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Abstract. Many real-world applications in time series classification fall into the 
class of positive and unlabeled (PU) learning. Furthermore, in many of these 
applications, not only are the negative examples absent, the positive examples 
available for learning can also be rather limited. As such, several PU learning 
algorithms for time series classification have recently been developed to learn 
from a small set P of labeled seed positive examples augmented with a set U of 
unlabeled examples.  The key to these algorithms is to accurately identify the 
likely positive and negative examples from U, but it has remained a challenge, 
especially for those uncertain examples located near the class boundary. This 
paper presents a novel ensemble based approach that restarts the detection 
phase several times to probabilistically label these uncertain examples more ro-
bustly so that a reliable classifier can be built from the limited positive training 
examples. Experimental results on time series data from different domains 
demonstrate that the new method outperforms existing state-of-the art methods 
significantly.  

Keywords: Ensemble based system, positive and unlabeled learning, time se-
ries classification. 

1 Introduction 

Many real-world data mining application domains, such as aerospace, finance, 
manufacturing, multimedia and entertainment, involve time series classification [1-3]. 
For example, a typical aircraft health monitoring application in aerospace would be to 
classify the states of the airplane engines into either the normal or faulty states based 
on time series sensor readings from multiple sensors (e.g. vibration and temperature 
sensors) attached to the aircraft. Most of classification methods directly apply 
traditional supervised learning techniques that rely on large amounts of labeled 
examples from predefined classes for learning. In practice, this paradigm is not 
practical because collecting and labeling large sets of data for training are often very 
expensive if not impossible.   

Researchers have proposed alternative learning techniques to build classifiers from 
a small amount of labeled training data enhanced by a larger set of unlabeled data that 
are typically easy to collect. These methods include semi-supervised learning [4-6] 
and Positive Unlabeled learning (PU learning) [7-13]. While both approaches exploit 
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the unlabeled data (U) to enhance the performance of their classifiers, they differ in 
their training data requirements: PU learning only requires positive data (P) whereas 
semi-supervised learning still requires both positive and negative training data. PU 
learning is therefore applicable in a wide range of application domains, such as text 
classification, medical informatics, pattern recognition, bioinformatics and 
recommendation system, where negative data are often unavailable. However, the 
applications of PU learning to classify time series data have been relatively less 
explored due to specific challenges of time series classification such as high feature 
correlation [14]. As far as we know, there are only 3 research works that applied PU 
learning approaches for time series data classification.  

The pioneering work, proposed by Wei and Keogh [14], iteratively expands the 
positive set from the initial positive examples using the unlabeled data that are most 
similar to them in terms of Euclidean distance, with the remaining unlabeled data 
being extracted as negative data. The method is highly dependent on having a good 
stopping criterion; otherwise, early stopping will result in an expansion of only a 
small number of positives, with highly noisy negatives. To improve the algorithm, a 
more recent work [15] attempted to propose a good stopping criterion by using the 
historical distances (in this case, dynamic time warping distance) between candidate 
examples from U to the initial positive examples. Although the refinement has 
enabled more positive examples to be extracted, it is still unable to identify accurate 
positives (and hence negatives) from U, especially when the actual positives and 
negatives in U are severely unbalanced. The experimental results reported showed 
high precision but very low recall for classification. 

