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A B S T R A C T
As Pre-trained language models (LMs) play an important role in various Natural Language Processing
(NLP) tasks, it is becoming increasingly important to make sure the knowledge learned from LMs is
valid and correct. Unlike conventional knowledge bases, LMs implicitly memorize knowledge in their
parameters, which makes it harder to correct if some knowledge is incorrectly inferred or obsolete.
The task of Knowledge Editing is to correct errors in language models, avoiding the expensive
overhead associated with retraining the model from scratch. While existing methods have shown some
promising results, they fail on multi-edits as they ignore the conflicts between these edits.

In the paper, we propose a novel framework to divide-and-conquer edits with parallel Editors.
Specifically, we design explicit and implicit multi-editor models to learn diverse editing strategies in
terms of dynamic structure and dynamic parameters respectively, which allows solving the conflict
data in an efficient end-to-end manner.

Our main findings are: (i) State of the art Knowledge Editing methods with multiple editing
capability, such as MEND and ENN, can hardly outperform the fine-tuning method; (ii) Our proposed
models outperform the fine-tuning method over the two widely used datasets for Knowledge Editing;
(iii) Additional analytical experiments verify that our approach can learn diverse editing strategies,
thus better adapting to multiple editing than state-of-the-art methods.

1. Introduction
As pre-trained language models are increasingly applied

in a variety of downstream NLP tasks, such as Web search1,
question answering [81], and dialogue [44], it is becom-
ing increasingly important to make sure these models are
learning valid knowledge and generating the correct outputs.
However, the knowledge LMs learned (called parametric
knowledge) can be outdated [40], incorrect [48], toxic [31]
or biased [10] because they are pre-trained on a static,
limited historical data. Furthermore, retraining a model on
huge updated data is expensive, especially with the ever-
increasing size of current language models [12]. One of the
ideas to correct LMs’ incorrect knowledge without expen-
sive retraining is Knowledge Editing.

Nevertheless, unlike conventional knowledge bases, LMs
implicitly memorize facts in their parameters. As such,
updating specific knowledge in LMs is not straightforward
due to the highly nonlinear nature of deep neural networks
(DNN) and how different parameters determine the outputs
of language models [69, 22, 8, 80]. Changing a single weight
in DNN may have a ripple effect that affects many other
implicitly memorized facts. To overcome this, a reliable and
computationally efficient editing model should possess three
properties [20]: 1) Generality, able to modify a model that
was not specifically trained to be editable, 2) Reliability,
able to successfully update a specific fact without affecting
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Figure 1: The green bars show the predicted results for the
data we want to modify, and the dashed boxes show the results
before modification. When editing data 𝑥1 (shown as the red
dashed line) and 𝑥2 (shown as the blue dashed line) with
conflicting gradients, the existing method (Left) will use same
strategies (since 𝑥2 is dominated by 𝑥1, the editor corrects
the gradient direction to the left.) and fail to edit 𝑥2 with
eventually parameter shift. Our method (Right) can process
the two data separately (adaptive to provide the appropriate
modification direction for both) and get a more suitable way
to change them. The black arrow is the final update direction.

the rest of the acquired knowledge, and 3) Consistency, the
changes should be consistent across equivalent formulations
of a fact.

Recent research has made initial progress by designing
a hyper-network [35] to predict updates to the weights of
the LMs [20, 53]. Especially, gradient-based methods focus
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on single editing, i.e., designing hyper networks to predict
the parameter shift of LMs on single editing based on the
standard fine-tuning gradient of a given edit. However, these
research do not perform well when editing multiple edits,
they use the same strategy to process multiple edits and ig-
nore the relation between different edit gradients, resulting in
a “zero-sum” phenomenon, where the inter-gradient conflict
will inevitably cause some data modifications to fail. Figure
1 demonstrates how an editor can be used to modify model
outputs. As shown in the left panel, existing methods use
the same editor to simultaneously modify two data points 𝑥1and 𝑥2. However, due to conflicting gradients between the
two data points, the methods produce inaccurate parameter
shifts, resulting in the model only being able to modify 𝑥1.
Our method, on the other hand, uses different editors to
mitigate conflicts between the edits and successfully modify
both conflicting edits.

In this paper, we focus on multiple editing in LMs,
especially simultaneous editing. We assume that handling
multiple edits by a diversity editor can break the existing
dilemma and reduce conflicts between data. We propose a
divide-and-conquer framework, drawing on dynamic infer-
ence to break the zero-sum phenomenon in multiple ed-
its. We designed two novel models, including the dynamic
structure model MoEditor and the dynamic parameter model
Proactive Editor (or simply ProEditor), respectively. For
MoEditor, we first group the modified data, then explicitly
parallel editors and let each editor learn diverse modification
strategies by editing different data dynamically. Finally, we
propose a selection-based fusion approach to fusing the
results of multiple editors. However, the data grouping and
the fusion method significantly impact the performance of
MoEditor. Furthermore, the multi-expert structure causes an
increase in the number of parameters. Therefore, to optimize
MoEditor, we propose ProEditor, where we adopt an in-
trinsic hyperparametric network to generate editor weights,
implicitly constructing a multi-editor model.

