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Drug-Target Interaction Prediction with
Graph Regularized Matrix Factorization

Ali Ezzat, Peilin Zhao, Min Wu, Xiao-Li Li, and Chee-Keong Kwoh

Abstract—Experimental determination of drug-target interactions is expensive and time-consuming. Therefore, there is a continuous
demand for more accurate predictions of interactions using computational techniques. Algorithms have been devised to infer novel
interactions on a global scale where the input to these algorithms is a drug-target network (i.e. a bipartite graph where edges connect
pairs of drugs and targets that are known to interact). However, these algorithms had difficulty predicting interactions involving new
drugs or targets for which there are no known interactions (i.e. “orphan” nodes in the network). Since data usually lie on or near to
low-dimensional non-linear manifolds, we propose two matrix factorization methods that use graph regularization in order to learn such
manifolds. In addition, considering that many of the non-occurring edges in the network are actually unknown or missing cases, we
developed a preprocessing step to enhance predictions in the “new drug” and “new target” cases by adding edges with intermediate
interaction likelihood scores. In our cross validation experiments, our methods achieved better results than three other state-of-the-art
methods in most cases. Finally, we simulated some “new drug” and “new target” cases and found that GRMF predicted the left-out
interactions reasonably well.

Index Terms—Drug-target interaction prediction, matrix factorization, graph regularization, manifold learning.
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1 INTRODUCTION

D RUG development is a time-consuming and expensive
process that is plagued with the problem known as

the high attrition rate [1]. This led to the practitioners’ great
interest in drug repositioning (reusing already available
drugs for new indications) due to its potential to reduce
the time, cost, risk and effort inherent in developing new
drugs [2]. Of great importance to drug repositioning efforts
are online biological databases that store and maintain
information on already known drugs and drug-target
interactions; examples of such databases include KEGG [3],
DrugBank [4], ChEMBL [5] and STITCH [6]. However, aside
from those interactions that are stored in online databases,
much more interactions still remain to be discovered,
which motivated the development of a wide variety of
computational techniques that predict new drug-target
interactions. Such computational techniques help predict,
with reasonable confidence, new undiscovered interactions
for further experimental investigation and confirmation,
which thus greatly facilitates the drug development process.

From these computational techniques, this paper is
interested in global-scale drug-target interaction prediction
which can benefit the drug development process by
identifying previously unknown targets for known drugs
as well as off-targets that may lead to undesired side-effects
[7]. A recent overview of such methods is provided in [8].

The earlier methods for drug-target interaction
prediction used to involve docking simulations [9]
or ligand-based approaches [10]. However, there are
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disadvantages to each of these techniques: for docking
simulations, the 3D structure of the target protein must
be available, which is often not the case; for ligand-based
approaches, a problem arises if few or no ligands are known
for the target protein.

Due to these difficulties, more attention has been
given to the so-called chemogenomic approaches where
information from both the drug and target sides are
used simultaneously to improve predictions. One of the
pioneering chemogenomic methods, [11], computed the
pairwise chemical structure similarities between drugs as
well as the pairwise genomic sequence similarities between
targets (proteins). The computed pairwise similarities, along
with a given drug-target network (where interacting drugs
and targets are connected with edges), were then used as
inputs to a kernel regression-based method to infer new
interactions.

Using the same inputs, a bipartite local model that
uses support vector machines was proposed to predict
drug-target interactions [12]. For each drug-target pair, two
models are trained independently, one from the drug side
and the other from the target side. The two models are then
used to give two predictions from which the final prediction
result is obtained by an aggregating function. Afterwards,
another bipartite local model that uses regularized least
squares (RLSavg) was proposed as well as another method
(RLSkron) where the two models from the drug and target
sides were merged into one by taking the Kronecker product
of the drug and target similarity matrices [13].

Moreover, other researchers started addressing the
problem of predicting interactions for new drugs or targets
for which there are no known interactions [14]. They
proposed NII (Neighbor-based Interaction-profile Inferring)
which reinforces the training procedure for new drugs or
targets by deriving temporary interaction profiles for them.
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The base prediction algorithm (RLSavg in this case) would
then be able to give better prediction results. Shortly after
NII, a similar procedure called WNN (Weighted Nearest
Neighbors) having the same goal as NII was proposed to
augment RLSkron [15]. Results for methods using either NII
or WNN have shown that such preprocessing steps are
indeed beneficial to the prediction results.

Matrix factorization techniques have also been used to
predict interactions recently. Such techniques decompose
the matrix representing the drug-target network into
multiple low-rank matrices consisting of latent (or hidden)
features that are assumed to govern the drug-target
interactions. Two examples of such techniques are a
Bayesian matrix factorization method, KBMF2K [16], and
a collaborative matrix factorization method, CMF [17].

We observe that how to improve the prediction results
for new drugs or targets is a key task in drug discovery.
However, it is a challenging task as new drugs do not
have known interactions with any targets, and new targets
do not have known interactions with any drugs. While
some existing methods have been proposed to improve
the prediction performance for new drugs or targets, their
results show that there is still room for improvement [14],
[15], [17].

