. A well-known divisive algorithm has been proposed by Girvan and Newman 
[26]. The algorithm selects the links to be cut based on the values of the “edge 
betweenness” ― a link’s betweenness score is defined as the number of shortest paths 
between all pairs of nodes in the network that pass along it. Links with large 
betweenness score are thus “bridge”-like edges (or inter-cluster links) linking densely 
connected clusters, since many shortest paths between the different clusters will have 
to pass through these edges. Spectral graph partitioning methods have also been 
employed to detect the groups by identifying an approximately minimal set of links 
from the given graph [27] [28]. The block modeling method can be considered as a 
classical Social Network Analysis (SNA) method for this problem [29]. 

Many interesting problems have been explored recently by taking time factors into 
consideration. The work in [30] investigated communities that grow rapidly and 
explored how the overlaps between pairs of communities change over time. The work 
in [31] showed to discover what the “normal” growth patterns in social, technological 
and information networks are. A tractable model for information diffusion in social 
networks was proposed in [32], while the work in [33] studied how communities 
evolve over time in dynamic multi-mode networks. 

3   The Proposed Technique 

In this section, we present our proposed ECODE algorithm. In Subsection 3.1, we 
provide the problem definition of event-based community detection. Then, in 
Subsection 3.2, we introduce a content-based virtual link method. Next, in Subsection 
3.3, we describe three different similarity measures. We present our ECODE 
algorithm in Subsection 3.4. Finally, we assign people to corresponding communities.  



3.1   Problem Definition 

Let event set E = { φi | φi  is a event, i = 1, 2, …, n}. Each event φi can be represented 
as a graph φi ={Vi, Ei} where Vi ={vj | vj is an individual entity who attended the event 
φi}, Ei ={(vj,vk) | vj and vk are two individual entities who have certain relationships, vj, 
vk ∈ Vi}. Each link (vj,vk) in Ei could be vj and vk work together (physical links).  
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Fig. 1. Illustration of community detection 

Given an event set E, our objective is to detect those communities {C1, C2, …, Cp} 
where each individual community Ci (i=1, 2, …, p) has much more intra-links (links 
within Ci) but relatively less inter-links cross different communities (links between Ci 
and Cj, j = 1, 2, …, p, i ≠ j) (link perspective). In addition, there should be relatively 
small number of vertices that participate in two communities Ci and Cj (i ≠ j). Fig. 1 
illustrates an event community detection problem where the nodes are individual 
entities (represented by colored circles) and there are two different types of links, i.e. 
physical links (represented by solid lines) and virtual links (represented by dotted 
lines). Virtual links connect a pair of entities from different events who do not have 
direct interactions but work on some similar topics. Fig. 1 depicts 7 events  1, …,  7 
(circled), and 2 main communities existing separated by H (community 1:   1,   2,   3, 
  4 and community 2:   5,   6,   7). Note that some people attend multiple events and 
they are thus located in the intersections of these communities. If there are many 
common participants in two separate events (vertex overlapping), then these events 
are probably related and those people in the two events should belong to the same 
community. The virtual links enhance the connectivity across different events within 
the same community, which are useful to merge events to form bigger communities.  

3.2   Virtual Links between Events 

Given a vertex vi, we consider its associated content in various events di : for the 
researchers’ social networks, these could be vi’s research papers, presentation slides, 
project descriptions, curriculum vitae, etc to profile vi’s interests. For a pair of vertices 
vj and vk from different events (vj∈φj ={Vj, Ej}, vk∈ φk ={Vk, Ek}, j ≠ k), we evaluate 



if there is a virtual link between vj and vk by computing whether their content 
similarity consim(vj,vk) is big enough, i.e. consim(vj,vk)>δ, where δ is a threshold 
which can be computed by averaging the similarities among the non-connected 
entities within randomly selected events ER  , i.e.  
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where (vj,vk) is a pair of non-connected entities in event φi , |φi | is the number of all 
the non-physical link pairs in φi, and φR is the event set selected from event set E. 

The content similarity vj and vk , consim(vj , vk) in equation (1) can be defined as    
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In equation (2), f(vj) represents the feature set of vertex vj after eliminating the stop 
words; Kcon is a normalization constant and K )),((max
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(ranged from 0 to 1) will be bigger if two vertices shared a lot of common features. 
While the people within same community have a higher chance to interact with each 
other, each individual entity typically still only interacts with a limited number of his 
or her community members. In community detection, it is thus quite important to 
enrich the social network by linking those entities with common interests together. 
Here, we propose virtual links to connect those people from different events whose 
content similarity is equal to or higher than the average feature similarity between 
people within randomly selected events.  