We verify the effectiveness of the proposed framework
on closed book fact-checking (FEVER) [76] and question
answering (ZsRE) [46] datasets. The experimental results
demonstrate that both approaches are superior to the base-
lines, and the ProEditor performs better in most metrics.
Interestingly, MoEditor can prove that individual editors
learn diverse editing strategies. Overall, our contributions
are summarised as follows:

• We propose a divide and conquer framework to inte-
grate dynamic computation into the knowledge edit-
ing task, alleviating the zero-sum phenomenon caused
by the conflicts between data in multiple edits.

• We propose a novel MoEditor model by adapting the
Mixture of Experts to edit tasking for the first time, as
well as using multiple editors to learn diverse editing
strategies. Further, we propose a Proactive Editor to
avoid the problems of parameter explosion and high
parameter sensitivity in MoEditor.

• We extensively evaluate our methods on binary clas-
sification and question answering tasks, confirming
their advantages over state-of-the-art models. Further-
more, we prove that multiple editors can learn diverse
editing strategies.

The remaining structure of this paper is as follows: In
Section (2), we provide an overview of the related work on
knowledge editing and the work on utilizing knowledge to
enhance language models, and briefly introduce the dynamic
networks. Section (3) presents the task formulation and
provides background for knowledge editing. Section (4) de-
scribes our proposed divide and conquer framework. Section
(5) overviews the experimental details and results. We first
introduce the datasets and parameter settings, followed by
a description of the advantages of our method in multiple
editing tasks. We then analyze the experimental results under
different conditions to demonstrate the effectiveness of our
proposed approach. Finally, we discuss the future work in
Section (6).

2. Related Work
Since 2000, structured knowledge, such as knowledge

graphs have been widely used in many different fields,
which, however, is quite different from parametric knowl-
edge in language models that is the main focus on this
paper. In this section, we first briefly look into knowledge
updates for structured knowledge (Section 2.1), as well as
the arrival of parametric knowledge (Section 2.2). We then
discuss some key related techniques for updating parametric
knowledge (Sections 2.3 and 2.4) .
2.1. Knowledge Updates for Structured

Knowledge
Recently, the use of knowledge graphs [64, 58] has

become popular in knowledge representation and knowledge
management applications widely across search [34, 63, 57,
33], recommendation [84, 87, 90], medical informatics [86,
78, 94, 93], finance [23, 18, 97], science [89, 4, 25, 59, 42],
media [71, 60, 1, 50], software engineering [67, 38, 61, 65,
88, 3] and industrial domains [64, 5, 13]. However, although
there have been a lot of works on various uncertainty aspects
of knowledge graphs [62, 75, 68, 72, 11], due to the incom-
pleteness or inaccuracies of knowledge graphs, a series of
methods have been proposed to complement or update them,
such as link prediction[55, 41, 17, 16], knowledge graph
completion[32, 6, 91, 83, 14]. These methods extract struc-
tured knowledge from unstructured data to achieve updates
and completion of knowledge in knowledge graphs. In this
paper, we focus on updating parametric knowledge, specif-
ically updating the knowledge that the language models
incorrectly learned or missed out, to enhance the robustness
and reliability of the language models.
2.2. Knowledge in language models

Language Models (LMs) as Knowledge Bases (KBs) in
NLP is increasingly popularly because they store a large
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amount of knowledge in their parameters (referred to as
parametric knowledge) and they are capable of answering
natural language queries about real-world facts[66, 70].

Dai et al. [19] showed that factual knowledge is stored
in the neurons of the feed-forward network in transformers,
with specific knowledge corresponding to specific knowl-
edge neurons. AlKhamissi et al. [2] conducted a compre-
hensive analysis of the capabilities which enable LMs to
function as KBs, offered an overview of both LMs and
KBs while exploring their intersection, and pointed out that
Editability as an ability to ensure the accuracy and relevance
of LMs, is one critical challenge that needs to be addressed
when using LMs as KBs.

Apart from editing, other methods are also employed to
modify the knowledge in LMs, such as knowledge-enhanced
language modelling [95, 28, 82], knowledge adaptation [27,
29], and knowledge distillation [49, 45]. These methods are
typically utilized in the pre-training or fine-tuning phase to
enable LMs to acquire various forms of knowledge. How-
ever, these methods still learn some erroneous knowledge,
which may lead to catastrophic forgetting if models contin-
ues training on erroneous knowledge. In contrast, knowledge
editing focuses on the usage stage of LMs (after fine-tuning)
and is more concerned with correcting incorrect knowledge
in LMs without affect the unmodified data.
2.3. Knowledge Editing for Language Models

Several existing works have been proposed for Knowl-
edge Editing. A natural strategy is to retrain and fine-tune the
model based on the modified data. However, this approach
is costly, and retraining cannot guarantee that erroneous data
will be corrected. Zhu et al. [96] constructed a collection of
supporting evidence for the modified facts and used it to fine-
tune the model by minimizing a per-instance loss. Though it
achieves high performance on the modified data, its perfor-
mance on unmodified data is degraded significantly. Then,
Zhu et al. [96] used a𝐿𝑝 norm-based method to constrain the
weights of the language model and minimally interfere with
the data that should not be modified. However, the highly
non-linear nature of LMs makes such methods underperform
in Reliability and Consistency [20].