Based on our observation that many of the missing
edges are actually unknown interactions, we designed
a preprocessing step that adds edges with intermediate
interaction likelihood scores to assist with prediction.
Additional motivation for this preprocessing step was
provided by [18] where the importance of nearest-neighbor
information in drug-target interaction prediction was
emphasized – the authors were interested in predicting
ligands for orphan targets, and their experiments have
shown that ligands of orphan targets could be predicted
with reasonable accuracy whenever close neighbors (with
known ligands) of those orphan targets were available,
regardless of the kernels used for ligands or targets. Note
that, like ligands, many drugs are small molecules, so this
applies to drug-target interactions as well.

After running the preprocessing step, we use matrix
factorization to predict drug-target interactions. However,
unlike CMF and KBMF2K, we use graph regularization to
prevent overfitting. In graph regularization, the similarity
matrices are sparsified beforehand by keeping only the
similarity values to the nearest neighbors for each
drug/target. By doing so, graph regularization is able to
learn a manifold on which (or near to which) the data
are assumed to lie. Since it was shown in previous work
(e.g. [19], [20], [21]) that data usually lies on (or near to) a
manifold, learning such a manifold is expected to give more
accurate results.

To evaluate our proposed method, we used cross
validation to compare it with three other state-of-the-art
methods, namely BLM-NII [14], RLS-WNN [15] and CMF
[17]. In addition, we computationally simulated a new target
case and a new drug case (by leaving their respective
interactions out), and tested one of our proposed methods
on these cases to investigate its ability to predict the left-out
interactions.

The remainder of this paper is organized as follows.
The datasets used in our work are described in Section 2

TABLE 1: Drugs, targets and interactions in each dataset

Datasets NR GPCR IC E
Drugs 54 223 210 445
Targets 26 95 204 664
Interactions 90 635 1476 2926

as well as the notations that are used throughout the rest
of the paper. Section 3 includes brief descriptions of three
competing state-of-the-art methods, followed by Section 4
which describes our proposed methods. We then display
the experimental results of our work and provide relevant
discussion in Section 5. Finally, we end with a conclusion in
Section 6.

2 DATA

We use the same four datasets introduced in [11] which
correspond to four different target protein types, namely
nuclear receptors (NR), G protein-coupled receptors (GPCR), ion
channels (IC) and enzymes (E). Table 1 contains some simple
statistics for the four datasets.

Each dataset contains three matrices: Y ∈ Rn×m,
Sd ∈ Rn×n and St ∈ Rm×m. The matrix Y is the
adjacency matrix encoding the drug-target interactions
with n drugs as rows and m targets as columns, where
Yij is 1 if drug di and target tj are known to interact
and 0 otherwise. The matrix Sd represents the drug
pairwise chemical structure similarities and the matrix St

denotes the target pairwise genomic sequence similarities.
Drug similarities were obtained using SIMCOMP [22],
and the target similarities are normalized Smith-Waterman
scores [23].

3 RELATED WORK

3.1 BLM-NII

BLM-NII is the method presented in [14] for predicting
drug-target interactions. It uses a bipartite local model
(RLSavg [13]) as the base algorithm and augments it with
NII which derives temporary interaction profiles for new
drugs or targets to assist with the prediction.

For each drug-target pair (di, tj) ∈ Y , if the drug di is
new (i.e. has no known interactions with any target), NII is
used to infer its profile by considering its chemical similarity
to all other drugs. The interaction profile for a new drug di
(ith row vector of Y ) is defined as

Y (di) =
n∑

p=1

Sd(di, dp)Y (dp) (1)

which is then normalized via min-max normalization as
follows

Y (di) =
Y (di)−min(Y (di))

max(Y (di))−min(Y (di))
. (2)

The GIP (Gaussian interaction profile) kernel is then used
to obtain a drug network similarity matrix from the drug
profiles. The network similarity between two drugs d1 and
d2 is computed as exp(−γ‖Y (d1) − Y (d2)‖2) where γ is
a parameter. The drug network similarity matrix is then
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linearly combined with the drug chemical similarity matrix
Sd to give the final drug similarity matrix S̃d. To get the
prediction from the target side, a least squares solution is
obtained as

Ŷ (tj) = S̃d(S̃d + σI)−1Y (tj) (3)

where σ is a (Tikhonov) regularization parameter and Y (tj)
is the jth column vector of Y .

After a prediction from the drug side is similarly
obtained, predictions from the drug and target sides are
combined using an aggregating function to give the final
prediction as

pij = g(pdij , p
t
ij) (4)

where pij is the final prediction score of the drug-target pair
involving drug di and target tj . In [14], the aggregating
function was g = max. However, from our in-house
experiments, we found avg (i.e. pij = (pdij + ptij)/2) to give
better results, which is what we used to obtain the results
reported in this paper.

3.2 RLS-WNN
We refer to the work presented in [15] as RLS-WNN. It uses
RLSkron from [13] as its base algorithm and augments it with
WNN, a procedure that is similar to and has the same goal
as NII.

For every new drug d, WNN is used to infer its
interaction profile as

Y (d) =
n∑

i=1

wiY (di) (5)

where d1 to dn are the drugs sorted in descending order
based on their similarity to d, and wi = ηi−1 where η is a
decay term with η < 1. Note that, alternatively, every new
target t may have its interaction profile inferred by WNN as

Y (t) =
m∑
j=1

wjY (tj). (6)

After all new drugs (or targets) are updated by WNN,
the GIP kernel is used to ultimately get the final drug and
target similarity matrices S̃d and S̃t. A least squares solution
to get the predictions is obtained as

vec(Ŷ ) = K(K + σI)−1vec(Y ) (7)

where vec(Y ) is a column vector containing all the
drug-target pairs, σ is a (Tikhonov) regularization
parameter, and K = S̃d ⊗ S̃t is a kernel over drug-target
pairs that was obtained by taking the Kronecker product of
S̃d and S̃t.

