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The protein–protein subnetwork prediction challenge presented at the 2nd Dialogue for
Reverse Engineering Assessments and Methods (DREAM2) conference is an important
computational problem essential to proteomic research. Given a set of proteins from
the Saccharomyces cerevisiae (baker’s yeast) genome, the task is to rank all possible
interactions between the proteins from the most likely to the least likely. To tackle this
task, we adopt a graph-based strategy to combine multiple sources of biological data
and computational predictions. Using training and testing sets extracted from existing
yeast protein–protein interactions, we evaluate our method and show that it can produce
better predictions than any of the individual data sources. This technique is then used
to produce our entry for the protein–protein subnetwork prediction challenge.
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Introduction

Protein–protein interaction data are central
to the field of proteomic research. They are
widely used in many computational and bio-
logical analyses, such as the study of biologi-
cal pathways, protein complexes, and protein
function, that contribute to the elucidation of
complex cell machineries. However, despite the
advent of such high-throughput detection tech-
nologies as the yeast-two-hybrid system and
affinity-purification mass spectrometry, there
are still no experimental detection methods that
can unravel an entire interactome completely.
As such, computational prediction approaches
have remained a viable alternative to experi-
mental approaches.
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The protein–protein subnetwork challenge
presented at the 2nd Dialogue for Re-
verse Engineering Assessments and Methods
(DREAM2) conference involves the prediction
of the interactions between 47 yeast proteins.
Participants are required to rank all possible
interactions between the proteins based on de-
creasing reliability. In order to build on previ-
ous work on protein interaction prediction,1–7

we propose a framework to integrate predic-
tions made by these methods using a prob-
abilistic method. The framework is adapted
from the protein function prediction frame-
work described in a recent work8 shown to out-
perform large-scale prediction approaches. A
variety of existing protein–protein interaction-
prediction techniques are integrated, including
domain–domain interactions,1 interaction mo-
tifs,2–4 paralogous interactions,5,6 and protein
function similarity.7 We also introduce a novel
data-centric approach to protein–protein inter-
action prediction. The method makes use of
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the closed itemset mining technique to iden-
tify domain or functional combination pairs
associated with interacting proteins to derive
complex interaction rules that are not covered
by the existing approaches. Using currently
known protein–protein interactions from the
BioGRID database, we created a set of train-
ing and testing data to evaluate our predic-
tion framework. Evaluation of these data show
that integrating multiple predictions from the
different approaches using our framework sig-
nificantly outperforms any individual predic-
tion. Our entry for the DREAM 2 protein–
protein subnetwork prediction challenge was
created by using the technique with all known
interactions from BioGRID as training data.
Our entry outperformed those of other partic-
ipants by a clear margin based on evaluation
using the area under the precision-recall curve
(PRC) and the receiver operating characteris-
tics (ROC) curve.

Datasets

To construct the proposed interaction pre-
diction framework for performance evaluation,
we processed the set of protein–protein inter-
actions from the BioGRID database9 in the
following manner:

Remove Non physical Interactions

Genetic interactions are filtered out based
on their experimental type so that only physi-
cal interactions are used for evaluation. Filtered
genetic experimental types includes Epistatic

MiniArray Profile, Phenotypic Enhancement, Pheno-

typic Suppression, Synthetic Rescue, Synthetic Lethal-

ity, Synthetic Growth Defect, Dosage Lethality, Dosage

Rescue, and Dosage Growth Defect.

Divide into Training and Testing Sets

Proteins involved in the remaining physi-
cal interactions are divided randomly into two
groups in the ratio 6:4. Physical interactions
between proteins in the larger group are used
as training data.

Define Gold-Standard Positives
for Testing Set

Physical interactions between proteins in the
smaller group are used as gold-standard pos-
itive (GSP) interactions after further filtering
based on these criteria: (1) the interaction must
be observed in at least three independent phys-
ical experiments (to ensure that the interactions
can be replicated and are unlikely to result from
experimentation errors or noise); (2) the inter-
action must involve proteins that are reported to
have at least five interaction partners (to ensure
that the proteins in the GSP set are reasonably
well studied to reduce overestimation of false-
positive rates during evaluation). We do not
define a set of gold-standard negative interac-
tions, although such a set is defined and used in
Ref. 1 to predict domain–domain interactions
that are used in our method.