More recently, to tackle the challenge of constructing accurate boundary between 
positive and negative data in U, we proposed a new PU approach called LCLC for 
time series classification [16]. Unlike the previous methods, LCLC adopts a cluster-
based approach instead of instance-based approach.  First, the unlabeled set U is 
partitioned into small unlabeled local clusters (ULCs) using the K-means algorithm 
[17]. All the examples within an individual cluster will be assigned a same label as 
either LP (Likely Positive) or LN (Likely Negative). The local clusters are also 
exploited for more robust feature selection for classification. A cluster chaining 
approach is then applied to extract the boundary positive and negative clusters (ULCs) 
to estimate the decision boundary between the actual positives and negatives in U. 
LCLC has been demonstrated to perform much better than the first two PU learning 
methods, as it can identify the boundary positive and negative clusters from U more 
accurately. While LCLC’s cluster-based approach (i.e. all the instances within an 
individual cluster will be assigned the same label) is more robust than traditional 
instance-based approach, in practice, not all the examples within the individual local 
clusters will actually be from same class.  This means that some instances within each 
cluster may be misclassified. When these misclassified examples (especially when 
they are in the boundary clusters) are used to build the final 1-NN classifier (i.e. 
classification based on the top one nearest neighbor; Keogh et al [18] performed a 
comprehensive empirical evaluation on the current state-of-the-arts which shows  
1-NN to be the best technique), the performance of overall LCLC algorithm is less 
satisfactory than expected. In Section 2, we will go into the further details of the 
LCLC algorithm as well as the reason that LCLC algorithm generates false 
positives/negatives.  
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In this paper, we propose a novel ensemble based approach En-LCLC (Ensemble 
based Learning from Common Local Clusters) to overcome the drawbacks of the 
LCLC algorithm. Our proposed En-LCLC method adopts an ensemble-based strategy 
by performing the LCLC algorithm multiple times on different cluster settings to 
obtain multiple diverse classifiers. We can then assign each instance with a “soft” 
probabilistic confidence score based on its overall classification results that could 
better indicate each instance’s class label. Based on the probabilistic scores, we also 
identify and remove potential noisy instances which could confuse our classifier. An 
Adaptive Fuzzy Nearest Neighbor (AFNN) classifier is then constructed based on the 
clean set of “softly labeled” positive and negative instances identified. 

The rest of the paper is organized as follows. We provide an overview on the 
LCLC algorithm in Section 2. We then present our proposed En-LCLC algorithm in 
Section 3. Results from extensive experiments on time series data across diverse 
fields reported in Section 4 show that the classifiers built using En-LCLC algorithm 
can indeed identify the ground truth’s positive and negative boundaries more 
accurately, leading to improvements in classification accuracy. Finally, Section 5 
concludes the paper. 

2 LCLC Algorithm and Its Weakness 

In this section, we describe the LCLC method proposed in [16] in further details. As 
mentioned earlier, the first step of LCLC algorithm groups the unlabeled data U into 
local clusters and selects independent and relevant features based on these clusters. 
Subsequently, LCLC algorithm extracts reliable negative set RN from U, with the 
remaining clusters belonging to U-RN regarded as ambiguous clusters (AMBI). 
Finally, LCLC determines likely positive clusters LP and negative clusters LN from 
AMBI using cluster chaining, and the final classifier is built using all the extracted 
positives and negatives from U.  

Algorithm 1 shows the main steps of the LCLC. Steps 1 and 2 perform the local 
clustering and feature selection.  In Step 1, LCLC partitions the unlabeled data U into 
small local clusters ULCi (i=1, 2, …, K) using K-means clustering method. Each local 
cluster ULCi is then treated as an observed variable of the time series data, and it 
assumes that all the instances belonging to a local cluster share the same principal 
component and have the same class label.  

In Step 2, the Clever-Cluster method [19] is then used to select K common feature 
subset from the positive set P and a partitioned coherent unlabeled clusters ULCi. It 
first computes the principal components for each time series observations which are 
the positive set P and unlabeled clusters ULCi. Descriptive common principal 
components are then computed across all these principal components and used to 
select K highest mutual information features. Interested readers could find more 
details in [16]. The intuition for such selection is based on the observation that a  
well-selected subset of the common principal features can capture the underlying 
characteristics of the time series dataset to enable accurate extraction of the remaining 
hidden positives/negatives from U. 
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Step 3 identifies the Reliable Negative set RN from U based on the similarities 
between the local clusters ULCi to the initial positive cluster P. In this step, LCLC 
computes the Euclidean distance of each ULCi from the positive set P using common 
principal features extracted in Step 2. After that, it extracts those local clusters which 
are farthest away from P and store them into RN. The size of RN is set to contain 
about a half of the local clusters, while the other half is considered as ambiguous 
clusters AMBI in Step 4. 
 