3.3 CMF
CMF is a matrix factorization method presented in [17]
which minimizes the objective function

min
A,B

‖W � (Y −ABT )‖2F

+λl(‖A‖2F + ‖B‖2F )
+λd‖Sd −AAT ‖2F
+λt‖St −BBT ‖2F (8)

where � is the element-wise product, and W ∈ Rn×m is
a weight matrix such that Wij = 0 if Yij is unknown and
Wij = 1 otherwise.

The first line is the WLRA (Weighted Low-Rank
Approximation) term that tries to find the latent feature
matrices A and B that reconstruct Y . The second line is the
Tikhonov regularization term. The third and fourth lines are
regularization terms that require latent feature vectors of
similar drugs/targets to be similar and latent feature vectors
of dissimilar drugs/targets to be dissimilar, respectively.

Denoting the objective function in Equation 8 as L and
letting ai and bj be the ith and jth row vectors of A and B,
respectively, two alternative update rules (one for updating
ai and one for updating bj) were derived by setting ∂L

∂ai
= 0

and ∂L
∂bj

= 0. Alternating least squares is then used to run
the update rules alternatingly until convergence. Finally,
the predicted matrix for drug-target interactions is then
obtained by multiplying A and B.

4 METHODS

Here, we present our proposed method for tackling the
drug-target interaction prediction problem. It consists of two
steps:

(i) WKNKN (weighted K nearest known neighbors), a
preprocessing step that transforms the binary values
in the given drug-target matrix, Y , into interaction
likelihood values;

(ii) GRMF (graph regularized matrix factorization),
a matrix factorization technique for predicting
drug-target interactions. A variant of GRMF called
WGRMF (weighted GRMF) is also proposed.

4.1 Weighted K nearest known neighbors (WKNKN)

The given drug-target matrix Y ∈ Rn×m has n drug rows
andm target columns. The ith row in Y , denoted as Y (di), is
the interaction profile for drug di. Similarly, the jth column
in Y , denoted as Y (tj), is the interaction profile for target tj .
A drug (or target) being known means that it has at least one
interaction in its profile, while it being new means that it has
no interactions in its profile. Many of the non-interactions
(or 0’s) in Y are unknown cases that could potentially
be true interactions (i.e. they are false negatives). Thus,
we propose WKNKN as a preprocessing step to estimate
the interaction likelihoods for these unknown cases based
on their known neighbors. That is, assuming Yij equals 0,
WKNKN replaces it by a continuous value in the range 0 to
1 with the following three steps:

1) Horizontal Direction Update: Get weighted average of
the corresponding values in the profiles of theK known
drugs nearest to di (the weights are the similarities of
di to these nearest neighbors).

2) Vertical Direction Update: Get weighted average of the
corresponding values in the profiles of the K known
targets nearest to tj (the weights are the similarities of
tj to these nearest neighbors).

3) Final update: Replace the Yij = 0 by taking the average
of the above two values, representing the overall
likelihood that di and tj interact.
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function WKNKN (Y, Sd, St,K, η)
Yd = Yt = 0 . initialize two matrices
for d← 1 to n do

dnn = KNearestKnownNeighbors(d, Sd,K)
for i← 1 to K do

wi = ηi−1Sd(d, dnni)
end for
Zd =

∑K
i=1 S

d(d, dnni) . normalization term
Yd(d) =

1
Zd

∑K
i=1 wiY (dnni)

end for
for t← 1 to m do

tnn = KNearestKnownNeighbors(t, St,K)
for j ← 1 to K do

wj = ηj−1St(t, tnnj)
end for
Zt =

∑K
j=1 S

t(t, tnnj) . normalization term
Yt(t) =

1
Zt

∑K
j=1 wjY (tnnj)

end for
Ydt = (Yd + Yt)/2
Y = max(Y, Ydt)
return Y

end function

Fig. 1: WKNKN algorithm

Figure 1 contains the pseudocode that describes the above
procedure in detail. η is a decay term where η ≤ 1,
and KNearestKnownNeighbors() returns the K nearest
known neighbors in descending order based on their
similarities to di or tj .

Note that to infer the interaction likelihood for
drug-target pairs, WKNKN does not simply use the
K nearest neighbors; it uses the K nearest known
neighbors, which is reasonable since known neighbors,
having additional interaction information, would contribute
more than new neighbors, whose interaction profiles are all
0’s.

4.2 Graph-regularized matrix factorization (GRMF)

4.2.1 Sparsification of the similarity matrices

Sparsification of similarity matrices is a technique that has
been used before with graph regularization [24]. In this
work, we derived a p-nearest neighbor graph from each of
the drug and target similarity matrices, Sd and St. That is,
given the drug similarity matrix Sd, a p-nearest neighbor
graph N is generated as

∀i, j, Nij =


1 j ∈ Np(i) & i ∈ Np(j)
0 j /∈ Np(i) & i /∈ Np(j)
0.5 otherwise

(9)

where Np(i) is the set of p nearest neighbors to drug di. N
is then used to sparsify the similarity matrix Sd as

∀i, j, Ŝd
ij = NijS

d
ij . (10)

This results in a sparse similarity matrix for drugs. The same
procedure is done for the target similarity matrix St.