Another class of methods develop hyper-network to
learn a parameter shift for the base model. De Cao et al.
[20] trained a hyper-network, KnowledgeEditor, to mod-
ify a fact and used Kullback-Leibler (KL) divergence-
constrained optimization to alleviate the side effect on other
data/knowledge that should not be changed. Mitchell et al.
[53] pointed out KnowledgeEditor cannot edit on the very
large LMs, and proposed a hyper-network with Gradient
Decomposition, making editing tasks feasible on larger
models. Hase et al. [37] focused on sequential editing,
and proposed SLAG, an editor based on KnowledgeEditor.
These methods have shown effectiveness in single editing.

Hyper Networks can view as a "probe" implicitly reveal-
ing the parameters associated with modifying the data. There
also exists works explicitly locating parameters related to
modifying a specific fact [52]. In addition, , Sinitsin et al.

[74] used a MAML algorithm to search a set of model pa-
rameters that provided good performance for edits. Mitchell
et al. [54] proposed a semi-parametric model editor that
stored model edits in an external memory rather than directly
in model parameters. However, since multiple edits are not
a simple repetition of a single edit, the performance drops
sharply with the number of edited increase. In this paper,
we propose an editing model based on hyper-network for
multiple editing tasks, achieving simultaneous editing in a
divide-and-conquer way.
2.4. Dynamic Networks

Recently, the dynamic network has attracted great re-
search interests, with the key idea being adaptive inference.
Existing methods are typically designed from two perspec-
tives: Dynamic architectures and Dynamic parameters. [36]

Dynamic architectures [56, 85, 15] are designed to per-
form inference on each input sample, considering the vary-
ing computational demands of different inputs. They save re-
dundant computation for canonical samples ("Easy for Mod-
els"), while preserving the representation power necessary to
recognize non-canonical samples ("Hard for Models")2

On the other hand, Dynamic parameters [30, 51, 9] can
adapt network parameters to various inputs while keeping
the architectures fixed, thereby enhancing the networks’
representational capacity with only a minor increase in com-
putational cost. Compared to dynamic architectures, they
eliminate the need for designing specific architectures and
training strategies, and careful hyper-parameter tuning.

The mixture of experts (MoE) [39], a classical algorithm
for the dynamic network, has been widely used in NLP.
For instance, Shazeer et al. [73] embedded MoE into Long
Short-Term Memory (LSTM) network and proposed the
sparely gated MoE. Fedus et al. [26] proposed Switch Trans-
former, which uses MoE to implement a sparse activation
model, ensuring that the computational cost remains un-
changed while allowing the network to have a large number
of parameters. PATHWAYS [7] is a typical application of
the MoE method, allowing the model to dynamically learn
which network parts perform well at which tasks.

In this paper, we focus on the more practical batch
editing problem, trying to edit the parametric knowledge
encoded within LMs. In particular, we adapt the MoE idea
to multiple editing tasks and propose the novel MoEditor to
achieve divide-and-conquer editing. Furthermore, we pro-
pose a dynamic parameter model, ProEditor, to enhance the
capabilities of MoEditor by providing a more robust and
effective mechanism for managing the model parameters.

3. Preliminaries
3.1. Task Formulation

Assuming we have a pre-trained LM 𝑓 (⋅; 𝜃) fine-tuned
on a dataset ⟨𝑥, 𝑦, 𝑎⟩ ∈ 𝐷, and it maps the input 𝑥 to the

2In this paper, we can consider the data that fails to be modified
due to conflicts between them when modifying multiple pieces of data as
"non-canonical samples", while the data that is successfully modified is
"Canonical samples".
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output 𝑦 under a set of parameters 𝜃. The task of knowledge
editing is to make 𝑓 (⋅; 𝜃) prefer the output of the input 𝑥 to
be an alternative prediction 𝑎 instead of 𝑦. To evaluate the
properties of the editing model, we have constructed three
types of dataset ⟨𝑥𝑖, 𝑦𝑖, 𝑎𝑖⟩ ∈ 𝐷𝑖, 𝑖 ∈ {𝑢, 𝑜, 𝑝} for knowledge
editing. See Table 1 for specific examples.

• To achieve generality and reliability, the dataset 𝐷
is divided into 𝐷𝑢 and 𝐷𝑜 . The subset 𝐷𝑢 contains
the edits, and the subset 𝐷𝑜 contains the unmodified
data. Notice, we only need to ensure that the output 𝑦𝑜remains the same for the input 𝑥𝑜 in 𝐷𝑜 after editing,
𝑎𝑜 is useless in 𝐷𝑜.