3.3   Similarity Measures 

Communities can consist of the people from different events. It is thus necessary to 
combine the smaller events together to form those bigger communities. We evaluate 
the similarities between events by the following three different similarity measures.  

Given two graphs φi ={Vi, Ei} and φj ={Vj, Ej}, the vertex similarity between two 
events φi  and φj  is defined as  
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to equation (3), if two events share a high proportion of members, then they are 
considered to be events for the same community.  

The physical similarity between two events φi and φj is defined as  
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where KPL is a normalization constant and )),(_(max
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basically evaluates how closely the members from different events interact with each 



other. If there are a lot of physical inter-links (involved in different events, such as φk) 
between the members from two events φi and φj, then the events are highly likely to 
be events for the same community. 

In the same way, we define the virtual link similarity between two events φi and φj:  
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where KVL is a normalization constant and )),(_(max
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virtual link similarity in Equation 5 is similar to the physical link similarity in 
Equation 4 – the only difference is that we use the virtual links replace the physical 
inter-links between the members from the two events. It may appear that the virtual 
links are not very useful as the virtual links between entities not involving in the same 
events merely indicate that the individuals are doing something similar but they do 
not have any physical interactions. However, we will show that the virtual links are 
actually more useful for community detection than the physical interaction links.  

3.4 ECODE Algorithm  

We adopt an agglomerative clustering approach for our community detection 
algorithm ECODE (Fig. 2). The objective is to detect similar events in terms of 
overlapping vertices and virtual links, and then merging them to form bigger 
communities. The algorithm terminates when the quality of the detected communities 
in the merging process have become maximal. In Fig. 2, ECODE algorithm starts 
with the members from each event forming an initial community. Although we could 
employ standard hierarchical clustering, the need to compute pair-wise similarities 
between all initial leaf nodes is too time-consuming for large networks. To improve 
the efficiency of our technique, in Step 2 of our algorithm, we only select those event 
pairs which are potentially similar to compute their similarities.  

1. For each event φi ={Vi, Ei} (i = 1, 2, …… , n), φi ∈ E 
2. Find its candidate relevant set Eφi where the members from φi also 

frequently participated in the each event in Eφi 
3. Compute the similarities between φi and each event φip in Eφi 
4. While (quality of current-level of tree increases)  
5. Find the most similar events φi and φj and merge them into a new event φnew 
6. Construct a candidate set Eφnew for φnew from its children’s candidate sets Eφi 

and Eφj 
7. Compute the similarities between the new event φnew and each event in Eφnew  
8. Compute the quality of current level of the tree 

Fig. 2.  ECODE algorithm for community mining 

Given an event φi, we want to find its candidate relevant set Eφi, which consists of 
potential similar events that φi’s entities/members have also participated in. To do 
this, we first construct event transaction set Tφi where each record includes an entity 
and the various events that he/she is involved in. We want to detect candidate relevant 
event set Eφi for event φi where those events in Eφi have high support in Tφi, i.e.  



 

Eφi ={φj| supportTφi(φi , φj)>α, φi , φj ∈ E, j ≠ i} (6) 

where α is a parameter to control the size of candidate relevant set Tφi. The 
problem to find high support associated events can be modeled as mining frequent 
item sets problem ― there exist many efficient algorithms for this problem in the data 
mining domain [34]. We are thus able to compute Eφi  rapidly. 

For each event φi and its candidate relevant set Eφi, Step 3 computes the 
similarities sim(φi , φj) between φi and each event φbip in Eφi which is defined as the 
linear combination of vertex similarity Vex_sim (φi , φip) and virtual link similarity 
VL_sim (φi , φip): 

sim(φi , φip) = * Vex_sim (φi , φip) + (1- )* VL_sim (φi , φip), (7) 

where  (0≤ ≤1) is a parameter to adjust the weighs for the importance of vertex 

similarity and virtual link similarity. If  =1 (  =0), then we only consider the 

vertex similarity (virtual similarity). In our experiments, we will test ’s sensitivity.   
Note that according to Equation (5), obtaining VL_sim (φi , φj) will incur 

significant computational costs because of the computation of feature similarities 
between all the pair-wise events φi and φj. In order to speed up its computation, we 
adopt a sampling strategy which randomly selects some entities, i.e. φip and φjp from 
φi and φj respectively and reduce VL_sim (φi , φj) to a manageable VL_sim (φip , φjp). 