Algorithm 1. LCLC algorithm 
input: Initial positive data P, Unlabeled dataset U, number of clusters K 

1. K-ULCs  Partition U into K local clusters using K-means; 
2. Select K features from the raw feature set  Clever-Cluster(P, K-ULCs); 
3. Extract Reliable Negative Examples RN from the Unlabeled dataset U; 
4. Define the ambiguous clusters AMBI = U – RN; 
5. Identify likely positive clusters LP and likely negative clusters LN from the 

AMBI clusters using cluster chaining for boundary decision; 
6. Build a 1-NN classifier using P together with LP as a positive training set, 

and RN together with LN as a negative training set. 

By now (after Step 4), LCLC algorithm has obtained a positive data P and reliable 
negative data RN that can be used to further extract the likely positive clusters LP and 
the likely negative clusters LN from the ambiguous clusters AMBI which are near the 
positive and negative boundary.  Step 5 performs a novel cluster chaining method to 
label these boundary clusters. The basic idea of cluster chaining is to build cluster 
chains starting from the positive P, going through one or more AMBI clusters, and 
finally stopping at a reliable negative cluster in RN.  Figure 1 illustrates the scenario 
where there are two reliable negative clusters RN far away from the positive cluster P, 
and 4 AMBI clusters located between the positive cluster (P) and negative clusters 
(RN).  Two cluster chains have been built here. For each cluster chain, LCLC finds 
the breaking link (decision boundary) with maximal distance between the clusters that 
separates the cluster chain into two sub-chains. All the AMBI clusters within the sub-
chain that contains P will be regarded as likely positive clusters and stored into LP, 
while the AMBI clusters within the other sub-chain that includes RN are regarded as 
likely negative clusters and stored into LN.  

AMBI

AMBI

AMBI

AMBI

PRN

RN

Decision Boundary

 

Fig. 1. Cluster chaining for boundary decision 
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Finally, LCLC uses P together with LP as a positive training set, and RN together 
with LN as a negative training set to build the final 1-NN classifier for time series 
classification.  

Although LCLC works better than the existing PU learning methods identifying 
the boundary clusters more accurately, we observed that it still has two drawbacks. 
Firstly, it assumes that all the instances belonging to a local cluster have the same 
class label. Clustering ensures that most of the examples within a same cluster belong 
to the same class, but some of the examples within same cluster could belong to other 
classes.  By assigning the same label to all the examples within each cluster, LCLC 
will misclassify some examples (typically minority class examples within individual 
clusters), ultimately affecting the performance of the classifier trained on these mis-
assigned examples. The errors introduced will be especially costly for those examples 
located in the boundary clusters between positive and negative classes.  

Secondly, as LCLC algorithm uses K-means algorithm to perform clustering, it 
will generate different clusters based on K randomly initialized centroids. It is highly 
possible that the examples near the positive and negative boundary will be grouped 
into different clusters and assigned with different labels each time we perform LCLC 
algorithm. This source of random errors can introduce further limitations in the 
overall performance of LCLC.  

 

Fig. 2. Drawback of the LCLC on fixed clustering assignment to every instance 

Figure 2 depicts the scenario of having possible misclassified instances in the local 
clusters near the real positive and negative boundaries.  We can see that some 
instances may be clustered wrongly and some assigned with wrong labels based on its 
container cluster’s label. The region represented by dashed green (orange) areas 
shows the set of false negative (positive) examples. The probability to be 
misclassified is high for those instances that are close to the class boundaries, leading 
to decreased accuracy of the final classification. This motivates us to propose a more 
robust approach to address the issue. 

AMBI

AMBI

P

RN
Detected Boundary

+
+
+ +

+

+

+

+
++

+

+

_
_

_
_
__

_

_
_
_

_
_

Real Boundary

_

_

+
+_

False negatives

False positives

+

+
+

_
_
_



248 M.N. Nguyen, X.-L. Li, and S.-K. Ng 

3 The Proposed Technique En-LCLC 

In this section, we present our proposed En-LCLC algorithm (Ensemble based 
Learning from Common Local Clusters) to overcome the drawbacks in the original 
LCLC. We propose an ensemble based approach that restarts LCLC algorithm 
multiple times to assign labels for each instance in the unlabeled data. We then 
generate an integrated “soft” probabilistic label to the examples based on their 
classification results from diverse classifiers. Following that, we filter and remove 
uncertain instances. We then design an Adaptive Fuzzy Nearest Neighbor (AFNN)  
classifier to train on the enhanced dataset that have been assigned with clean soft 
labels to better reveal the ground truths’ positive and negative boundaries. 