• To test the consistency of Editor, we generated a
semantically consistent input dataset 𝐷𝑝 for the data
in 𝐷𝑢.3.

In the rest of the paper, we use 𝑥𝑢, 𝑥𝑝, 𝑥𝑜 to represent the
modified data, semantically consistent data, and other data,
resp. We use 𝑁𝑢 to represent the number of modified data,
and 𝑁𝑑 as the size of 𝐷𝑢, use 𝑁𝑝 to represent the number
of edits sample from 𝐷𝑝, in this paper, we set 𝑁𝑢 = 𝑁𝑝,similar to MEND, for each edit, we select one semantically
consistent input for evaluation.

As mentioned in Sec.2.3, the gradient-based method is a
feasible way to apply the editing. The gradient is a property
of neural networks and is an important mathematical signal
that used to train neural networks, and gradients carry rich
information about how LMs access the knowledge stored in
𝜃 [53, 20]. The research on gradient-based editing methods
is helpful for us to explore the training methods of LMs and
deepen our understanding of LMs mechanism. Therefore,
our work primarily focuses on gradient-based methods.

More formally, denote a set of parameters for different
layers in LMs as 𝜃 = {𝑤1, 𝑤2, ..., 𝑤𝐿}, 𝐿 is the number of
layers in LMs. We calculate the standard fine-tuning gradient
∇𝑊 = {∇𝑤1,∇𝑤2, ...,∇𝑤𝐿} of a given correction 𝑎𝑢 and
the model output 𝑓 (𝑥𝑢; 𝜃) :

∇𝑊 =
𝜕𝐿(𝑓 (𝑥𝑢; 𝜃), 𝑎𝑢)

𝜕𝜃
, (1)

where 𝐿(⋅) is the loss function (e.g. The Cross Entropy
Loss). Then, the edit model 𝜙(⋅) can view as a mapping
process that maps the gradient ∇𝑊 to a suitable parameter
shift 𝜃⋆ = {𝜃⋆1 , 𝜃

⋆
2 , ..., 𝜃

⋆
𝐿}, denote as ∇𝑊

𝜙(⋅)
⟶ 𝜃⋆. Here,

we introduce two commonly used methods for editing: Fine-
tuning and Hyper-Networks.
3.2. Editing by Fine-tuning

Fine-tuning (FT) is a popular method of training models
that involves initializing the model with pre-trained weights
and updating all parameters (or only a small portion) through
optimization functions such as Gradient Descent. The update

3Semantically consistent input means that the sentences that have
the same meaning as the edits but are expressed differently. e.g. For the
modification: "Who is the UK PM? ", one possible semantically consistent
input is: "Who is the prime minister of the UK?".

rule is typically represented as 𝜃⋆ = 𝛼∇𝑊 , where 𝛼 is the
learning rate and ∇𝑊 is the gradient. However, since ∇𝑊
contains a lot of redundant information, which can lead to
catastrophic forgetting when solving editing problems. In
order to mitigate the Catastrophic forgetting problems, Zhu
et al. [96], using explicit constraints on the LMs weights:

minimize𝜃′ 1
𝑁𝑑

∑

<𝑥,𝑦,𝑎>∈𝐷𝑢

𝐿(𝑓 (𝑥𝑢; 𝜃
′
), 𝑎𝑢)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∥ 𝜃
′
− 𝜃 ∥< 𝛿,

(2)

where 𝛿 is a small positive constant, 𝑁𝑑 is the size of 𝐷𝑢,
∥ ⋅ ∥ denotes a 𝐿𝑝 norm in the parameter space (e.g. 𝐿2norm).

However, De Cao et al. [21] points out that such con-
straints are insufficient. The 𝐿𝑝 constraint only makes pa-
rameter changes as sparse as possible in the parameter space.
However, due to the implicit of LMs, even a minimal change
in parameters may produce completely different outputs for
many data points, leading to catastrophic forgetting. There-
fore, alternative approaches are being considered. (Sec.3.3)
3.3. Editing with Hyper-Networks

Hyper-Network, as described in Ha et al. [35], involves
utilizing one network to generate the weights for another
network. Researchers such as De Cao et al. [21] and Mitchell
et al. [53] have recently employed hyper-network as a map-
ping function to edit language models. It allows for precise
and flexible control of model parameters, enabling accurate
identification of the necessary parameter shift.

As shown in Figure 2, for a frozen LM 𝑓 (⋅; 𝜃) with 𝐿
layers, the hyper-network methods training a light-weight
model 𝐺 (Editor) with weight 𝜃𝑔 to produce edits to LM’s
weights 𝜃 when provided with the standard fine-tuning gra-
dient (Eq. (1)) of a given correction as input. Significantly,
when modifying multiple layers, we need to train different
editors 𝐺𝑙, 𝑙 ∈ [1, 𝐿] for each layer. Finally, by applying the
output (parameter shift) 𝜃∗𝑙 of each editor to the correspond-
ing modified layer, we can simultaneously edit while keeping
the results of other data 𝑥𝑜 unchanged.