Steps 4 to 8 perform the hierarchical clustering process. In Step 5, the most similar 
events φi and φj are merged together into a new event φnew. We then construct 
candidate relevant set Eφnew for φnew (merge Eφi and Eφj to get the events whose 
support is larger than α) and compute the similarities between φnew and each event φk 
in Eφnew based on their children’s similarities, i.e.  

sim(φnew , φk) = sim(φi , φk) +sim(φj , φk) (8) 

Finally, we compute the quality of the current level of the tree. Note that our 
hierarchical clustering may not necessarily result in a tree since we are not building 
one big community – we will stop the merging process if the current merging step 
does not improve the quality of the current level of tree. Newman has proposed a 
quality function Q (modularity) to evaluate the goodness of a partition [15]: 
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where  is the number of edges in the same group/community connecting the 

vertices (intralinks) and  is the sum of edges from the vertices in group i to 

another group j (interlinks). Since we have observed that there are many interactions 
across different communities, instead of using the physical links, we use the 
content/feature-based approach. We represent each event using a TFIDF 
representation, and then use cosine similarity to compute the intra-similarities and 
inter-similarities. The quality equation in (9) can be rewritten into Equation (10), 
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Basically, using Equation 10 favors a community substructure which has in overall 
bigger intra-similarity and less inter-similarity in terms of their topics and content. 
Our ECODE algorithm stops at a level of tree with the maximal Q value.  

3.5 Assign People to Corresponding Communities  

We note that each entity may occur in multiple communities. For each entity, we 
discover the core communities in which the entity is highly involved in. If ai is a 
member of community set C={C1, C2, …, Cp}, we compute the community 
attachment scores of ai to Cj (j=1, 2, …, p) as follows 






ik

Ca

i

ki

ji
jk a

aa
Cas

)(int

),(int
),(

 
(11) 

where int(ai, ak) is the number of links between ai and other members in 
community Cj and int(ai) is the total number of links of ai, i.e. ai’s degree.  

If ai is not a member of Cj but it can be connected to Cj through intermediate 
connectors (indirect neighbors), its community attachment scores can be computed as  
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Note if , then Ck will be regarded as ai’s core community. pCasCas
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4 Experimental Results 

We evaluate the proposed ECODE algorithm by using it to mine communities from a 
large researcher social network built by using bibliography data. The datasets that we 
have used for our experiment are publication data from the Digital Bibliography and 
Library Project (DBLP). The DBLP database provides bibliography information on 
major computer science journals and conferences (http://www.informatik.uni-
trier.de/~ley/db/). DBLP currently lists more than one million articles; each article 
record contains the author names, paper title, conference or journal name, and year of 
publication, as well as other bibliographic information. For our work, we used only 
the information on the author names, paper titles and conference names. In our 
experiments, each conference will be regarded as one event.  

We have selected 6 domains in computer science, namely database, data mining, 
machine learning, multimedia, bioinformatics, and natural language processing, 
which represent different communities in computer science. For each community, 3 
events (in this case, top conferences) were selected and a total of 28,998 papers (from 
1970 to 2008) were retrieved from DBLP, including 31,122 authors/entities and 
127,238 links (physical links between every two co-authors). The link density of the 
network is quite small, which is equal to 127238/(31122*31121/2)= 0.00026274, 
indicating that each researcher will only interact with a very limited subset of 
community members which results the low connectivity issue in the network. 



Table 1. Communities, events and community core members 

Domain/Communities Events #PC members 
Database (DB) SIGMOD, VLDB, ICDE 557 

Data Mining (DM) KDD, ICDM, SDM 738 
Machine Learning (ML) ICML, NIPS, ECML 1,007 

Multimedia (MM) CVPR, ICCV, ACM MM 802 
Bioinformatics (BI) RECOMB, ISMB, CSB 951 

Natural Language Processing (NLP) ACL, COLING, EACL 187 

 Table 1 summarizes the communities and the corresponding events (column 1 and 
2). To evaluate the quality of the detected communities, we also manually construct 
gold standard community data sets consisting of community core members, namely, 
the technical program committee (PC) members, for each event (note that there is no 
existing gold standard for evaluating the communities in social networks). The third 
column lists the number of PC members for these top conferences from 2000 to 2007.  

