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Abstract. Imbalanced class distribution is a challenging problem in many 
real-life classification problems. Existing synthetic oversampling do suffer from 
the curse of dimensionality because they rely heavily on Euclidean distance. This 
paper proposed a new method, called Minority Oversampling Technique based 
on Local Densities in Low-Dimensional Space (or MOT2LD in short). MOT2LD 
first maps each training sample into a low-dimensional space, and makes clus-
tering of their low-dimensional representations. It then assigns weight to each 
minority sample as the product of two quantities: local minority density and local 
majority count, indicating its importance of sampling. The synthetic minority 
class samples are generated inside some minority cluster. MOT2LD has been 
evaluated on 15 real-world data sets. The experimental results have shown that 
our method outperforms some other existing methods including SMOTE, Bor-
derline-SMOTE, ADASYN, and MWMOTE, in terms of G-mean and 
F-measure. 
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1 Introduction 

Imbalanced distribution of data samples among different classes is a common pheno-
menon in many real-world classification problems, such as fraud detection [1] and text 
classification [2]. In this paper, we focus on two-class classification problems for imba-
lanced data sets, where the class that contains few samples is called the minority class, 
and the other that dominates the instance space is called the majority class. The imba-
lanced data sets have degraded the learning performance of existing learning algorithms 
and posed a challenge to them for the hardness to learn the minority class samples. 

Confronted with the problem of imbalanced learning, some simple yet effective 
methods have been proposed to generate extra synthetic minority samples in order to 
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balance the distribution between the majority class and the minority class [3][4][5][6], 
which are called synthetic oversampling methods. SMOTE[3], Borderline-SMOTE[4], 
ADASYN[5], and MWMOTE[6] are typical examples of this kind of algorithms. All 
these algorithms generate synthetic minority samples in two main phases. The first 
phase is to identify those informative minority class samples, and the second phase is to 
interpolate a synthetic minority class sample between those informative minority class 
samples and their nearby ones. The difference among them exists in the way of how the 
synthetic samples are generated. SMOTE algorithm [3] is the first and simplest synthetic 
oversampling method, which treats all the minority class samples equally. To generate a 
synthetic minority sample, it first draws seed samples randomly from the whole set of 
minority class samples in the seed drawing phase, and then calculates the ݇ nearest 
neighbors in the minority class for each seed sample and generates new synthetic sam-
ples along the line between the seed sample and its nearest minority neighbors. As an 
improvement over SMOTE, Borderline-SMOTE [4] only draw seed samples from those 
dangerous minority samples at borderline. A minority class sample is at borderline if 
there are more majority class samples than minority ones in its ݉ nearest neighbors. 
Borderline-SMOTE first identifies the borderline minority class samples, and then uses 
them as seed samples for generating the synthetic samples because they are most likely 
to be misclassified by a classifier. However, all the borderline samples are treated 
equally. To adaptively draw seed samples, ADASYN algorithm [5] adaptively assigns 
weights to the minority class samples. A large weight enhances the chance for the  
minority class sample serving as a seed sample in the synthetic sample generation 
process. Both Borderline-SMOTE and ADASYN share a synthetic sample generation 
process that is similar to the one used by SMOTE: the synthetic minority class samples 
are generated by interpolation randomly between the seed samples and their K-nearest 
neighbors of the minority class. Recently, a new algorithm MWMOTE [6] is proposed 
to identify the hard-to-learn informative minority class samples, to assign them weights 
according to their Euclidean distance from the nearest majority class samples, and then 
to generate synthetic samples inside minority class clusters. It has been illustrated in [6] 
that MWMOTE can avoid some situations that the other methods will generate wrong 
and unnecessary synthetic samples. 

Although these synthetic oversampling methods have achieved some satisfactory 
results for imbalanced learning, they still have their deficiencies. Firstly, all of them for 
these methods rely heavily on the Euclidean distance in the calculation of K-nearest 
neighbors, which may suffer from the curse of dimensionality, especially when the 
dimensionality of the sample space is high. Secondly, the synthetic generation process 
used by SMOTE, Borderline-SMOTE, and ADASYN does not take the cluster struc-
ture into consideration. Last but not least, we think the local minority density should 
have its position in determining the importance of a minority class sample for the 
generation of synthetic minority samples. 