MEND[53] is one way to realise knowledge editing
with hyper-networks. We adopt the baseline model in this
paper due to its efficiency and ability to edit a few data
simultaneously.

The architecture of MEND is shown in Figure 3. The
key of MEND is the Gradient Decomposition, which decom-
poses each gradient of layer 𝑙 into its rank-one outer product
form (cf. Eq. (5)), and uses the Editor 𝐺𝑙(⋅; 𝜃𝑔) to map the
decomposing gradient into a new decomposition form that
can modify the edits (cf. Eq. (6)), and finally calculate the
parameter shift 𝜃⋆𝑙 for layer 𝑙 (cf. Eq. (7)):

𝜃⋆𝑙 = 𝐺𝑙(𝑥𝑢; 𝜃𝑔). (3)
The detail for MEND is as follows, after calculating the

gradient for 𝑥𝑢, the Editor𝐺𝑙(⋅; 𝜃𝑔) decomposed the gradient
for each layer ∇𝑤𝑙 ∈ ℝℎ𝑖𝑑1∗ℎ𝑖𝑑2 into 𝜇𝑙 ∈ ℝ𝑑1∗ℎ𝑖𝑑1 and
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Figure 2: The editing process with Hyper Network. Given an LMs consisting of 𝐿 layers, after calculating the fine-tuning gradients
of a given edit batch with a task-specific loss function(e.g., Cross Entropy Loss). The Editor maps the gradient ∇𝑊𝑙 of layer
𝑙 to the parameter shift 𝜃⋆. With the application of 𝜃⋆, LMs can effectively modify the results of the edits 𝑥𝑁𝑢 and 𝑥𝑁𝑃 while
maintaining the output of data 𝑥1𝑜 .

Figure 3: The baseline Editor 𝐺𝑙(⋅; 𝜃𝑔) architecture with pa-
rameters 𝜃𝑔.

𝜂𝑙+1 ∈ ℝ𝑑1∗ℎ𝑖𝑑2 , 𝑑1 is the numbers of tokens for edits 𝑥𝑢,
ℎ𝑖𝑑1 and ℎ𝑖𝑑2 is the hidden dimension of LMs 𝑓 (⋅; 𝜃).

The decomposed is based on the chain rule, we define the
inputs to layer 𝑙 as 𝜇𝑙 and the pre-activation inputs to layer
𝑙+1 as 𝑧𝑙+1 = 𝜃𝑙𝜇𝑙, 𝜃𝑙 is the weight matrix to layer 𝑙, and
𝜂𝑙+1 as the gradient of the loss 𝐿 with respect to 𝑧𝑙+1. Eq.
(5) shows that the gradient of the loss 𝐿 with respect to 𝜃𝑙 is
equal to 𝜂𝑙+1𝜇𝑇𝑙 in matrix representation.

𝜕𝐿
𝜕𝜃𝑖𝑗𝑙

=
∑

𝑘

𝜕𝐿
𝜕𝑧𝑘𝑙+1

𝜕𝑧𝑘𝑙+1
𝜕𝜃𝑖𝑗𝑙

= 𝜕𝐿
𝜕𝑧𝑖𝑙+1

𝜕𝑧𝑖𝑙+1
𝜕𝜃𝑖𝑗𝑙

, (4)

where 𝜃𝑖𝑗𝑙 represents the value in the i-th row and j-th column
of the weight matrix, and 𝑧𝑘𝑙+1 represents the pre-activation
inputs in the k-th row. The first equality means the derivative
of the loss 𝐿 with respect to weight 𝜃𝑖𝑗𝑙 is equal to the
product of the derivative of loss 𝐿 with respect to next-
layer pre-activations 𝑧𝑖𝑙+1 and the derivative of next-layer
pre-activations 𝑧𝑖𝑙+1 with respect to 𝜃𝑙. The second equality
is due to the pre-activation inputs of the k-th row 𝑧𝑘𝑙+1 is only
related to 𝜃𝑘⋅𝑙 , so when 𝑘 ≠ 𝑖 is satisfied, 𝜕𝑧