The graph regularization described in Section 4.2.3
helps to learn manifolds for the drug and target spaces
whereabout the data is assumed to lie; an assumption when
learning manifolds (called the local invariance assumption) is
that points close to each other in the original space should
also be close to each other in the learned manifold, which
is achieved by obtaining the p-nearest neighbor graphs that
preserve the local geometries of the original data [24].

4.2.2 Low-rank approximation
GRMF depends on the basic idea of low rank approximation
(LRA) which decomposes the drug-target matrix Y ∈ Rn×m

into two low-rank latent feature matrices A ∈ Rn×k (for
drugs) andB ∈ Rm×k (for targets) which minimize the LRA
objective

min
A,B
‖Y −ABT ‖2F (11)

where ‖.‖F is the Frobenius norm and k is the number of
latent features in A and B. Note that k here is different from
K of WKNKN.

4.2.3 Regularization
To prevent overfitting and increase generalization capability,
Tikhonov and graph regularization terms are added, giving
GRMF’s objective function

min
A,B

‖Y −ABT ‖2F

+λl(‖A‖2F + ‖B‖2F )

+λd

n∑
i,r=1

Ŝd
ir ‖ai − ar‖2

+λt

m∑
j,q=1

Ŝt
jq ‖bj − bq‖2 (12)

where λl, λd and λt are positive parameters, ai and bj are
the ith and jth rows of A and B, respectively, and n and m
are the numbers of drugs and targets, respectively. GRMF’s
objective function balances several goals. The first term
requires the model to approximate the matrix Y . The second
term is the Tikhonov regularization which minimizes the
norms of both A and B. The third term is for drug graph
regularization which minimizes the distance between latent
feature vectors of two neighboring drugs. The final term is
for target graph regularization. The above equation can be
rewritten as

min
A,B

‖Y −ABT ‖2F

+λl(‖A‖2F + ‖B‖2F )
+λdTr(A

TLdA)

+λtTr(B
TLtB) (13)

where Tr(·) is the trace of a matrix, Ld = Dd − Ŝd and
Lt = Dt − Ŝt are the graph Laplacians for Ŝd and Ŝt,
respectively, and Dd

ii =
∑

r Ŝ
d
ir and Dt

jj =
∑

q Ŝ
t
jq are

diagonal matrices. For more details on the rewriting of the
graph regularization terms, please refer to [25].

Furthermore, since normalized graph Laplacians are
known to perform better than their unnormalized
versions in many cases [26], the graph Laplacians Ld

and Lt are replaced by their normalized counterparts
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L̃d = (Dd)−1/2Ld(D
d)−1/2 and L̃t = (Dt)−1/2Lt(D

t)−1/2

giving

min
A,B

‖Y −ABT ‖2F

+λl(‖A‖2F + ‖B‖2F )
+λdTr(A

T L̃dA)

+λtTr(B
T L̃tB). (14)

Intuitively, minimizing GRMF’s objective function
would rank the interactions above the non-interactions
by forcing their prediction scores to tend to 1 and 0,
respectively. However, since many of the 0’s are likely
interactions that are not discovered yet, this may lead to
unsatisfactory results. In this work, WKNKN is applied to
the datasets prior to running GRMF technique to address
this problem in advance.

4.2.4 Initialization of A and B
The first step in the GRMF procedure (see Figure 2) is to
initialize A and B. To do so, we adapted a method inspired
by the procedure used in [27]. Specifically, we decomposed
Y ∈ Rn×m into U ∈ Rn×k, Sk ∈ Rk×k and V ∈ Rm×k

such that USkV
T is the closest k-rank approximation to Y

where U and V are matrices having orthonormal columns,
and Sk is a diagonal matrix containing the k largest singular
values. The maximum possible number of singular values in
Y is min(n,m), thus kmax = min(n,m). Finally, we get the
square root of Sk and let A = US

1/2
k and B = V S

1/2
k .

While other possible initialization methods for A and B
exist [28], we found this method to be quite robust in that
results obtained by it were highly reproducible relative to
other methods.

4.2.5 Alternating least squares
Next, alternating least squares is used to obtain the solution.
Denoting the objective function in Equation 14 as L, we
derive the following two alternative update rules (by setting
∂L
∂A = 0 and ∂L

∂B = 0) which are run alternatingly until
convergence

A = (Y B − λdL̃dA)(B
TB + λlIk)

−1 (15)

B = (Y TA− λtL̃tB)(ATA+ λlIk)
−1 (16)

4.2.6 Weighted graph-regularized matrix factorization
(WGRMF)
WGRMF is another variant of GRMF that has a weight
matrix W identical to that used in CMF. The point behind
the weight matrix W is to prevent unknown instances
(for which interaction information is not available) from
contributing to the determination of the latent feature
matrices A and B which reconstruct the drug-target matrix
Y . Including W makes the objective function in Equation 14
look as follows

min
A,B

‖W � (Y −ABT )‖2F

+λl(‖A‖2F + ‖B‖2F )
+λdTr(A

T L̃dA)

+λtTr(B
T L̃tB). (17)

function GRMF (Y, Sd, St,K, η, k, λl, λd, λt)
Y =WKNKN(Y, Sd, St

g,K, η) . optional
[U, S, V ] = SV D(Y, k)