To solve these problems, we propose a new algorithm, which consists of three main 
steps. It first applies t-SNE algorithm to reduce the dimensionality of the training 
samples into a two-dimensional space, where each sample is represented as a 
two-dimensional vector. Then, a density-peak algorithm is used to learn the cluster 
structure of the training samples in the low-dimensional space. The importance of a 
minority class sample is measured by taking two factors into consideration: local 
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majority count and local minority density. Local majority count indicates how many 
majority class samples appear in the K-nearest neighbors of the minority class sample. 
The higher the local majority count is, the harder is to make the correct decision for the 
sample. The local minority density of a given minority sample indicates the density of 
minority class samples around it. The lower the local minority density is, the more 
likely is to generate a synthetic sample from the sample. Finally, based on the impor-
tance measurement of the minority samples, synthetic minority samples are generated, 
which are located inside some minority cluster. 

The whole paper is organized as follows. Section 2 describes our proposed method 
MOT2LD (Minority Oversampling Technique based on Local Densities in 
Low-Dimensional Space) in detail. Section 3 presents the experimental results. Finally, 
we summarize the whole paper and point out possible directions for future work. 

2 The Proposed Method 

The objective in this paper is to exploit and integrate modern dimensionality reduction 
and clustering techniques in order to solve the problems that existing synthetic over-
sampling methods are facing. The proposed algorithm, called Minority Oversampling 
Technique based on Local Densities in Low-Dimensional Space (or MOT2LD in 
short), consists of five major steps as listed in Table 1. 

• The first step is to reduce the dimensionality of the representation of training 
samples. By dimensionality reduction, each sample in high-dimensional space 
can be mapped into a point in a low-dimensional space. Dimensionality reduc-
tion can be thought of a kind of metric learning technique, leading to a better 
distance metric between samples. 

• The second step is to discover the cluster structure of the minority class samples 
in the low-dimensional space. A new density-based clustering algorithm called 
DPCluster is exploited, which is capable of determining the cluster number 
automatically. It is desirable that the generated synthetic minority samples are 
within some cluster, instead of “between clusters”.  

• The third step is to detect and filter out outliers and noises in the set of minority 
samples, for the existence of outliers and noises may do harm to the quality of 
the generated synthetic minority samples. 

• The fourth step is to assign weights to the minority samples, indicating their 
importance for oversampling. The weight is measured as the product of the local 
majority count and the inverse of local minority density.  

• The final step is to generate the synthetic minority samples according to the 
importance weights of the training minority samples. We also restrict that the 
synthetic minority samples should be inside some minority cluster, to avoid 
generating synthetic samples between different clusters. 

 
 
 



6 Z. Xie et al. 

The details of MOT2LD are described below. 

Table 1. The framework of MOT2LD algrorithm 

Algorithm: Minority Oversampling Technique based on Local Densities in 
Low-Dimensional Space 

Input:   
 NSamples: A set of majority class samples (Negative class) 
 PSamples: A set of minority class samples (Positive class) 
 K: The number of nearest neighbors observed when filtering noise samples 
 NumToGen: The number of synthetic minority samples to be generated 
Output:   
 Y: The set of synthetic minority samples that are generated 

Procedure Begin   
 Step 1: (Dimensionality Reduction)  
  Use t-SNE algorithm to reduce the dimensionality of the dataset, where each data 

sample x  is represented as a low-dimensional image ݕ in a low-dimensional space. 
 Step 2: (Clustering of Minority Class Samples)  
  Use Density Peak Clustering algorithm to partition the set of minority class samples 

into a number of clusters Cl1,…,Cls, where s is the number of clusters. As byproduct, 
we can also get the local minority density ρi for each minority sample ݅.  