The latest release (version 2.0.33) of yeast
interactions from the BioGRID database is ob-
tained from http://www.thebiogrid.org/. This
consists of 71,503 unique interactions, of which
38,555 are physical. After processing the data
as described above, we obtained 19,215 inter-
actions for training and 446 interactions for
testing. The interactions for training and test-
ing are associated with the proteins divided in
the ratio 6:4. Interactions for testing are further
filtered as described above.

Method

Data Sources of Predicted Interactions

Seven sources of predicted interactions are
integrated for predicting protein–protein inter-
actions:

Domain–Domain Interactions

Li and colleagues proposed a probabilistic
technique1 to infer domain–domain interac-
tions using both positive and negative train-
ing datasets. Physical interactions from protein
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interaction data are used to construct the posi-
tive training dataset I . Unlike conventional ap-
proaches that use random pairing to generate
artificial noninteracting protein pairs as nega-
tive training data, the authors generated bio-
logically meaningful noninteracting protein set
N based on the proteins’ biological informa-
tion, namely, proteins are most unlikely to inter-
act if they are from different cellular locations
and are involved in different biological pro-
cesses. The domain information of proteins is
obtained from the Pfam10 database. The prob-
abilistic model assigns interaction probabili-
ties (interacting probability and noninteracting
probability) to each domain pair based on its

occurrence in the protein–protein interacting
set and the negative set.1

Given a protein pair (pi, pj ) ∈ I , we infer that
domain di,r potentially interacts with domain
dj,s with a probability of l/(|pi| · |pj |), where |pi|
and |pj | are the number of domains in proteins
pi and pj respectively; d i,r and d j,s are the rth
and sth domains of proteins pi and pj , respec-
tively. Let a set of predefined classes be C = {I ,
N } and all the domain pairs set be DP . For
any domain pair (dx, dy) ∈ DP , their interacting
probability P ((dx, dy)|c), with Laplacian smooth-
ing and c ∈ C , is defined as:

P ((dx , dy ) | c ) = 1 + freq((dx , dy ), c )

| DP | +
|C |∑

k=1

freq((dx , dy ), c )
(1)

where freq((dx, dy), c) is the interacting frequency
of (dx, dy) in class c ∈ C = {I , N }. For any given
domain pair, if its interacting probability P ((dx,
dy)|I ) is bigger than noninteracting probability
P ((dx, dy)|N ), it will be regarded as interacting
domain pair.

Given a new protein pair (pi, pj ), we pre-
dict whether protein pi interacts with pj based
on the underlying domain–domain interactions
between the two proteins. In order to perform
classification (i.e., to judge whether the protein
pair may interact with each other or not), we
compute the posterior probability P (c|(pi, pj )),
c ∈ C = {I , N }. The prior probability P (c) of
class c is defined as:

P (c ) =
∑

P (c , (p i , p j )), (p i , p j ) ∈ I ∪ N

| I | + | N | (2)

The technique then uses the joint probabili-
ties of domain pairs and classes to estimate the
probabilities of classes given a protein pair. Our
classifier is described as follows:

P (c | (p i , p j )) =
p (c )∗

| p i ||p j |∏

1≤r ≤| p i |,1≤s≤| p j |
p ((dir, djs) | c )

|C |∑

k=1

p (c k )∗
|p i ||p j |∏

1≤r ≤|p i |,1≤s≤|p j |
p ((dir, djs) | c k ),c k ∈ C = {I ∪ N}

(3)

For a protein pair (pi, pj ), the class with highest
P (c|(pi, pj )) is assigned as its final class label. In
other words, if I = argmaxc P (c|(pi, pj )), then
the protein pair (pi, pj ) will be classified as an
interacting pair. Otherwise, it is classified as
noninteracting.

Relative Specificity Similarity

Wu and coworkers7 proposed a method to
predict yeast protein–protein interactions using
Gene Ontology’s11 structure and annotations.
They proposed a relative specificity similarity
(RSS) measure for computing the similarity be-
tween the Gene Ontology (GO) annotations
of two proteins. The RSS was adapted from
another similarity measure proposed in Ref.
12, and takes into account the directed acyclic
graph (DAG) structure of the GO terms. Wu
and coworkers showed that protein pairs with
high RSS scores in both the cellular component

(CC) and biological process (BP) GO namespaces
are very likely to coincide with known inter-
action pairs. Here, we compute the RSS score
between all pairs of proteins from the input
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dataset as the product of the individual RSS
score from the CC and BP namespaces:

RSS (u , v ) = RSSCC (u , v ) · RSSBP (u , v ) (4)

where RSSCC and RSSBP are the relative speci-
ficity similarity scores between protein u and
v computed based on the cellular component and
biological process namespaces, respectively.