A = US
1/2
k

B = V S
1/2
k

Compute L̃d, L̃t from Ŝd, Ŝt

repeat
A = ( Y B − λdL̃dA)(B

TB + λlIk)
−1

B = (Y TA− λtL̃tB)(ATA+ λlIk)
−1

until convergence
Ŷ = AB
return Ŷ

end function

Fig. 2: GRMF algorithm

Denoting the objective function in Equation 17 as L and
letting ai and bj be the ith and jth row vectors of A and
B, respectively, we set ∂L

∂ai
= 0 and ∂L

∂bj
= 0 to derive the

following two update rules that are run alternatingly until
convergence

∀i = 1 . . . n,

ai = (
m∑
j=1

WijYijbj − λd(L̃d)i∗A)(
m∑
j=1

Wijb
T
j bj + λlIk)

−1

(18)

∀j = 1 . . .m,

bj = (
n∑

i=1

WijYijai − λt(L̃t)j∗B)(
n∑

i=1

Wija
T
i ai + λlIk)

−1

(19)

where (L̃d)i∗ and (L̃t)j∗ are the ith and jth row vectors of
L̃d and L̃t, respectively. Note that the above update rules
differ from GRMF’s update rules (Equations 15 and 16);
GRMF’s rules are matrix-wise update rules, while those of
WGRMF are row-wise update rules.

5 RESULTS

5.1 Cross validation experiments

We performed experiments to compare the existing
techniques BLM-NII, RLS-WNN and CMF with our
proposed method. Specifically, we conducted 5 repetitions
of 10-fold cross validation (CV) for each of the methods,
both with and without WKNKN as a preprocessing step. In
each repetition of 10-fold CV, Y was divided into 10 folds
and each fold, in turn, was left out as the test set while
the remaining 9 folds were treated as the training set. In
previous studies (e.g. [11], [14], [15]), the Area Under the
Precision-Recall curve (AUPR) [29] was employed as the
main metric for performance evaluation. As such, AUPR
was also used in this work as our evaluation metric.
Furthermore, AUPR heavily penalizes non-interactions that
are highly ranked, which is desirable here because, in
practice, we do not want incorrect predictions to be
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TABLE 2: AUPR results for interaction prediction under CVd

Methods NR GPCR IC E
BLM-NII 0.410 (0.043) 0.233 (0.010) 0.201 (0.009) 0.167 (0.011)
RLS-WNN 0.519 (0.025) 0.363 (0.008) 0.319 (0.011) 0.386 (0.014)
CMF 0.482 (0.034) 0.406 (0.008) 0.350 (0.008) 0.375 (0.007)
GRMF 0.517 (0.025) 0.369 (0.011) 0.341 (0.016) 0.349 (0.012)
WGRMF 0.520 (0.025) 0.408 (0.010) 0.364 (0.018) 0.404 (0.014)
WKNKN 0.529 (0.015) 0.399 (0.011) 0.352 (0.014) 0.388 (0.011)
WKNKN+BLM-NII 0.514 (0.023) 0.386 (0.005) 0.350 (0.014) 0.385 (0.005)
WKNKN+RLS-WNN 0.523 (0.030) 0.395 (0.008) 0.352 (0.014) 0.385 (0.007)
WKNKN+CMF 0.515 (0.032) 0.409 (0.010) 0.350 (0.015) 0.385 (0.004)
WKNKN+GRMF 0.542 (0.028) 0.404 (0.011) 0.356 (0.014) 0.390 (0.010)
WKNKN+WGRMF 0.528 (0.033) 0.410 (0.012) 0.369 (0.017) 0.401 (0.013)

Best AUPR result in each column is bold. Standard deviations are given in (parentheses).

recommended by the prediction algorithm (i.e. the AUPR
metric heavily punishes highly ranked false positives [29]).
In our experiments, we calculated an AUPR score for each
10-fold CV repetition, and the final AUPR score was the
average over 5 such repetitions.

To test different aspects of the prediction methods, we
performed CV under two scenarios described in [30]:

1) CVd, where entire drug interaction profiles are left out
to be used as the test set;

2) CVt, where entire target interaction profiles are left out
to be used as the test set.

Given an interaction prediction method, CVd tests its ability
to predict interactions for new drugs while CVt tests its
ability to predict interactions for new targets.

Tables 2 and 3 contain the results from the
above-mentioned cross validation scenarios, and these
results are explained in the coming subsections.
Corresponding plots of the precision-recall curves are
also provided in GRMF’s website:
http://www1.i2r.a-star.edu.sg/∼xlli/GRMF/index.html

5.1.1 Parameter settings
We performed cross validation on the training set for setting
GRMF’s parameters, namely k (rank of matrices A and
B), λl, λd and λt. Using grid search, the best parameter
combination is obtained from the values: k ∈{50, 100},
λl ∈{2−2, 2−1, 20, 21}, λd/λt ∈{0, 10−4, 10−3, 10−2, 10−1}.
Note that, as mentioned in Section 4, k could not be more
than min(n,m); e.g. if the value being tested for k is 50 and
min(n,m) < 50, we then set k = min(n,m). WKNKN’s
parameters (K and η) were also set using grid search. As
for p, it was set to p = 5.

In the case of WGRMF, for instances (di, tj) in Y that
were in the test set, we set Wij = 0 in the weight matrix W ,
which means that such instances would not contribute to
the updating of the latent feature matrices A and B which
will be used to reconstruct the final predictions matrix Ŷ .