Next, we describe the experimental setting. In our ECODE algorithm, for each 
event, we will find its “candidate relevant set” which consists of its potential similar 
events where α is used to control the size of candidate relevant set (Equation 6). In 
our experiments, α is set as 4, but we have also tested the sensitivity how α affects our 
algorithm later on (Fig. 4). In order to compute the virtual links between two events, 
we randomly selected 10 events/conferences and compute the average similarity of 
non-connected community members as the virtual link threshold δ (Equation 1). In 
addition, in order to speed up the computation, we randomly selected 100 members in 
each event to compute the virtual links between them. We also tested how the number 
of members affects the performance of our technique (Fig. 5). For Equations 2 and 10, 
we only used the paper titles as the associated documents since they are readily 
available. In ECODE algorithm, we combined the vertex similarity and virtual link 
similarity (equation 7) where  is used to weight the two similarities. In our 
experiments,  is fixed as 0.9, and we also test ’s sensitivity in Fig. 6. Note all our 
experiments were run with a standard Intel Core 2 2.40 GHz desktop with 2GB RAM. 

Let us now present the experimental results. Table 2 lists the results using two 
recently published techniques CONGO [24], EAGLE [19] (they have performed 
better than state-of-the-art techniques), as well as our proposed techniques with 
different similarity measures, such as vertex similarity (ECODE_Vex), physical links 
(ECODE_PL), virtual links (ECODE_VL), combined vertex and virtual links 
(ECODE). The table lists the performance of various techniques in terms of 
Recall_BM, which is obtained by computing the best match of discovered 
communities to gold standard communities with one to one mapping. To do so, we 
find all the similarity scores (Equation 3 was used to compute the scores) between the 
discovered communities and the gold standard communities. Then, we find the first 
best match pair with the biggest similarity score to match a discovered community 
with a gold standard community. We continue this process for the remaining gold 
standard communities until all the gold standard communities have found their best 
match discovered communities, or that no discovered community can be matched to 
the gold standard communities. Recall_BM is defined as the number of the members 
in gold standard communities retrieved by discovered communities divided by the 
total number of members in gold standard communities. 



Table 2. Overall performances of various techniques 

Methods CONGO EAGLE ECODE_Vex ECODE_PL ECODE_VL ECODE 
Performance 13.7% 27.6% 63.5% 53.3% 64.1% 69.9% 

Table 2 shows that ECODE produces the best results, achieving a Recall_BM 
score of 69.9%, which is 42.3%, and 56.2% higher than the Recall_BM of the two 
existing techniques CONGO and EAGLE respectively. Compared with only using 
physical link, virtual link, and vertex similarities, ECODE also generated better 
results, illustrating that integrating the vertex links and virtual links improves the 
effectiveness of detecting communities in the social networks.  
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Fig. 3. Dendrograms of DCODE for communities using different similarity measures 

We further checked the four dendrograms of our ECODE algorithms with different 
similarity settings, which are shown in Fig. 3. We observe that the dendrogram of 
ECODE is much more meaningful than ECODE_PL, ECODE_Vex as well as 
ECODE_VL. From the results of ECODE_PL, we can see that it is almost like 



random clustering. This is because researchers tend to have collaborations with those 
from different communities. As such, the physical links are rather misleading for 
forming community substructures. ECODE_Vex showed a more meaningful result; 
however, there are still some faults in the clustering process. For example, CVPR and 
ICCV (multimedia conferences) were grouped with data mining and machine learning 
communities first before being grouped with ACM MM although ACM MM, CVPR 
and ICCV are multimedia-related conferences. As for ECODE_VL, while their results 
are better than ECODE_PL in terms of its dendrogram, conferences belonging to the 
same community such as ICML, ECML and NIPS (machine learning conferences) are 
not grouped together. NIPS was grouped with ICML and ECML after both have been 
clustered to the database, data mining, and multimedia community.  

In comparison, by weighting and combining different similarity measures (vertex 
and virtual links), ECODE algorithm was able to categorize the right conferences to 
the right communities. Our ECODE algorithm discovered 8 communities where all 
the merging steps are correct. This shows that ECODE’s integrating of the virtual 
links and vertex overlapping was effectively used to detect the community 
substructures. In addition, our clustering cut-off (Equation 10)—the dotted line in Fig. 
3—is also very accurate, showing that ECODE was able to early-stop the hierarchical 
clustering and detect meaningful communities. 
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Fig. 4. Performance of ECODE with different size of candidate relevant set 

Fig. 4 shows the performance of ECODE with different sizes of candidate relevant 
set, from 2 to 8 with Step 1. The performance of ECODE increases as the size of 
candidate relevant size increases from 2, 3 to 4, but it does not change after that. The 
plot on the right portion of Fig. 4 shows the actual running time against the size of 
candidate relevant set. As expected, more computations were needed when the size of 
candidate relevant set increases. However, by considering both performance and 
running time plots together, Fig. 4 indicates that after the size of the candidate 
relevant set has increased to a certain degree — in this case, 4 — more computation is 
no longer useful for community detection as it only increases the computational time 
without increasing the performance. It also shows that our candidate relevant set has 
effectively captured the more related events so that it can save a large amount of 
computational time, as compared with computing all the pair-wise similarities which 
is typically used for hierarchical clustering.  