3.1 Probabilistic Soft Labeling Using Diverse Classifiers  

We make use of the randomness of clusters generated by K-means clustering used in 
the LCLC algorithm to create diverse classifiers. We perform n times LCLC 
algorithm in which each K-means clustering with random initialization will produce 
different cluster settings for constructing cluster chains and deciding the boundary 
clusters. Each time corresponds to a different classifier setting. We use the probability 
distribution of the n labels generated by n diverse classifiers for each example as its 
“soft” labels. By integrating them together probabilistically, we minimize the 
potential bias of individual LCLC prediction and the expected errors in the extracted 
likely positive/negative examples by our ensemble-based approach can be expected to 
be reduced. 
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Fig. 3. An example of En-LCLC by repeating LCLC on two different clustering configurations 

Figure 3 illustrates a scenario in which we have two classifiers with different 
cluster settings (i.e. n=2). In the first cluster setting for classifier 1, K-means 
clustering has generated two ambiguous clusters denoted by LP1 and LN1. A cluster 
chain is constructed from P through LP1, LN1, and finishes at RN, and LCLC 
eventually determined all the examples in LP1 as positive and all the examples in LN1 
as negative class. Note that there are three positive and three negative instances that 
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are misclassified in this case. In the second cluster setting for classifier 2, K-means 
clustering generated two ambiguous clusters, denoted by LP2 and LN2; and the 
corresponding cluster chain goes through P, LP2, LN2, and ends at RN. The eventual 
LCLC labels for the examples in LP2 are positives and the examples in LN2 are 
negatives. In this case, only 1 positive and 1 negative are misclassified. With a big n, 
we can integrate the results together probabilistically and give the misclassified 
examples low confidence scores as they will be given inconsistent labels using 
different classifiers.  

Algorithm 2 shows the details to generate the confidence score for each example in 
the unlabeled set U-P (AMBI clusters and RN clusters).  Note that we have given a 
confidence score of 1 for all the positive examples in P.  
 
Algorithm 2. Confidence score generation 
Input: one initial seed positive s, unlabeled dataset U, number of iterations n  

1. Use Wei’s method to get an initial positive set P;  
2. Repeat step 3 to step 5 n times 
3. Partition the remaining unlabeled data U - P  into K unlabeled local 

clusters using K-means clustering with random initialization; 
4. Perform LCLC (cluster chain breaking) to extract  the reliable 

negative clusters RN,  likely positive clusters LP, likely negative 
clusters LN; 

5. Compute the weights for each instance using equation (1) and (3); 
6. Compute the normalized confidence score for each instance using equation 

(4) and (5); 
 
We need to cater for cases where only a small number of positives are available for 
learning, even in the extreme scenario of having only one seed positive example. As 
such, similar with LCLC, in the first step, we adopt Wei’s method [14] for this task as 
follows. Given the positive seed s, we add the next most confident positive instances 
from U until the stopping criterion is reached, that is, when there is a drop of the 
minimal nearest neighbor distance. Wei’s method uses this early stopping criterion 
because when a negative example is mistakenly added into P, there is a high chance 
that we will keep adding more negative examples, for the negative space is expected 
to be much denser than the positive space [14]. While this method tends to provide an 
early stop instead of proceeding to find the actual boundary between the positives and 
negatives, we observe that it is useful for constructing a robust positive set P with 
very high precision. In other words, we can obtain a “pure” positive set P which is 
still reasonably bigger than the original one seed positive example set to work with.  