For the other methods, we strived to set the parameters
to their optimal values wherever possible. In the end, all
parameters were set to their default values (which were
found to be already optimal) with the exception of η which
was set as 0.7 in RLS-WNN. For CMF, the parameters were
obtained as mentioned in [17].

5.1.2 Interaction prediction under CVd

Results under CVd are shown in Table 2. In the NR dataset,
GRMF and WGRMF are comparable with RLS-WNN. While
CMF is better than GRMF in the other three datasets,
WGRMF is consistently better than CMF in all datasets,
though the results are almost the same in the GPCR dataset.
Without the use of WKNKN as a preprocessing step,
WGRMF is the superior method.

Furthermore, the additional weight matrix W in
WGRMF provided a good boost to the prediction
performance as compared with GRMF (except in the NR
dataset). In addition, thanks to the graph regularization
term in WGRMF, it displayed an obvious improvement
over CMF overall, supporting the usefulness of manifold
learning.

After applying WKNKN, in all datasets, all of GRMF’s
results greatly improved after applying WKNKN. On
the other hand, the improvements in WGRMF after
applying WKNKN were not as pronounced; there was some
improvement in the NR dataset and slight improvements in
the GPCR and IC datasets, while the AUPR score actually
decreased in the E dataset. In the end, WGRMF is still the
superior method. In addition, GRMF generally displayed
comparable results to WGRMF, and in the NR dataset,
GRMF did better than WGRMF.

5.1.3 Interaction prediction under CVt

Results under CVt are shown in Table 3. The first thing
that can be observed is that AUPR scores under CVt
are generally higher than those under CVd. That is, with
absent target interaction profiles, the different methods can
still achieve good prediction performance, whereas their
performance is much decreased if drug interaction profiles
are hidden instead. This observation implies that target
sequence similarity is more reliable and informative than
drug chemical similarity, a conclusion reached in previous
work [13].

In the NR dataset, RLS-WNN is the best method,
while in the rest of the datasets, WGRMF is the superior
method. As in the CVd results, due to the additional weight
matrix W , WGRMF is better than GRMF on all datasets
(except on the NR dataset where the results are the same).
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TABLE 3: AUPR results for interaction prediction under CVt

Methods NR GPCR IC E
BLM-NII 0.418 (0.022) 0.447 (0.024) 0.634 (0.008) 0.583 (0.021)
RLS-WNN 0.468 (0.030) 0.547 (0.025) 0.746 (0.004) 0.761 (0.015)
CMF 0.379 (0.020) 0.540 (0.028) 0.751 (0.014) 0.740 (0.014)
GRMF 0.423 (0.032) 0.567 (0.027) 0.745 (0.008) 0.763 (0.020)
WGRMF 0.423 (0.017) 0.574 (0.027) 0.801 (0.008) 0.801 (0.018)
WKNKN 0.465 (0.034) 0.572 (0.027) 0.787 (0.010) 0.792 (0.016)
WKNKN+BLM-NII 0.460 (0.032) 0.607 (0.027) 0.794 (0.005) 0.814 (0.017)
WKNKN+RLS-WNN 0.471 (0.028) 0.603 (0.020) 0.806 (0.007) 0.809 (0.017)
WKNKN+CMF 0.434 (0.029) 0.557 (0.021) 0.742 (0.015) 0.772 (0.014)
WKNKN+GRMF 0.500 (0.028) 0.615 (0.023) 0.815 (0.010) 0.807 (0.016)
WKNKN+WGRMF 0.446 (0.015) 0.585 (0.027) 0.799 (0.007) 0.798 (0.018)

Best AUPR result in each column is bold. Standard deviations are given in (parentheses).

Furthermore, WGRMF achieved better results than CMF
thanks to the graph regularization terms.

After applying WKNKN, in the NR, GPCR and IC
datasets, GRMF is the superior method. In contrast to GRMF
whose results greatly improved after applying WKNKN, the
AUPR values did not increase as much for WGRMF (in
fact, there were decreases in the IC and E dataset). In the
GPCR, IC and E datasets, the performances of BLM-NII and
RLS-WNN are comparable to that of GRMF, especially in
the E dataset.

Interestingly, with WKNKN as a preprocessing method,
GRMF did better than WGRMF on all datasets, especially
on the NR dataset. Note that WGRMF’s weight matrix W
forces the instances of the test set to not contribute in the
updating of the latent feature matrices A and B (that are
used to obtain predictions later); this weight matrix W
indeed improves the results when WKNKN is not being
used. However, after applying WKNKN which updates
the drug-target matrix Y , the weight matrix W also forces
the test set instances (despite their updated values) to not
contribute to the predictions in WGRMF. On the other hand,
GRMF does not have a weight matrix W so these instances
(and their updated values) were not ignored. Since target
information is more important than drug information under
CVt and is generally more reliable, this has made GRMF’s
results better than those of WGRMF.

5.1.4 Interaction prediction with WKNKN

In tables 2 and 3, WKNKN was tested by itself and added
as a baseline method. Interestingly, WKNKN produced
results that are quite competitive; under both CVd and
CVt, WKNKN set a challenging baseline that was difficult
for most methods to surpass. Only WGRMF was able to
consistently produce results that are better than those of
WKNKN (except in the NR dataset).