Gene Ontology Combination Rules

We also propose a novel way of predict-
ing protein–protein interactions based on the
GO annotations of each protein. Using a data-
centric approach, we identify pairs of GO an-
notation combinations that are likely to occur in
interacting proteins. For closed itemset mining,
each protein is transformed into a transaction
record, where each GO term annotated to the
protein is an item in the transaction. A set of fre-
quently occurring GO term combinations, F ,
is identified using closed itemset mining with a
support threshold of 5. Each pair of GO term
combinations CA and CB is then scored based
on the likelihood that a pair of proteins with an-
notations CA and CB, respectively, are known to
interact in training dataset:

P (I |CA , CB ) =

∑

(u ,v )∈EAB

δ(u , v )

|EAB| + 1
, CA ∈ F , CB ∈ F

(5)

where EAB refers to the set of unique protein
pairs (x, y) for all A ⊆ GOx, B ⊆ GOy, x �= y;
GOu refers to the set of GO terms annotated
to protein u; δ(u,v) = 1 if u and v interacts, 0
otherwise.

The likelihood that a given pair of proteins, u

and v , interact is then scored using the highest
likelihood score of all relevant GO term com-
bination pairs:

P (u , v ) = max
CA ⊆GOu ,CB ⊆GOv

P (I | CA , CB ) (6)

where GOu refers to the set of GO terms anno-
tated to protein u; P (I | CA,CB) is the likelihood
score for CA and CB described above in equa-
tion (5); CA and CB are members of set F , that
is, CA ∈ F and CB ∈ F .

Closed Pattern Motif Pairs

Liu and colleagues3 proposed an approach
for finding interaction motif pairs based on
the observation that proteins usually contain a
small number of interaction sites, and the inter-
action sites of the proteins that have common
interacting partners are likely to have similar
structures and common sequence motifs.4 Pairs
of interacting motifs are mined from protein se-
quences and protein interaction networks. The
interacting motif pairs are then used to assign
a confidence score to protein pairs containing
them for protein interaction prediction.

This method comprises four steps. In the
first step, spurious interactions from the protein
interaction network are removed using a sim-
ple measure known as the Czekanowski-Dice
distance (CD-Distance), which was shown to
be very effective in finding false-positive errors
from high-throughput interaction data.13 The
CD-distance between two proteins u and v is
defined as:

CD (u , v ) = 2|N u ∩ N v |
|N u ∪ N v | + |N u ∩ N v | (7)

where Nu and Nv are the proteins interacting
with u and v , respectively.

In the second step, it identifies groups of pro-
teins that have common interacting partners,
called closed pattern (CP) protein groups, from
the purified interaction network. A CP protein
group contains at least l proteins and has at
least k common interacting partners. For each
group, it finds sequence motifs from the asso-
ciated protein sequences using PROTOMAT.
To avoid generating too many highly similar
motifs, only maximal CP protein groups are
considered for motif generation.

In the third step, the interacting confidence
scores between every pair of motifs are com-
puted. The confidence of a motif pair (m1, m2)
is defined as:

conf m (m 1, m 2) = N int (m 1, m 2)
N total (m 1, m 2)

(8)

where Nint (m1, m2) is the number of inter-
acting protein pairs containing (m1, m2) and



228 Annals of the New York Academy of Sciences

Ntotal (m1, m2) is the total number of distinct pro-
tein pairs containing (m1, m2).

In the last step, a confidence score is com-
puted for every protein pair as follows:

conf p (p 1, p 2) = CD (p 1, p 2) · conf m (p 1, p 2) (9)

where confm (p1, p2) is the maximal confidence
of the motif pairs contained in (p1, p2).

Correlated Motif Pairs

As another source of interacting motifs for
protein interaction prediction, we extended the
D-STAR2 algorithm to mine for correlated mo-
tif pairs from the entire S. cerevisiae interactome.
While the D-STAR algorithm had used the
(l,d)-motif model, for simplicity and scalability,
we used the simpler regular expression (L,W)-
motif model that has been employed by the
TEIRESIAS program14 with considerable suc-
cess on finding linear motifs in proteins.15,16 A
(l,d)-motif is a nucleotide sequence of length l
that matches any short nucleotide pattern that
has at most d mutations from it.21 A (L,W)-motif
describes a sequence of at least L consecutive
literals and one or more wild-card characters,
with literals spanning not more than W posi-
tions. This motif model is maximal, and maxi-
mizes the coverage of the motif pairs found.