 Step 3: (Outlier Detection and Noise Filtering)  
  For each minority class sample, if its local minority density is zero, it will be treated as 

outlier and get removed. In addition, we also count the number of majority class 
samples in its ܭ-nearest neighbors. If all the ܭ neighbors are from majority class, 
then the minority sample is a noise to be filtered. 

 Step 4: (Weight Assignment)  
  Assign an importance weight ݁ܿ݊ܽݐݎ݉ܫ(݅) to each minority class sample ݅ as a 

product of its local majority count γ(݅) and the inverse of its local minority density ρ(݅).  
 Step 5: (Synthetic Sample Generation)  
  For each minority sample ݅ , set ܾݎ(݅) ൌ ூ௧()  where ܼ ൌ ∑ ௧௬ ௦௦א(݅)݁ܿ݊ܽݐݎ݉ܫ . 

for i := 1 to NumToGen 
1) Randomly draw a minority sample ݔ௦ as the seed sample, according to the 

probability distribution { ܾݎ(݅): ݅ א  {ݏݏ݈ܽܿ ݕݐ݅ݎ݊݅݉
2) Choose another minority sample ݔ௧  from the minority cluster that ݔ௦ 

belongs to. 
3) Generate one synthetic minority sample ݔ௪ ൌ α ൈ ௦ݔ  (1 െ (ߙ ൈ ௧ݔ , 

where α is a random number between 0 and 1. 
4) Add ݔ௪  into Y. 

end for
Procedure End   
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2.1 Dimensionality Reduction via t-SNE 

Due to the curse of dimensionality, the commonly-used distance metrics that work well 
in low-dimensional space may have significantly-degraded performance in 
high-dimensional space. To alleviate this problem, dimensionality reduction is an 
important preprocessing step for many machine learning tasks such as clustering and 
classification. A lot of methods have been proposed to embed objects, described by 
either high-dimensional vectors or pairwise dissimilarities, into a lower-dimensional 
space [7]. Principal component analysis (PCA) [8] seeks to capture as much variance as 
possible. Multidimensional scaling (MDS) [9] tries to preserve dissimilarities between 
items. Traditional dimensionality reduction methods such as Principal Component 
Analysis and Multidimensional Scaling usually focus on keeping the low-dimensional 
representations of dissimilar data points far apart. However, for high-dimensional data 
that lies on or near a low-dimensional non-linear manifold, it is usually more important 
to keep the low-dimensional representations of very similar data points close together. 
Locally linear embedding (LLE) [10] attempts to preserve local geometry. Stochastic 
Neighbor Embedding (SNE) [11] is an iterative technique that aims at retaining the 
pairwise distances between the data points in the low-dimension space, which is similar 
to MDS. However, SNE differs from MDS in that it makes use of a Gaussian kernel 
such that the similarities of nearby points contribute more to the cost function. As such, 
it preserves mainly local properties of the manifold.  

In this paper, we adopt a recently developed dimensionality reduction algorithm, 
called t-Distributed Stochastic Neighbor Embedding (t-SNE) [12], which is an exten-
sion to the well-known original Stochastic Neighbor Embedding (SNE) algorithm [11]. 
The t-SNE algorithm was proposed originally for the visualization of high-dimensional 
data points, which can transform the high-dimensional data set into two or 
three-dimensional data. The reason why we choose to use t-SNE is that it is capable of 
capturing much of the local structure of high-dimensional data very well, while also 
revealing global structure such as the presence of clusters. The first capability provides 
the quality of K-nearest neighbors, while the second capability makes it easy to dis-
cover the cluster structure of the minority class samples. Both these two capabilities are 
fundamental to the proposed MOT2LD algorithm. A brief description of t-SNE goes as 
follows. 