We repeat n times Steps 3 to 5 with different initializations for K-means clustering 
to create an ensemble system with n diverse classifiers. In Step 4, instead of assigning 
a “hard” label to all the instances within a cluster, we assign a “soft” probabilistic 
label to each instance according to its contribution to the container cluster. In 
particular, given an instance xi, its probability 

ixP to be labeled as its belonging cluster 

ixC ’s label is defined using Gaussian distribution as: 
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The probability 
ixP denotes the possibility that an instance xi has its container cluster’s 

label. If it is near its cluster centroid centroid(
ixC ), then it has a higher probability to 

belong to cluster’s label; otherwise, it will be given a lower probability.  
The probability is converted as a weight for each instance depending on whether it 

is extracted into the positive or negative class: 
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Since we perform LCLC n times, we use j (1 j n≤ ≤ ) to indicate that the weight is 

given in j-th iteration of En-LCLC algorithm.  
Step 6 computes the confidence score that an instance is extracted as either positive 

or negative, which is simply defined as follows: 

1
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Equation (4) basically sums all the weights over n iterations into a consolidated score. 
An instance will get a bigger positive (negative) value if it is extracted as a positive 
(negative) consistently.  On the other hand, if it is assigned a near zero value (no 
matter positive or negative), it is an unreliable instance which may not be very useful 
for further classification step.   

We compute the confidence score of each instance normalized to the range of     
[-1,1] as follows: 
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Each instance xi in U-P will have a confidence score inor,
λ that indicates its propensity 

to be a positive or negative instance. The instances in U-P (all with normalized 
confidence scores) together with P (all with a fixed confidence score of 1) may serve 
as the training set TRAIN for learning a classifier.  

Note that the training data TRAIN may still contain some uncertain instances  
which have low confidence scores. Before building our final classifier, we perform 
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noise-filtering pass [20] to further remove the possibly incorrectly labeled instances. 
To do so, for each example xi, we define its adaptive neighborhood N(xi) which 
consists of its minimal number of nearest neighbors whose total confidence score is 
larger or equal to 1 (which indicates we have enough information from the neighbors 

to make accurate decision). If 
( )

, ,
1

( ) ( )
iN x

nor i nor j
j

sign signλ λ
=

≠ ∑ , or the instance will be 

misclassified by its nearest neighbors within its adaptive neighborhood (label 
inconsistent), then we will remove the confusing instance from our training set 
TRAIN.  

Algorithm 3. Adaptive Noise-filtering procedure 
Input: Training set TRAIN with normalized confidence score ,nor jλ  for each 

instance in TRAIN 
1. Sort the instances in TRAIN by their normalized confidence score in the 

decreasing order; 
2. For all xi ∈ TRAIN do 
3. K =1; 
4. Find the nearest neighbor xj, and add it to N(xi); 

5. While ,
1

| | 1
K

nor j
j

λ
=

<∑  

6. K=K+1; 
7. Find Kth nearest neighbor xj and add it to N(xi); 

8. If 
( )

, ,
1

( ) ( )
iN x

nor i nor j
j

sign signλ λ
=

≠ ∑  

9. removalflag(xi)=1; 
10. For all xi ∈ TRAIN do 
11. If (removalflag (xi) = = 1)  
12. TRAIN = TRAIN – { xi }; 

Algorithm 3 shows the detailed step of this noise filtering process. For each example 
in training set, Steps 3-7 find its adaptive neighborhoods and Steps 8-9 detect if it is 
the noisy instance. Finally, we remove all these noisy instances from the training set 
in Steps 10-12. 

3.2 Combining Classifiers Using Adaptive Fuzzy Nearest Neighbor Method 

Traditional time series data classification often employed the k-nearest neighbor 
(KNN, especially 1-NN) method to build final classifier based on the given “hard” 
labeled training data [18]. Our approach is able to generate more refined “soft” 
labeled training data with confidence scores.  Instead of applying a fixed threshold 
(which is difficult to determine for arbitrary datasets) on the confidence scores to 
provide “hard” labeling of the training data to enable employing the conventional 
KNN approaches, we will build an adaptive fuzzy nearest neighbor classifier as it can 
effectively make use of the normalized confidence scores of the training instances.  
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The detailed algorithm for building our Adaptive Fuzzy Nearest Neighbor (AFNN) 
classifier is  shown in Algorithm 4. Steps 1-10 classify all the test instances based on 
their prediction values (Step 7), which are the accumulated normalized confidence 
scores of the nearest neighbors from the adaptive neighborhood. Steps 8-10 classify a 
test instance based on the sign of its prediction value. 