The method starts with mining all (L,W) mo-
tifs with a minimum occurrence k in the protein
sequences using TEIRESIAS program, where
L = 4, W = 7, and k = 5. Each pair of motifs
(M 1, M 2) is then scored using the Chi-square
statistical measure, as used in Ref. 2:

χ2
M1,M2

= (O M1,M2 − EM1,M2 )
2

EM1,M2

(10)

where OM1,M2 refers to the set of observed in-
teractions between the protein sets P (M 1) and
P (M 2); P (Mk ) is the set of proteins whose se-
quences exhibit occurrence of motif Mk; and
EM1,M2 refers to the expected number of ran-
dom interactions between a pair of protein
sets with the same size as P (M 1) and P (M 2),
respectively.

Since the number of possible (L,W) mo-
tifs is enormous, we only consider motif pairs

(M 1,M 2) whose protein sets’ interaction graph
contains a (2,2)-biclique construct. The (2,2)-
biclique enforces that there are at least two pro-
teins from P (M 1) and two proteins from P (M 2)
that form a full interaction graph. The checking
of such construct is done using a simple count-
ing method that removes around 40–50% of
the candidate motifs returned by TEIRESIAS.
The motifs that are returned by TEIRESIAS
are further refined by checking the residues in
the wildcard positions of each motif. If these
residues share similar properties, we replace the
wildcard with a more specific grouping symbol,
as described in Ref. 17. This step would guar-
antee the most specific possible motifs for each
protein set. A confidence score is then com-
puted for every protein pair as follows:

conf cm (p 1, p 2) = max
p 1∈P (M1),p 2∈P (M2)

χ2
M1,M2

(11)

Domain Combination Rules

Using Interpro18 domains obtained from the
Saccharomyces Genome Database (SGD),19

we apply the same technique described above
for GO combination rules to domain annota-
tions. The method is exactly the same, with GO
annotations replaced by domain annotations in
this case.

Paralogous Interactions

Interactions between homologs within the
same species have been shown to be con-
served,5,6 and they are used in Ref. 5 as part of
a technique to assess the reliability of protein–
protein interactions in high-throughput exper-
imental assays. Here we predict the paralogous
interactions as follows: (1) the homologs of each
protein are inferred by performing the basic lo-
cal alignment search tool (BLAST)20 using a
E-value threshold of 1e−3; (2) given two pro-
teins u and v that are not known to interact, we
compute the likelihood that u and v interact as:

Spara (u , v ) =

∑

(x ,y )∈Eu ,v

δ(x , y )

| Eu ,v | + 1
(12)
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where Eu,v refers to the set of unique protein
pairs (x,y) for all x ∈ Hu, y ∈ Hv, x �= y; Hu refers
to the set of u’s homologs; and δ(u,v) = 1 if u

and v interact, 0 otherwise.

Integration of Data Sources

In our previous work,8 we developed
a graph-based framework called integrated
weighted averaging to integrate data from het-
erogeneous biological data for protein func-
tion prediction. Here, we adapt the framework
to integrate the seven data sources to predict
protein–protein interactions. The framework
involves three key steps:

Graph-Based Model

Each data source is transformed into a list
of binary relationships between protein pairs.
Each of these sets of protein pairs is then mod-
eled as a graph G = {V ,E}, with each ver-
tex v ∈ V representing proteins and each edge
(u,v ) ∈ E representing a relationship between a
pair of proteins u and v , u ∈ V , v ∈ V .

Unified Scoring Scheme

To integrate the information presented by
the different data sources in a way that makes
sense, the edges in each graph are scored us-
ing a common benchmark. Since the primary
objective here is to predict protein–protein in-
teractions, the natural benchmark for scoring
each edge would be the likelihood of that edge
coinciding with a known interaction. However,
edges in a graph G may already be weighted
in the form of P values, likelihood scores, RSS
scores, and others. These weights, which may
show some form of correlation to the reliability
of the edge, are derived from different context
and information, and can be presented in very
diverse scales.

To retain the information reflected by these
weights in the process of scoring the edges,
we subdivide edges from each graph into sub-
types based on these edge weights. The range
of edge weights is first arranged in ascending
order. Starting from the smallest edge weight,

the first 100 edges and subsequent edges with
the same weight as the 100th edge are placed
in the first subgroup. The next 100 edges and
subsequent edges with the same weight as the
100th edge are placed in the second subgroup,
and so on. Each subgroup k from all graphs is
then weighed based on the likelihood of coin-
ciding with a known interaction:

p (k ) =

∑

(u ,v )∈Ek

δ(u , v )

|Ek | + 1
(13)

where Ek refers to the set of edges in subgroup
k; δ(u,v ) = 1 if u and v interacts, 0 otherwise.