In SNE [11] or t-SNE [12] algorithm, the high-dimensional Euclidean distances 
between data points are transformed into conditional probabilities that one data point 
would pick another data point as its neighbor. 

| ൌ exp ቀെ ฮݔ െ ฮଶݔ ൗ(ଶߪ2) ቁ∑ exp(െ ԡݔ െ ԡଶݔ ⁄(ଶߪ2) )ஷ  (1)

where ߪ is the variance of the Gaussian that is centered on data point ݔ, and 
ԡ௫ି௫ೖԡమଶఙమ  

represents the dissimilarities between two data points that are measured as the scaled 
squared Euclidean distance. The value of ߪ is chosen by a binary search such that the 
Shannon entropy H( ܲ) ൌ െ ∑ | log |  of the distribution over neighbors equals 
to log   .is a user-specified perplexity with 15 as default value ݑ where ,ݑ
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In the high-dimensional space, the joint probabilities   is defined to be the sym-
metrized conditional probabilities, that is:  ൌ |  |2݊  (2)

where ݊ denotes the number of data points. 
In t-SNE, a Student t-distribution with one degree of freedom is employed as the 

heavy-tailed distribution in the low-dimensional space. The joint distribution is defined 
as: 

ݍ ൌ ቀ1  ฮݕ െ ∑ฮଶቁିଵݕ (1  ԡݕ െ ԡଶ)ିଵஷݕ  (3)

Based on the definitions (2) and (3), the goal of t-SNE is to minimize the difference 
between the two joint probability distributions P and Q. The Kullback-Leibler diver-
gence between the two joint probability distributions ܲ and ܳ, which measures their 
difference, is given by: C ൌ KL(ܲ||ܳ) ൌ    log ݍ ൌ  ( log    log )ݍ  (4)

Therefore, we take the Kullback-Leibler divergence as the objective function to be 
minimized. Its gradient can be written as: ߲ݕ߲ܥ ൌ 4 ൫ െ ൯ݍ ቀ1  ฮݕ െ ฮଶቁିଵݕ ൫ݕ െ ൯ݕ  (5)

For the detailed derivation procedure of the expression (5), please refer to the  
Appendix A in [12]. 

A gradient descent method can be implemented to find out the map points in the 
low-dimensional space that minimizes the Kullback-Leibler divergence, following the 
gradient (5). To initialize the gradient descent process, we sample map points randomly 
from an isotropic Gaussian with small variance (10ି଼ by default) that is centered at the 
origin.  

Through applying the t-SNE algorithm described above to the training samples in-
clusive of minority class and majority class, each sample is mapped to a point in a 
low-dimensional space. The map points in the low-dimensional space can better reveal 
the implicit structure of the high-dimensional data, especially when the 
high-dimensional data are lying on several different low-dimensional manifolds.  

2.2 Density Peak Clustering in Low-Dimensional Space 

Dimensionality reduction can be thought of as unsupervised distance metric learning, 
in that every dimensionality reduction approach can essentially learn a distance metric 
in the low-dimensional space [13]. Equivalently speaking, after high-dimensional data 
get mapped to map points in a low-dimensional space, we can derive a new distance 
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metric between data points in the low-dimensional space, which is normally of higher 
quality than the original distance metric in the high-dimensional space. A better dis-
tance metric usually leads to higher quality of calculated K-nearest neighbors or den-
sity, and in turn yields a better clustering result. The global cluster structure is helpful to 
synthetic oversampling methods, because each generated synthetic sample should be 
inside some minority cluster. MWMOTE [6] uses an average-linkage agglomerative 
clustering algorithm [14] to derive the cluster structure of minority class. In our me-
thod, we use a simple clustering algorithm called Density Peak Clustering (DPCluster 
in short) [15]. DPCluster assumes that the cluster centers are defined as local maxima in 
the density of data points, or in other words, the cluster centers are surrounded by 
neighbors with lower density. It also assumes that the cluster centers are at a relatively 
large distance from any points with a higher local density. According to these two 
assumptions, DPCluster calculates two quantities for each data point: one is its local 
density, and the other is its distance from points of higher density, which play important 
roles in the clustering solutions and are defined as follows [15].  