𝑘
𝑙+1

𝜕𝜃𝑖𝑗𝑙
= 0. Noting

that 𝑧𝑖𝑙+1 = 𝜃𝑙𝜇𝑙 =
∑

𝑗 𝜇
𝑗
𝑙 𝜃
𝑖𝑗
𝑙 , simply we can replace 𝜕𝑧𝑖𝑙+1

𝜕𝜃𝑖𝑗𝑙

with 𝜇𝑗𝑙 . Futhermore, we define 𝜂𝑙+1 to be exactly 𝜕𝑧𝑖𝑙+1
𝜕𝜃𝑖𝑗𝑙

. Then

we have:
𝜕𝐿
𝜕𝜃𝑖𝑗𝑙

= 𝜂𝑖𝑙+1𝜇
𝑗
𝑙 , (5)

in vector notation, we denote Eq. (5) as ∇𝑤𝑙𝐿 = 𝜂𝑙+1𝜇𝑇𝑙 .
Then we concat the 𝜇𝑙 and 𝜂𝑙+1 as [𝜇𝑙; 𝜂𝑙+1] ∈ ℝ𝑑1∗𝑑2 ,

and use two learnable low-rank metrics 𝑈𝑙 ∈ ℝ𝑑2∗𝑖𝑛𝑑 and
𝑉𝑙 ∈ ℝ𝑖𝑛𝑑∗𝑑2 to mapping the [𝜇𝑙; 𝜂𝑙+1] to [𝜇𝑙; ̃𝜂𝑙+1]:

[𝜇𝑙; ̃𝜂𝑙+1] = [𝜇𝑙; 𝜂𝑙+1] + ([𝜇𝑙; 𝜂𝑙+1] ∗ 𝑈𝑙 ∗ 𝑉𝑙) (6)
where 𝑑2 = ℎ𝑖𝑑1 + ℎ𝑖𝑑2 ,𝑖𝑛𝑑 = 𝑚𝑖𝑛(𝑖𝑛𝑡𝑟𝑑𝑖𝑚, 𝑑2), 𝑖𝑛𝑡𝑟𝑑𝑖𝑚 is
a hyper-parameter, in this paper 𝑖𝑛𝑡𝑟𝑑𝑖𝑚 is 1920. Finally, the
parameter shift on layer 𝑙 is calculated by [𝜇𝑙; ̃𝜂𝑙+1]:

𝜃⋆𝑙 = ̃𝜂𝑙+1𝜇𝑙
𝑇 . (7)

In comparison to FT, MEND employs two low-rank
matrices to selectively preserve relevant information for
edits (as shown in Eq. (6)), thereby minimizing interference
from redundant information. However, when editing multi-
ple modifications, MEND uses the same 𝑈𝑙 and 𝑉𝑙 to map
the different edits at layer 𝑙 (cf. Fig. (3)), ignoring the conflict
between edits which could lead to editing failures.

We conclude this session by comparing FT and hyper-
network based knowledge editing as follows:

1. The hyper-network based solutions help mitigate the
issue of Catastrophic forgetting of FT;

2. MEND is affected by the conflict between data. Find-
ing a suitable parameter change value for all edits at
the same time is difficult, resulting in modification
failure;

3. In this paper, our proposed method decomposes the
complex multi-objective optimization problem into
sub-problems through the divide and conquer strategy.
It reduces the conflict between modified data by find-
ing the diversity editing strategy and combining them
to achieve better multiple edits.
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4. The Proposed Approach
Motivated by the the work of Dynamic Neural Networks

[36], we propose a novel divide-and-conquer framework to
achieve simultaneous editing and reduce the probability of
data conflicts. The edits modified by a single editor will be
divided into multiple groups, and we use different editors
to modify each data group separately. In order to achieve
the goal of divide-and-conquer editing, we use three stages
corresponding to the three steps within the editor shown in
Figure 2 respectively:

1. The stage of data routing (Sec 4.1) aims to group the
edits and decide which editor handles which edit(s).

2. The stage of editing (Sec 4.2) shows how to edit the
input data with implicit and explicit editors.

3. The stage of Refining (Sec 4.3) determines how to
refining the editor output 𝜃⋆ to better apply to the
LMs.

In this section, we present the details of each of the three
stages.
4.1. Data routing

The stage of data routing divides the edits 𝑥𝑢 into 𝑁𝑔groups, with each data group being modified by the same
editor. There are many ways to realize data routing.

A straightforward way is to randomly group edits. How-
ever, our experimental results show that it is not stable
enough. In order to address this issue, we can train a network
to determine which edits should be put in the same group.
Although argmax(Softmax(⋅)) can help in theory, it is not
derivable due to the discontinuity of argmax(), which leads
to its inability to be trained. Instead, we adopt the Gated
Network, which is widely used in Mixture of Experts [73],
due to its efficiency. Specifically, we use a noisy top gating
model Gate(⋅) [73] defined as follows:

Gate(⋅) = Softmax(𝑓 (𝑥) ⋅𝑊 + Noise),
Softplus = 𝜆 ⋅ Softplus(𝑓 (𝑥) ⋅𝑊𝑛𝑜𝑖𝑠𝑒),

(8)

where 𝑥 is the edits, 𝑓 (𝑥) is the encoder of 𝑥 by LMs, 𝜆 is
a normal distribution, 𝑊 ∈ ℝ𝑑×𝑁𝑔 and 𝑊𝑛𝑜𝑖𝑠𝑒 ∈ ℝ𝑑×𝑁𝑔

denote as the Gate network weight matrix and noise weight
matrix, and d is the hidden dimension of the LMs. 𝑊 and
𝑊𝑛𝑜𝑖𝑠𝑒 makes the model trainable. Note that𝑊𝑛𝑜𝑖𝑠𝑒 improves
the gated model’s generalization and makes the grouping
result more stable. The output of 𝐺𝑎𝑡𝑒(⋅) is the distribution
of group index, the 𝑗-th group is 𝑋𝑗 = {𝑥𝑖}𝑁𝑖=1, when
argmax(Gate(𝑥𝑖)) = 𝑗.
4.2. Editing