 
Algorithm 4. Adaptive Fuzzy Nearest Neighbor 
Input: Training set TRAIN, Test set TEST, ,nor jλ  for each instance xi in TRAIN 

1. For all xi ∈TEST do 
2. K =1; 
3. Find the nearest neighbor xj ,  xj ∈TRAIN; 

4. While ,
1

| | 1
K

nor j
j

λ
=

<∑  

5. K=K+1; 
6. Find Kth nearest neighbor xj,  xj ∈TRAIN; 

7. Compute the prediction value: ,
1

( ) ;
K

i nor j
j

Pre x λ
=

= ∑  

8. If ( ) 0iPre x ≥  

9. Label xi as positive; 
10. Else       Label xi as negative. 

4 Empirical Evaluation 

We compare our proposed technique En-LCLC algorithm against three existing state-
of-the-art PU learning methods for time series classification, namely,  Wei’s method 
[14], Ratanamahatana’s method (denoted as Ratana’s method) [15] as well as the 
LCLC method [16].  

4.1 Experimental Data, Settings and Evaluation Metric 

Similar to the experiments reported in [14] and [16], we have performed our empirical 
evaluation on the five diverse time series datasets across different fields from [21] and 
the UCR Time Series Data Mining archive [22] to facilitate comparison. The details 
of the datasets are shown in Table 1. 

Table 1. Datasets used in the evaluation experiments 

Name 
Training set Testing set Num of 

Features Positive Negative Positive Negative 
ECG 208 602 312 904 86 

Word Spotting 109 796 109 796 272 
Wafer 381 3201 381 3201 152 
Yoga 156 150 156 150 428 
CBF 155 310 155 310 128 
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In our empirical evaluation, we repeated the experiments performed in [14] and 
[16] by randomly selecting just one seed example from the positive training class for 
the learning phase (i.e. seed s in Algorithm 2), with the rest of the training set (both 
positives and negatives) treated as unlabeled data (ignoring their labels; U in 
Algorithm 2).  

We repeat our experiments 10 times with different initial seed positive instances 
for each dataset and report the average values of the 10 results. Since our proposed 
En-LCLC performs n diverse classifiers to generate the confidence scores for each 
instance, we set n = 15 for this work.  We will also evaluate n’s sensitivity later.  

We use the F-measure to evaluate the performance of the four PU learning 
techniques. The F-measure is the harmonic mean of precision (p) and recall (r), and it 
is defined as F=2*p*r/(p+r). In other words, the F-measure reflects an average effect 
of both precision and recall. F-measure is large only when both precision and recall 
are good. This is suitable for our purpose to accurately classify the positive and 
negative time series data. Having either too small a precision or too small a recall is 
unacceptable and would be reflected by a low F-measure. 

4.2 Experimental Results 

Table 2 shows the overall classification results of all the four techniques. The results 
showed that both LCLC [16] and En-LCLC performed much better than the other two 
earlier methods for time series classification, namely, Wei’s method [14], and 
Ratana’s method [15]. Our proposed En-LCLC produced the best classification results 
across all the 5 datasets, achieving F-measures of 86.9%, 76.2%, 77.5%, 89.1% and 
81.6%, which are 0.2%, 3.5%, 5.1%, 3.7% and 11.5% higher than the second best 
results from LCLC. On average (last row), En-LCLC was able to achieve 82.3%  
F-measure, which is 4.8% higher than the second best LCLC method in terms of  
F-measure, indicating that En-LCLC is indeed well-designed for time series data 
classification.  