  
Definition 1. (Local Density) The local density of a data point ݅ is defined as: ߩ ൌ (݅)ߩ ൌ  ߯(݀ െ ݀)  (6) 

where ݀  denotes the distance between two data points ݅ and ݆, ߯(ݔ) ൌ 1 if ݔ ൏ 0 
and ߯(ݔ) ൌ 0 otherwise, and ݀ is a cutoff distance.  

 
In this paper, the distance between two data points is calculated as the Euclidean 

distance in the low-dimensional space, the value of ݀ is set such that the average local 
density over all points equal to 2% of the total number of points. Because the clustering 
is applied only on minority class samples, the local density is also called the local 
minority density in this paper.  

 
Definition 2. (Distance from points of higher density) For any data point ݅, its dis-
tance ߜ from points of higher density is measured as the minimum distance between 
the point and any other point with higher density: ߜ ൌ (݅)ߜ ൌ min:ఘೕவఘ ݀ (7)

For the data point with the highest local density ݕ   is defined to be its maximalߜ ,
distance from any other point, that is, ߜ ൌ max ݀. 

Based on those quantities, the clustering process consists of two steps. The first step 
is to identify the cluster centers which are the points with anomalously large value of ߩ 
and relatively large value of ߜ, because cluster centers normally has high densities. In 
our implementation, this paper, a point is thought of as a cluster center if its local 
density is larger than 80% of all the data points, and its distance from points of higher 
density is among the top 5% of all the data points. As such, the number of clusters is 
automatically determined as the number of cluster centers identified, where each 
cluster center represents a unique cluster. In this step, the points with a high ߜ value 
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and a low ߩ can be treated as outliers. The second step is to assign the remaining data 
points to the same cluster as its nearest neighbor of higher density. This assignment step 
is performed in a single pass, which is much faster than other clustering algorithms 
such as k-means [16]. 

2.3 Outlier Detection and Noise Filtering 

In MOT2LD, we detect outliers and filter noises, in the low-dimensional space with 
two strategies (Step 3).  

• Strategy 1 (Outlier Detection): During the clustering process described in section 2.2, 
we calculate the local minority density ߩ for each minority class sample ݅. If the local 
minority density ߩ equals to zero, then the sample ݅ is likely to be an outlier, because 
there is no minority samples surrounding it. Therefore, it is deleted from the set of 
minority class samples, and gets removed from subsequent processing.  

• Strategy 2 (Noise Filtering): We calculate the set ܰܰ(݅) of K-nearest neighbors for a 
minority class sample ݅ in the low-dimensional space. If the K-nearest neighbors of a 
minority class sample in the low-dimensional space are all from the majority class, 
then the minority sample ݅ is likely to be a noise sample because it is surrounded by 
only the majority class samples. It is then filtered out of the minority sample set.  

2.4 Weight Assignment 

As to measuring the importance of a minority class sample for synthetic minority 
sample generation, there are three facts that deserve our attention: 

• The first fact is that the borderline points of a cluster normally have low local 
minority densities ρ, but the interior points usually have high local minority 
densities. For classification, the borderline points are more informative than the 
interior points. Therefore, the points with lower local densities should be given 
higher probabilities when chosen as the seed samples for generating synthetic 
minority samples. In other words, for a given minority sample ݅, if the number of 
minority class samples, whose distance to ݅ is less than the cutoff distance ݀, is 
low, then its weight should be increased. 

• The second fact is that for two minority clusters of different densities, the samples 
in the cluster of lower density should get more chances to serve as seed samples 
for generating synthetic minority samples than those in the cluster of higher 
density. This fact leads to the same conclusion as the first fact: minority samples 
of lower minority density should be given more weight. 

• The third fact is that a minority sample is hard to make the correct decision if there 
are many majority class samples in its K-nearest neighbors. As such, we use the 
local majority count γ(݅) to indicate how many majority samples occur in the 
K-nearest neighbors of a given minority sample ݅. Minority samples with higher 
local majority count should be given higher probability of serving as seed samples 
for generating synthetic minority samples.  
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For a given minority class sample i, its importance ݅݉݁ܿ݊ܽݐݎ(݅) is defined as the 
product of its local majority count γ(݅) and the inverse of its local minority density ݁ܿ݊ܽݐݎ݉݅ :(݅)ߩ(݅) ൌ (8) (݅)ߩ(݅)ߛ

The importance weight of a given minority class sample is an indicator of the impor-
tance for generating synthetic minority sample from it. A large weight implies that the 
sample needs to generate many synthetic minority samples nearby it.  