The stage of editing determines how to use the divide-
and-conquer framework to resolve the conflict of data,
thereby achieving simultaneous editing. We designed two
models as the Editor 𝐺𝑙.
MoEditor. Inspired by Mixture of Experts [39], we propose
our first model Mixture of Editors (MoEditor), treating mul-
tiple editors as different experts explicitly. The architecture

of MoEditor is shown in Figure 4. The MoEditor can be
regarded as initializing 𝑁𝑔 MENDs (cf. Eq. (3)) in parallel
for each edited layer of LMs, the editors at layer 𝑙 denote as
𝐺𝑙(⋅; 𝜃𝑖𝑔), 𝑖 ∈ [1, 𝑁𝑔]. The 𝑗-th editor’s output at layer 𝑙 is:

𝜃⋆,𝑗𝑙 = 𝐺𝑙(𝑋𝑗 ; 𝜃𝑗𝑔) = ̃𝜂𝑙+1
𝑗𝜇𝑙

𝑗,𝑇 . (9)

where 𝑋𝑗 is the 𝑗-𝑡ℎ group of edits, {𝑈 𝑗
𝑙 , 𝑉

𝑗
𝑙 } ∈ 𝜃𝑗𝑔 is the

parameters of 𝑗-𝑡ℎ editor𝐺𝑙, each𝐺𝑙 is calculated by Eq. (6).
After editing, a gather function merges each editor’s output
(Sec.4.3).

With the MoEditor, the parameter shifts 𝜃⋆,𝑗𝑙 are calcu-
lated by different groups of U and V, thus not only addressing
the data conflict issue of MEND but also helping avoid the
catastrophic forgetting caused by FT due to ∇𝑊 possibly
containing a lot of information that is not needed to modify
the current edits.

However, MoEditor has some limitations. Firstly, it re-
quires extensive memory. For an LM that requires modifica-
tion of 𝐿 layers, MoEditor requires 𝐿 × 𝑁𝑔 editors, while
MEND only requires 𝐿 editors. Secondly, it is sensitive to
parameters. The number of groups can influence the stability
of the results. Finally, fusing multiple editors’ results might
cause a secondary conflict, leading to performance loss.
ProEditor. To solve these problems, we propose a dynamic
parameter model, Proactive Editor (or simply ProEditor),
which is an implicit editor model that uses only one editor
to approximate multiple editors by a generator editor’s pa-
rameters. Compared with the MoEditor, edits for the Proac-
tive Editor are not to choose an editor but to construct it
for greater adaptability. This implicit strategy can reduce
the multiplication of memory space caused by the explicit
method of divide-and-conquer and make the relationship
between the editor and the target modified data more flexible,
enabling the editor to modify different data adaptively.

Specifically, we use an intrinsic hyper network 𝜓 to
generate weights in the ProEditor for each group of edits
(cf. Fig. (5)). We use the feed-forward neural Network(FFN)
as the structure of 𝜓 and take the decomposed gradient
[𝜇𝑙; 𝜂𝑙+1] as the FFN input.

𝜃⋆𝑙 = 𝐺𝑙(𝑥𝑢;𝜓(𝑥𝑢)), (10)
where 𝜓(𝑥𝑢) is the parameter generator of the editor 𝐺𝑙.Notable, the ProEditor does not care about the group number
𝑁𝑔 because it can generate parameters for each edit or token.

Figure 4: The MoEditor architecture.
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As we can see, the ProEditor only needs an additional FFN
to achieve divide and conquer, making it more efficient than
MoEditor.

Naturally, Because [𝜇𝑙; 𝜂𝑙+1] is the gradient decomposi-
tion representation of each token, there is two granularity
to generate parameters: token and sentence levels. In down-
stream applications, users can decide which option works
better. In general, the sentence level allows to have even
fewer parameters.