Graph Integration

The graphs from all subgroups are then com-
bined to form a larger, more complete interac-
tion graph G′ that is a superset of the graphs
from all the data sources. The weight of each
edge (u,v ) in G′ is computed using a naı̈ve
Bayesian approach:

r u ,v = 1 −
∏

k∈D u ,v

(1 − p (k )) (14)

where Du,v refers to the set of subgroups that
contains the edge (u,v ), and p(k) is the likelihood
weight of subgroup k computed as described in
equation (13).

This approach of integration assumes that
data sources are independent of each other,
which is unlikely in some of the data sources
used, such as domain combination pairs and
domain interaction pairs. While this assump-
tion may not be very realistic, it is widely known
that the naı̈ve Bayes approach works well in
many complex real-world applications. Fur-
thermore, due to incompleteness in the data
sources used, it may be difficult to accurately
model dependence between them. Figure 1 il-
lustrates an example of how the framework
works. Graphs G1, G2, and G3 depicts three
different data sources, and each graph comes
with weighted edges as shown in the first row.
In the second row, the edges in each graph have
been reweighted based on equation (13). In the
last row, the three graphs are integrated into
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FIGURE 1. Overview of our integration frame-
work for protein–protein interaction prediction.

a more complete graph G′, with edge weights
computed using equation (14).

Results

Evaluation on Testing Dataset

The computational methods described ear-
lier are applied only on the training data. The
GSP test set described above is only used during
performance evaluation. Using the test set, we
evaluate the performance of individual sources
of predicted interactions as well as the com-
bined interactions. Only predicted interactions
with both proteins found in the test set are
considered. Both precision-recall and ROC are
used for the evaluation.

Figures 2 and 3 show the ROC and
precision-recall graphs for interactions pre-
dicted using (1) domain–domain interaction
(DDI); (2) closed patterns motif pairs (CP-MP);
(3) relative specificity similarity (RSS) scores;
(4) GO combination pairs (GO-CP); (5) do-
main combination pairs (Dom-CP); (6) cor-

related motif pairs (Corr-MP); (7) paralogous
interactions (Para-Int); and (8) all seven data
sources integrated using our prediction frame-
work (Combined). We observe that GO com-
bination pairs yielded the best performance in
terms of area under the ROC curve, followed
by RSS and CP motif pairs. Similar trends are
observed in the precision-recall graphs. Pre-
dictions made by integrating the various pre-
dictions perform significantly better than those
from any individual data source for both evalu-
ation measures. This provides some confidence
that our integration framework is able to syn-
ergize the predictions from the different ap-
proaches to produce more accurate predictions.
Table 1 presents the corresponding area under
the (precision-recall) curves (AUC) and area
under the ROC graph scores for predictions
made.

Evaluation on the DREAM
Challenge Dataset

The 47 proteins in the DREAM2 chal-
lenge dataset have very few known physical in-
teractions between them from the BioGRID
database. There are only 19 known unique
interactions, of which 15 are self-interactions.
This means that there were at most four interac-
tions between the test proteins that are present
in our training dataset from BioGRID. Using
all known interactions from BioGRID as train-
ing data, we used our integration framework
to predict all interactions between the 47 pro-
teins. This involves ranking all possible edges
between the 47 proteins based on their com-
puted ru,v values in descending order.

Table 2 presents the area under the
precision-recall curves and area under the
ROC graph scores for predictions made by
the various teams who participated in the
DREAM2 protein–protein subnetwork chal-
lenge, compiled by the organizers of the chal-
lenge. We are pleased to find that predictions
made by our method outperformed those made
by the other teams by a reasonably signifi-
cant margin. However, the precision of our
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FIGURE 2. Receiver operating characteristic (ROC) graphs for protein–protein interac-
tions predicted using: (1) domain-domain interaction (DDI); (2) closed patterns motif pairs
(CP-MP); (3) relative specificity similarity (RSS) scores; (4) GO combination pairs (GO-CP);
(5) domain combination pairs (Dom-CP); (6) correlated motif pairs (Corr-MP); (7) paralogous
interactions (Para-Int); and (8) all seven data sources integrated using our prediction frame-
work (Combined).