Recall that we also selected a subset of authors to compute the virtual links among 
two events in order to improve the efficiency of our algorithm. To study the 



sensitivity of the number of authors selected, we performed a series of experiments 
using different numbers of authors, from 50 to 200 with a step of 50. The results are 
shown in Fig. 5. While the results of using 100, 150 and 200 authors are better than 
using only 50, there are no significant improvements. This means that our ECODE 
algorithm with small number of authors can perform reasonably well even when we 
select only 50 or 100 authors from each event. On the other hand, in terms of 
efficiency, our algorithm will perform much fast when we use less authors for 
computing virtual links, as shown in the right part of Fig. 5. 
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Fig. 5. Performance of ECODE with different number of selected authors 

In equation 7, we have used  to 
weight the importance of vertex 
similarity and virtual link similarity. 
Fig. 6 shows how the values of  affect 
the performance of ECODE algorithm. 
In Fig. 6, when  increases, the 
performance of ECODE also increases 
until  reaches 0.9. Fig. 6 shows that 
combining the vertex similarity and 
virtual link similarity can get 
consistent better results when  
∈[0.5,0.9] than using vertex similarity 
and virtual link similarity individually.  
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Finally, in Fig. 7, we show the 20 top representative researchers with the most 
publications in our discovered communities. We observe that these top researchers are 
typically shared by two or more communities (e.g. Tao Jiang is shared by four, i.e. 
bioinformatics, database, data mining and machine learning). In fact, all the data 
mining researchers are shared by two or more communities (no single data mining 
circle in Fig. 7), indicating that data mining is highly related to other domains, and 
data mining researchers are always doing applications or research in other domains. 

Note that out of the total 3,488 PC members in Table 1, there were about a third of 
them (1,118) who were not assigned any community because these community (PC) 
members did not have any publications in the conferences listed. We have searched 
all their publications in DBLP (they published in other related conferences anyway). 
By incorporating their publication data into current publication data sets, we were 



able to assign 782 of them to one or more correct communities through indirect 
neighbors with an accuracy of 77.75% (using Equation 12). After assigning all these 
authors to their respective communities, the Recall_BM score for ECODE algorithm 
has a significant further improvement from 69.9% to 87.1%, as shown in Table 3. As 
such, the Equation 12 (assigning entities to community based on connectivity 
information) can be useful to effectively infer the underlying community belongings. 

 

Fig. 7. The top researchers in our discovered communities 

Table 3. Performance before and after assigning unpublished authors for various communities 

Communities 
Before assigning 

unpublished authors 
After assigning 

unpublished authors 

Bioinformatics (BI) 49.7% 77.6% 

Database (DB) 87.1% 97.3% 

Data Mining (DM) 59.4% 80.1% 

Multimedia (MM) 62.6% 85.9% 

Machine Learning (ML) 70.5% 87.5% 

Natural Language Processing (NLP) 89.8% 94.1% 

Average 69.9% 87.1% 



5 Conclusions 

Communities are often formed and strengthened during various social events attended 
by individuals to interact with other members of the community. Event information 
can thus be quite useful for inferring communities from social networks. In this paper, 
we have therefore proposed an Event-based COmmunity DEtection algorithm 
ECODE to mine the underlying community substructures of social networks from 
event information. Unlike conventional approaches, ECODE makes use of content 
similarity-based virtual links in the social networks. The virtual links are found to be 
more useful for community detection than the physical links. By performing 
computation between an event and its candidate relevant set instead of computing 
pair-wise similarities between all the events, ECODE was able to achieve significant 
computational speedup. We have performed extensive experimental results on the 
events and social network data of Computer Science researchers. Comparisons with 
other existing methods showed that our ECODE algorithm is both efficient and 
effective in detecting communities from social networks.   

We have so far focused on the social networks for our approach in this work. In our 
future work, we plan to generalize our current approach to mine other networks. For 
example, we aim to mine protein complexes from protein interaction networks where 
proteins are vertices and protein interactions between two proteins are the links [9]. 
Each protein in protein interaction networks will have various biological evidences 
(similar to content profiling data in social networks) such as sequences, protein 
domains, motifs, molecular functions, cellular components as well as other protein’s 
physico-chemical properties etc. In this scenario, virtual links will connect two 
proteins if they have overall bigger similarities in terms of sequence similarity, 
functional similarity, location similarity etc. We will leave this as our future work. 
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