Furthermore, while WKNKN generally improved the
results of the different methods (as shown in the last 5 rows
in Tables 2 and 3), many of the results were still not better
than those of WKNKN itself. However, for WKNKN+GRMF
and WKNKN+WGRMF, improvements over WKNKN itself
were realized in all datasets (as shown in the last 2 rows of
each table).

5.1.5 Sensitivity Analysis

The optimal parameter values for k, λl, λd and λt
are determined automatically via cross validation on the
training set during the execution of GRMF (refer to
Section 5.1.1); these values may differ from one fold to
another depending on the training set used in each, which
complicates the task of plotting sensitivity analysis results
for the parameters.

In order to study the roles of λl, λd and λt, we compared
GRMF’s results from Tables 2 and 3 against variants of
GRMF where we set λl = 0 for the first variant, λd = 0
for the second variant and λt = 0 for the third. Results for
these GRMF variants under CVd and CVt are reported in
Tables 4 and 5, respectively. It was found that setting λl = 0
negatively impacts the performance under both CVd and
CVt. As for λd, setting it to 0 negatively impacts results
under CVd, but not so much under CVt. Vice versa for λt,
setting it to 0 negatively impacts results under CVt, but not
so much under CVd. This means that λd is important under
CVd, while λt is important under CVt.

As for k, it was found that the higher the value of
k, the better the prediction performance. However, due to
computational complexity reasons, we set the value of k to

TABLE 4: AUPR results for GRMF variants under CVd

Methods NR GPCR IC E
GRMF 0.517 0.369 0.341 0.349
GRMF (λl = 0) 0.105 0.293 0.263 0.264
GRMF (λd = 0) 0.122 0.049 0.034 0.011
GRMF (λt = 0) 0.516 0.369 0.341 0.349

Best AUPR result in each column is bold.

TABLE 5: AUPR results for GRMF variants under CVt

Methods NR GPCR IC E
GRMF 0.423 0.567 0.745 0.763
GRMF (λl = 0) 0.094 0.417 0.603 0.671
GRMF (λd = 0) 0.411 0.560 0.741 0.761
GRMF (λt = 0) 0.089 0.039 0.037 0.011

Best AUPR result in each column is bold.
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Fig. 4: Sensitivity analysis for η under CVd

a maximum of 100. In addition, the results were found not
to improve much beyond k = 100.

On the other hand, the parameters K and η (from
WKNKN) are fixed before running GRMF. Sensitivity
analyses are provided for these two parameters in Figures
3, 4, 5 and 6.

5.1.6 General Comments
Following are some remaining findings and conclusions
reached from our cross validation experiments:

• Contrary to the other datasets, the results of the NR
dataset under CVt are lower than those under CVd.
In [30], this was concluded to be due to the small
size of the NR dataset (see Table 1) which is causing
the results to be unstable. We complement this by
saying that target information is more important for
inference under CVt, and since the number of targets
in the NR dataset is very small, this means that there
are few reliable targets to infer from (as opposed
to CVd where there are relatively more drugs to
infer from). Thus, the prediction performance is
negatively affected by the lack of a sufficient number
of neighboring targets.

• While the prediction scores may differ between
datasets, this may not be solely due to the type of
interactions in each dataset (each dataset contains
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Fig. 6: Sensitivity analysis for η under CVt

a different type of interactions involving a specific
kind of target proteins) but also due to the number of
drugs and targets in each dataset and the reliability
of the drug and target similarities used as well as
the cross validation scenario being performed. For
example, in both the NR and GPCR dataset, the
drug-to-target ratio is higher than in the IC and E
datasets (see Table 1); we believe this is why all
methods achieved higher AUPR for the NR and
GPCR datasets than for the IC and E datasets under
CVd (where drug information is more important). In
addition, it seems that the same drug-to-target ratio
caused the opposite to take place under CVt (where
target information is more important) – all methods
achieved higher AUPR for the IC and E datasets
than for the NR and GPCR datasets. In conclusion,
it is important to take into account the drug-to-target
ratio while studying the prediction performance of
any method on the different datasets.

• By observing the results of our proposed methods
in Tables 2 and 3, modeling the manifold structures
of the drug and target spaces (via the drug and
target graph regularization terms, respectively) was
shown to improve prediction performance in terms
of AUPR, indicating the effectiveness of the proposed
graph regularization.
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TABLE 6: Predicted drugs for TRPV6, IC dataset

Rank Drug Drug KEGG id

1 Verapamil D02356

2 Gabapentin D00332

3 Phenytoin D00512

4 Nisoldipine D00618

5 Nifedipine D00437

6 Nitrendipine D00629

7 Cinnarizine D01295

8 Pimozide D00560

9 Halothane D00542

10 Diazoxide D00294

11 Nimodipine D00438

12 Verapamil hydrochloride D00619

13 Terfenadine D00521

14 Isradipine D00349

15 Felodipine D00319

16 Methoxyflurane D00544

17 L-Proline D00035

18 Amiloride hydrochloride D00649

19 Mibefradil dihydrochloride D05024

20 Penfluridol D02630

Known interactions are in bold

• Finally, an advantage of GRMF over WGRMF that is
not spoken in the results is that GRMF runs much
faster than WGRMF because GRMF uses matrix-wise
update rules for A and B (Equations 15 and 16),
while WGRMF is forced to use row-wise update rules
(Equations 18 and 19) due to the weight matrix W .