To illustrate the rationale behind the weighting scheme, we construct a simple ex-
ample explained as follows. In Fig. 1, there are totally 550 points. Among these points, 
500 points represented as blue dots are drawn randomly from a bivariate Gaussian ࣨ(ߤ, Σ), and 50 points as red plus-signs are drawn from another bivariate Gaussian ࣨ(ߤଵ, Σଵ), where ߤ ൌ ଵߤ ,(1,2) ൌ (1, െ1), and Σ ൌ Σଵ ൌ ቂ2 11 1ቃ. Next, we shall 

examine three minority class samples labeled by 1, 2, and 3.  

 

Fig. 1. An example of Gaussian-distributed Minority and Majority Samples 

First, let us focus only on the minority class samples. The samples 1 and 3 are at the 
borderline of minority class, while the sample 2 is an interior point of minority class. As 
illustrated in Fig. 2, where each circle is centered at sample 1, sample 2, or sample 3, 
and the radius of each circle equals to the chosen cutoff value ݀. Clearly, the local 
minority density of sample 1, ρ(1), equals to 5, because there are five minority class 
samples in its circle. Similarly, the local density of sample 2, ρ(2), is 16, while the local 
density of sample 3, ρ(3), is only 2.  

Next, we examine the local majority count for the three minority samples. For the 
sample 1, there are two majority samples in its 5-nearest neighbors, so its majority 
count equals to 2, that is γ(1) ൌ 2. For the sample 2 and the sample 3, there are no 
majority samples appearing in their 5-nearest neighbors, so we have γ(2) ൌ γ(3) ൌ 0. 
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Fig. 2. Local minority densities for three minority class samples 

 

Fig. 3. Local majority counts for three minority class samples 

Following the definition of importance weight in Equation (8), we can calculate the 
importance weights of the three minority samples: (1)݁ܿ݊ܽݐݎ݉ܫ ൌ (1)ߩ(1)ߛ ൌ 25 ;  
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(2)݁ܿ݊ܽݐݎ݉ܫ ൌ (2)ߩ(2)ߛ ൌ 0; 
(3)݁ܿ݊ܽݐݎ݉ܫ ൌ (3)ߩ(3)ߛ ൌ 0. 

Clearly, a minority class sample is given a high importance weight, if it has a high 
local majority count and a low local minority density. 

2.5 Generation of Synthetic Minority Samples 

Before we describe the generation of synthetic samples, we first transform the impor-
tance weights of minority samples into a probability distribution that indicates the 
probability that a minority sample is selected as the seed sample: ܾݎ(݅) ൌ ∑(݅)݁ܿ݊ܽݐݎ݉ܫ ௧௬א(݆)݁ܿ݊ܽݐݎ݉ܫ ௦௦  (9)

To generate a synthetic minority sample, a minority sample ݔ௦ is selected ran-
domly as the seed sample according to the probability distribution. Let ܵ denote the 
cluster that contains ݔ௦. We then select a second minority sample ݔ௧ that belongs to 
the minority cluster ܵ. A new synthetic minority sample is thus generated by random 
interpolation between the two minority samples ݔ௦ and ݔ௧.  

3 Experimental Results 

To evaluate the effectiveness of the proposed MOT2LD method, we compare it with 
four other synthetic oversampling methods: SMOTE[3], Borderline-SMOTE[4], 
ADASYN[5], and MWMOTE[6], on 15 data sets from the UCI machine learning 
repository [17]. The data sets with more than two classes are transformed to two-class 
problems. Table 2 lists detailed information about the data sets and how the majority 
and minority classes.  