FIGURE 3. Precision-recall graphs for protein–protein interactions predicted using:
(1) domain-domain interaction (DDI); (2) closed patterns motif pairs (CP-MP); (3) relative
specificity similarity (RSS) scores; (4) GO combination pairs (GO-CP); (5) domain combination
pairs (Dom-CP); (6) correlated motif pairs (Corr-MP); (7) paralogous interactions (Para-Int); and
(8) all seven data sources integrated using our prediction framework (Combined).

method is still rather low, suggesting that there
is much room for improvement in this aspect.
The incompleteness of the existing interaction
information, as well as the design of the chal-
lenge (the testing set for the challenge was
produced from yeast two-hybrid interactions,
which reflects direct physical interactions, while
we included indirect interactions such as affin-

ity capture and copurification) could be possible
causes.

Table 3 presents the area under the
precision-recall curves and area under the
ROC graph scores for predictions made by
individual contributing data sources described
earlier on the DREAM2 challenge dataset. GO
combination pairs performed the best among
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TABLE 1. Area under curve (AUC) and receiver
operating characteristics (ROC) scores for predic-
tions made using (1) domain-domain interaction
(DDI); (2) closed patterns motif pairs (CP-MP);
(3) relative specificity similarity (RSS) scores; (4)
GO combination pairs (GO-CP); (5) domain com-
bination pairs (Dom-CP); (6) correlated motif pairs
(Corr-MP); (7) Paralogous Interactions (Para-Int);
and (8) all seven data sources integrated using our
prediction framework (Combined) for our cross-
validation

Method AUC ROC

DDI 0.033761 0.768992
CP-MP 0.126729 0.766510
RSS 0.145970 0.794988
GO-CP 0.119709 0.898615
Dom-CP 0.056730 0.712842
Corr-MP 0.033094 0.671885
Paralogous 0.026646 0.591139
Combination 0.204618 0.956161

The best figures for each measure are highlighted in
bold.

TABLE 2. Area under curve (AUC) and re-
ceiver operating characteristics (ROC) scores for
predictions made using our method (NetMiner)
against competing teams on the DREAM challenge
dataset

Team AUC ROC

NetMiner 0.079742 0.636008
Competing teams 0.054518 0.560339

0.047835 0.492437
0.050436 0.481776
0.044577 0.478107

The best figures for each measure are highlighted in
bold.

the seven methods using both measures, with
slightly better AUC score than the combined
prediction. The relatively better performance
of GO combination pairs over RSS suggests
that there are patterns of interactions between
proteins with weak function similarity that GO-
CP can identify but RSS cannot. Combining
all data sources yielded a significantly higher
ROC score than any one source alone, which
is consistent with earlier results.

TABLE 3. Area under curve (AUC) and receiver
operating characteristics (ROC) scores for predic-
tions made using (1) domain-domain interaction
(DDI); (2) closed patterns motif pairs (CP-MP);
(3) relative specificity similarity (RSS) scores; (4)
GO combination pairs (GO-CP); (5) domain com-
bination pairs (Dom-CP); (6) correlated motif pairs
(Corr-MP); (7) paralogous interactions (Para-Int);
and (8) all seven data sources integrated using our
prediction framework (Combined) on the DREAM
challenge dataset

Method AUC ROC

DDI 0.043249 0.481266
CP-MP 0.059184 0.546416
RSS 0.059232 0.542788
GO-CP 0.080694 0.574670
Dom-CP 0.051473 0.504689
Corr-MP 0.044523 0.494231
Paralogous 0.055691 0.498777
Combination 0.079742 0.636008

The best figures for each measure are highlighted in
bold.

Conclusions

In this work, we have devised a framework
to integrate predictions from various predic-
tion techniques (existing and new ones) using
a novel graph-based probabilistic approach.
The method was used to produce our entry
in the DREAM2 challenge, which outper-
formed those of other participants in the
protein–protein subnetwork challenge. We
have also shown that our approach works well
on training and testing data built from existing
protein–protein interaction data. Our results
show that it is advantageous to integrate mul-
tiple prediction approaches to produce more
complete and accurate predictions, and our
framework provides a systematic way for inte-
grating the diverse data for better results. From
our study, we find that prediction results can
vary greatly with the data sources used. Since
the focus of the conference lies in reverse en-
gineering, it may be more appropriate to in-
clude in the challenge formulation the data
sources from which to make predictions, and
if possible positive and negative gold-standard
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sets of interactions. By limiting participants to
similar sets of input, it is possible to bench-
mark methodology objectively. A method that
can sieve relevant information from multiple
sources of noisy and incomplete data and effec-
tively combine them to make predictions will
be very valuable.
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