5.2 Predicting novel interactions
In this section, we simulate some cases where an arbitrary
drug or target is left out (i.e. its interactions are removed
from the original dataset) to see if its interactions would
be predicted successfully. We particularly focused on drugs
and targets for which the similarity to the nearest neighbor
(according to Sd and St, respectively) is low as they
represent the tougher cases to predict interactions for;
according to [18], nearest neighbor information has high
influence on the prediction performance, so if the nearest
known neighbor to a new drug or target is not so near, it
may be difficult to accurately predict interactions for it.

From the IC dataset, we left out the target protein –
transient receptor potential cation channel, TRPV6 (KEGG
id: hsa55503) – for which there are 9 known interactions in
Y . After GRMF was run on the modified dataset, all drugs
were sorted in descending order of how likely they would
interact with TRPV6; the top 20 predicted interactions for
TRPV6 are given in Table 6. The 9 interactions of TRPV6
were predicted successfully in the top 20. RLS-WNN and
CMF were also able to predict these interactions in their
top 20. As for BLM-NII, it was able to predict 7 of the

TABLE 7: Predicted targets for Hexobarbital, E dataset

Rank Target Target KEGG id

1 cytochrome P450 CYP19A1 hsa1588

2 cytochrome P450 CYP4Z1 hsa199974

3 cytochrome P450 CYP4X1 hsa260293

4 cytochrome P450 CYP4B1 hsa1580

5 cytochrome P450 CYP2J2 hsa1573

6 hydroxymethylglutaryl-CoA reductase
HMGCR

hsa3156

7 cytochrome P450 CYP2S1 hsa29785

8 cytochrome P450 CYP2F1 hsa1572

9 cytochrome P450 CYP2B6 hsa1555

10 cytochrome P450 CYP1B1 hsa1545

11 cytochrome P450 CYP3A43 hsa64816

12 cytochrome P450 CYP2A6 hsa1548

13 cytochrome P450 CYP3A5 hsa1577

14 cytochrome P450 CYP3A7 hsa1551

15 cytochrome P450 CYP2C18 hsa1562

16 cytochrome P450 CYP2A13 hsa1553

17 cytochrome P450 CYP2E1 hsa1571

18 cytochrome P450 CYP17A1 hsa1586

19 cytochrome P450 CYP1A1 hsa1543

20 cytochrome P450 CYP2C19 hsa1557

Known interactions are in bold

9 interactions, and the predicted interactions were not as
highly ranked as in the other methods’ predictions.

The same procedure was done for the drug –
Hexobarbital (KEGG id: D01071) – by leaving it out of the
E dataset before running GRMF; the top 20 predictions
are given in Table 7. 19 out of the top 20 predicted
interactions were known interactions in Y . A similar
prediction performance was displayed by RLS-WNN, while
both BLM-NII and CMF were each able to predict only
1 known interaction in their top 20. Tables of predicted
interactions for TRPV6 and Hexobarbital using BLM-NII,
RLS-WNN and CMF are provided as supplementary
material at GRMF’s website.

We remind the reader that the above two cases
(i.e. TRPV6 and Hexobarbital) are considered difficult
cases. Specifically, the similarity of TRPV6 to its nearest
neighboring target (according to St) is as low as 0.05, while
the similarity of Hexobarbital to its nearest neighboring
drug (according to Sd) is 0.35 which is also quite low.
According to these cases, it was shown that GRMF performs
reasonably well, which was also confirmed by other
experiments that have been conducted (results added to
GRMF’s website). In conclusion, GRMF is generally able to
predict challenging interactions.

6 CONCLUSION

In this paper, we presented two matrix factorization
methods, GRMF and WGRMF, for drug-target interaction
prediction. Both of them implicitly perform manifold
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learning via graph regularization. WGRMF differs from
GRMF in that it additionally has a weight matrix W that
prevents unknown instances (i.e. drug-target pairs for which
interaction information is not available) from contributing
to the final predictions. Experiments were conducted using
two different types of cross validations, namely CVd (drug
side CV) and CVt (target side CV), to compare our methods
with three other competing state-of-the-art methods. In
most of the cases, the top results belonged to either GRMF
or WGRMF, showing that manifold learning resulted in
improvements in prediction performance.

Moreover, we developed a preprocessing step, WKNKN,
which transforms all the 0’s in the given drug-target matrix
into interaction likelihood values. This is important as many
0’s in the matrix actually correspond to unknown cases or
missing values rather than confirmed non-interactions. It
was observed that WKNKN improves results dramatically
for all methods but with exceptions for those methods
that contain a weight matrix W (i.e. CMF and WGRMF).
Furthermore, when WKNKN is applied, results of GRMF
became comparable to those of WGRMF, which is an added
bonus because GRMF actually runs much faster due to its
matrix-wise update rules.

We then performed a couple of experiments to
investigate GRMF’s ability to predict novel interactions for
new drugs and targets. Specifically, the entire profile of a
known drug or target was left out, and then GRMF was
run to see how many of its known interactions would get
predicted. GRMF’s ability to predict new interactions in
such cases was successfully confirmed in the experiments.

As future work, other sources of information may
be used to further improve prediction performance. For
example, instead of using just one kernel (or similarity
matrix) for drugs and one for targets, multiple kernels may
be used for either drugs or targets in a multiple kernel
learning algorithm [31].
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