Table 2. Overall performance of various techniques 

Dataset Wei’s method Ratana’s method LCLC En-LCLC 
ECG 0.405 0.840 0.867 0.869 

Word Spotting 0.279 0.637 0.727 0.762 
Wafer 0.433 0.080 0.724 0.775 
Yoga 0.466 0.626 0.854 0.891 
CBF 0.201 0.309 0.701 0.816 

Average 0.357 0.498 0.775 0.823 
 

Recall that En-LCLC has two key steps for our classification task: (1) using “soft” 
Adaptive Fuzzy Nearest Neighbor classifier replace the “hard” label 1-NN classifier, 
and (2) performing a noise filtering before building our final classifier. To determine 
their individual effects on our classification performance, we also test the En-LCLC 
algorithm without these key steps. The results are shown in Table 3. 
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Table 3. En-LCLC with 1-NN and without noise filtering 

 
Without using “soft” AFNN classifier, we use 1-NN by converting the confidence 

scores into “hard” labels using the following procedure: if the confidence score of an 
unlabeled instance is larger than 0, then it is regarded as a positive training example; 
otherwise, it is treated as a negative training example. We observe from Table 3 that 
En-LCLC with 1-NN is on average 1.8% worse than our proposed En-LCLC. It is 
important to note that En-LCLC with 1-NN has already benefited from the more 
accurate confidence scores obtained from our ensemble-based strategy. Similarly, by 
including noise filtering, En-LCLC is able to perform 1.22% higher on average, 
indicating that removing those potentially noisy examples using the confidence scores 
can contribute to enhance the classification performance.  

Table 4 compares the performance of the LCLC and En-LCLC techniques for 
extracting positives and negatives from unlabeled data. In the table, Ext_P (Ext_N) 
represents the number of positives (negatives) extracted.  Error_P and Error_N 
represent the error rate of positive and negative extraction respectively. Compared 
with LCLC, En-LCLC made 0.40%, 6.80%, 5.60%, 1.90% and 1.90% less errors for 
positive extraction over the 5 datasets. It also made 0.10%, 1.10%, 0.50%, 4.10% and 
5.90% less errors for negative extraction over 5 datasets. As these instances are 
located near the positive and negative boundary, the reduction in false positives and 
false negatives helped improve En-LCLC’s eventual accuracy. 

Table 4. Extraction comparison between LCLC and En-LCLC 

Dataset ECG 
Word 

Spotting
Wafer Yoga CBF 

LCLC 

Ext_P 234.3 139.4 269.7 166.8 106.6 
Error_P 16.1% 36.3% 16.6% 17.3% 12% 
Ext_N 575.7 765.6 3312.3 139.2 358.4 

Error_N 2% 2.6% 4.7% 12.9% 17.1% 

En-LCLC 

Ext_P 233 134.8 271.4 165.7 118.6 
Error_P 15.7% 29.5% 11% 15.4% 10.1% 
Ext_N 574.3 745.6 3299.8 134.8 321 

Error_N 1.9% 1.5% 4.2% 8.8% 11.2% 

 
We now analyze the efficiency of En-LCLC algorithm. The main steps for our 

algorithm include K-means clustering to partition the unlabeled data, compute the 
confidence score for each example, perform noise filtering, and construct Adaptive 
Fuzzy Nearest Neighbor (AFNN) classifier. These steps can be performed using 
efficient algorithms implemented in linear time. Note that our ensemble-based 

Dataset ECG Word Spotting Wafer Yoga CBF 
En-LCLC w 1-NN 0.867 0.736 0.745 0.861 0.754 

En-LCLC w/o 
noise filtering 

0.868 0.749 0.764 0.879 0.792 

En-LCLC 0.869 0.762 0.775 0.891 0.816 
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5 Conclusions 

Time series classification has been applied in many real-world applications across 
different domains. In this paper, we study the positive unlabeled learning method as it 
eliminates the tedious and costly process to hand-label large amounts of training data.  
We proposed a novel En-LCLC algorithm (Ensemble based Learning from Common 
Local Clusters) to overcome the drawbacks of the existing state-of-the-art LCLC 
algorithm. Our proposed En-LCLC algorithm adopts an ensemble-based strategy 
which performs LCLC algorithm multiple times to minimize the potential bias of 
individual LCLC prediction. As shown in our experiments, the error rates in the 
extracted likely positive/negative examples has been effectively reduced. We 
designed an Adaptive Fuzzy Nearest Neighbor classifier to exploit the “soft” 
confidence scores obtained from the diverse classifiers. We also made use of the 
confidence scores to remove unreliable examples from the training dataset. The 
experimental results show that our proposed method performed much better than 
existing methods over multiple time series data from different domains. 
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