On each data set, we randomly split it into two parts of (almost) the same size, one 
for training set and the other for testing set. Synthetic oversampling method is applied 
on the training set. 

Accuracy is the most commonly-used evaluation metric for classification problems. 
However, the accuracy measure suffers greatly from the imbalanced class distribution, 
and thus is not suitable for imbalance classification [18]. To assess the classifier per-
formance on imbalanced two-class classification problem, a confusion matrix is con-
structed as shown in Table 3, where TP denotes the number of true positive, FP denotes 
the number of false positive, FN denotes the number of false negative, and TN denotes 
the number of true negative. Two evaluation metrics derived from confusion matrix are 
used in this paper to assess learning from imbalanced data sets. They are G-mean and 
F-measure [18]. 
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Table 2. Characteristics of the experimental data sets 

Data Sets 
Minority 

Class 
Majority

Class Features Minority Majority 
Imbalance 

Ratio 
Statlandsat  4 other 37 415 4435 0.09:0.91 

Yeast  
ME3, ME2, 
EXC, VAC, 
POX, ERL 

other 8 304 1180 0.21:0.79 

Ecoli  im other 7 77 259 0.23:0.77 

PageBlocks  
Graphic, 
Vert.line, 
Picture 

other 10 231 5245 0.04:0.96 

BreastCancer Malignant Benign 9 239 444 0.34:0.66 

Glass  5, 6, 7 other 9 51 163 0.24:0.76 

Vehicle  van other 18 199 647 0.24:0.76 

Libra  1, 2, 3 other 90 72 288 0.20:0.80 

Abalone  18 other 7 42 689 0.06:0.94 

Vowel  0 other 10 90 900 0.09:0.91 

Pima  1 0 8 268 500 0.35:0.65 

Ionosphere  bad radar 
good 
radar 

34 126 225 0.36:0.64 

Segment  Grass other 19 330 1980 0.14:0.86 

BreastTissue CAR, FAD other 9 36 70 0.34:0.66 

Wine  3 other 13 48 130 0.26:0.74 

Table 3. Confusion Matrix 

 True Class 
Positive Negative 

Predicted Class 
Positive TP FP 
Negative FN TN 

 
Based on the confusion matrix in Table 3, the evaluation metrics, G-mean and 

F-measure, are defined as follows: 

• G-mean is a good indicator for performance assessment of imbalanced learning 
by combining the accuracies on the positive class and negative class samples. 
 GMୣୟ୬ ൌ ඨ ܶܲܶܲ  ܰܨ ൈ ܶܰܶܰ   ܲܨ
 

where 
்்ାிே is the accuracy on the positive class and 

்ே்ேାி is the accuracy on 

the negative class. 
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• F-measure make a combination of precision and recall of the positive samples: 
 F୫ୣୟୱ୳୰ୣ ൌ 2 ൈ ݈݈ܽܿ݁ݎ ൈ ݈݈ܽܿ݁ݎ݊݅ݏ݅ܿ݁ݎ  ݊݅ݏ݅ܿ݁ݎ  
 

where ݈݈ܽܿ݁ݎ ൌ ்்ାிே and ݊݅ݏ݅ܿ݁ݎ ൌ ்்ାி. 

 
We use the CART [16] decision tree as the classification model in our experiments. 

Throughout the experiments, we do not fine-tune the parameters in our algorithm. All 
the parameters take default values as indicated in Section 2. Table 4 and Table 5 
summarize the results of SMOTE, Borderline-SMOTE, ADASYN, and MOT2LD on 
the 15 experimental data sets. The reported performance results are all averaged over 
20 independent runs. At each run, the data set is randomly divided into two parts of 
approximately equal size: one for training set and the other for testing set. The number 
of synthetic minority samples that generated by the compared oversampling methods is 
two times the number of minority samples in the training set. On each data set, the best 
result is highlighted with underlined bold-face type. 

Table 4. Comparison of G-mean on experimental data sets 

Data Sets ADASYN 
Borderline- 

SMOTE 
SMOTE MWMOTE MOT2LD 

Statlandsat  0.717 0.714 0.723 0.719 0.723 

Yeast  0.783 0.781 0.783 0.779 0.778 

Ecoli  0.830 0.824 0.844 0.836 0.851 

PageBlocks  0.869 0.858 0.861 0.858 0.868 

BreastCancer  0.898 0.903 0.909 0.910 0.907 

Glass  0.884 0.893 0.887 0.880 0.892 

Vehicle  0.891 0.900 0.900 0.894 0.903 

Libra  0.744 0.742 0.764 0.761 0.769 

Abalone  0.557 0.561 0.5998 0.580 0.619 

Vowel  0.947 0.923 0.941 0.927 0.947 

Pima  0.664 0.648 0.662 0.658 0.669 

Ionosphere  0.835 0.857 0.829 0.849 0.824 

Segment  0.997 0.996 0.996 0.997 0.996 

BreastTissue  0.717 0.712 0.692 0.681 0.725 

Wine  0.949 0.949 0.943 0.947 0.947 
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Table 5. Comparison of F-measures on experimental data sets 

Data Sets ADASYN 
Borderline- 

SMOTE 
SMOTE MWMOTE MOT2LD 

Statlandsat  0.513 0.514 0.519 0.507 0.507 

Yeast  0.646 0.650 0.647 0.643 0.642 

Ecoli  0.741 0.735 0.758 0.749 0.765 

PageBlocks  0.728 0.726 0.718 0.682 0.700 

BreastCancer  0.890 0.896 0.902 0.904 0.900 

Glass  0.835 0.848 0.832 0.828 0.848 

Vehicle  0.836 0.845 0.846 0.835 0.847 

Libra  0.630 0.641 0.650 0.643 0.636 

Abalone  0.304 0.322 0.321 0.334 0.359 

Vowel  0.876 0.863 0.867 0.864 0.858 

Pima  0.575 0.554 0.573 0.567 0.580 

Ionosphere  0.790 0.818 0.781 0.804 0.776 

Segment  0.995 0.996 0.995 0.996 0.996 

BreastTissue  0.635 0.630 0.605 0.594 0.646 

Wine  0.923 0.923 0.917 0.916 0.923 

 
From Table 4 and Table 5, it can be seen that MOT2LD has achieved 8 best results 

out of the 15 data sets among all the compared methods, in both G-mean and 
F-measure, which is much better than the others including SMOTE, Border-
line-SMOTE, ADASYN, and MWMOTE, which have mostly achieved 2 or 3 best 
results out of the 15 data sets. 

4 Conclusion and Future Work 

In this paper, we propose a new synthetic oversampling method MOT2LD for imba-
lanced learning. MOT2LD first maps samples into a low-dimensional space using 
t-SNE algorithm, and discovers the cluster structure of the minority class in the 
low-dimensional space by DPCluster. It then assigns importance weights to minority 
samples as the products of the local majority count and the inverse of local minority 
density.  

To finalize this paper, we would like to list several directions for our future work: 
Firstly, it may be interesting to study the effect of supervised dimensionality reduc-

tion technique as a proprecessing step. If we could make use of supervised information 
in the dimensionality reduction algorithm to maximize the separation between minority 
class and majority class, it is expected that a better results would be achieved. 
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Secondly, although synthetic oversampling methods have achieved satisfactory re-
sults for imbalanced learning, a lot of other methods do exist. Recently, there are 
some model-based oversampling methods such as SPO [20][21] and MoGT [22]. SPO 
[20][21] assumes that the minority samples follow a multivariate Gaussian distribu-
tion. It estimates its mean vector and covariance matrix and then draws extra minority 
sample from the probability distribution. MoGT [22] assumes another probabilistic 
model called mixture of Gaussian Trees. It is similar to the Gaussian Mixture model, 
but differs in that Gaussian Tree can be thought of as a restricted kind of Gaussian 
distribution, which has much less parameters to be estimated. How to combine syn-
thetic oversampling methods and model-based oversampling ones is a challenging 
problem. 
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