Following, we refine Eq. (6) under these two settings.
As shown in Figure 5, at the token level, 𝜓(⋅) generates
parameters for each token; the mapping process is:

[𝜇𝑙; ̃𝜂𝑙+1] = 𝛿 + (𝛿 ⋅ 𝜓(𝑥𝑢) ∗ 𝑈𝑙 ∗ 𝑉𝑙), (11)
𝜓(𝑥𝑢) = FFN(𝛿) = [𝑃1, 𝑃2, ..., 𝑃𝑑1 ],

where ⋅ is Hadamard product, 𝜓(𝑥𝑢) ∈ ℝ𝑑1∗𝑑2 and we
denote 𝛿 ∈ ℝ𝑑1∗𝑑2 as [𝜇𝑙; 𝜂𝑙+1], 𝑃𝑖 ∈ ℝ𝑑2 is the generated
parameters. At the sentence level, tokens under the same
sentence in the same group will share common parameters:
[𝜇𝑙; ̃𝜂𝑙+1] = 𝛿 + ([𝛿1, 𝛿2, ..., 𝛿𝑁𝑔

] ⋅ 𝜓(𝑥𝑢) ∗ 𝑈𝑙 ∗ 𝑉𝑙), (12)
𝜓(𝑥𝑢) = FFN([𝛿1, 𝛿2, ..., 𝛿𝑁𝑔

]) = [𝑃1, 𝑃2, ..., 𝑃𝑁𝑔
],

where 𝜓(𝑋𝑗) ∈ ℝ𝑁𝑔∗𝑑2 , and [𝛿1, 𝛿2, ..., 𝛿𝑁𝑔
] is the decom-

position gradient for 𝑁𝑔 groups. The finally parameter shift
𝜃⋆𝑙 at layer 𝑙 is calculated by Eq. (7).
4.3. Refining

The refining stage determines how to apply the editor’s
outputs to the LMs during inference (only).

For the MoEditor, as the gradient is a property of neural
networks, it is an important mathematical signal to judge the
importance of the parameters. The larger the value is, the
more important the parameters are. We prioritize parameters
with larger absolute values and propose a selection-based
fusion method to combine the results of multiple editors.

The selection-based fusion method is defined as follows:
𝜑(𝑥) = MAX(𝜌(P̂os(𝑥)), 𝜌(N̂eg(𝑥))), (13)

where 𝜌(𝑥) can be the sum or average function of the inputs,
𝑥 means the absolute value of 𝑥, Pos(𝑥) and Neg(𝑥) are the

Figure 5: The Proactive Editor(ProEditor) architecture,∇𝑊𝑙 is
the gradient for 𝑥𝑢 which is calculated by Eq.(1).

sets of positive and negative values, respectively. The final
output for MoEditor is:

𝜃⋆𝑙 = 𝜑({𝜃⋆,𝑗𝑙 }
𝑁𝑔
𝑗=1), (14)

where 𝜑 is the selection-based fusion function; 𝜃⋆,𝑗𝑙 is the
output of the 𝑗-𝑡ℎ editor at layer 𝑙.

For the ProEditor, we find that not all parameters in
the final output need to be updated, so we use the Fisher
Information [79] to filter out some unimportant parameters
to minimize the modification of parameters in LMs. The
Fisher information estimates how much information a vari-
able carries about a distribution parameter. In other words,
we use Fisher information to select the important parameters
in each set of modifications and update them only for this
part. Formally, we derive the Fisher information for the
parameter 𝑤 ∈ 𝜃⋆𝑙 as follows:

𝐹 (𝑤) = 1
𝑁

𝑁
∑

𝑖=1
(
𝜕𝑙𝑜𝑔𝑝(𝑎𝑖𝑢|𝑥

𝑖
𝑢;𝑤)

𝜕𝑤
)2, (15)

where 𝑁 is the number of edits and 𝑤 is the edited pa-
rameters, 𝑥𝑖𝑢, 𝑎𝑖𝑢 are the 𝑖-𝑡ℎ edits input and the alter label.
𝑝(⋅) is the output of LMs for the edits. The final output for
Proactive Editor 𝜃⋆𝑙 is: 𝜃⋆𝑙 ∗ 𝑆𝑖𝑔𝑛(𝐹 (𝑤) > 𝜏) where 𝑆𝑖𝑔𝑛(⋅)
is the the symbolic function, 𝜃⋆𝑙 is the parameter shift of
layer 𝑙, 𝜏 is the threshold, and we modify the parameter 𝑤
once 𝐹 (𝑤) > 𝜏. Finally, the parameter shift for LMs is:
𝜃⋆ = {𝜃⋆1 , 𝜃

⋆
2 , ..., 𝜃

⋆
𝐿}.

4.4. Training objective
To maintain Consistency and Generality, we calculate

the cross-entropy loss of the edits. We sample 𝑁𝑢 edit pairs
< 𝑥𝑢, 𝑦𝑢, 𝑎𝑢 > from 𝐷𝑢, and extract 𝑁𝑝 < 𝑥𝑝, 𝑦𝑝, 𝑎𝑝 > pairs
associated with 𝑥𝑢 from𝐷𝑝 which is semantically equivalent
inputs with edits in 𝐷𝑢.Then we use < 𝑥𝑢, 𝑦𝑢, 𝑎𝑢 > to calculate the parameter
shift 𝜃⋆, and use < 𝑥𝑝, 𝑦𝑝, 𝑎𝑝 > to calculate the edit loss.

𝐿𝑒𝑑𝑖𝑡 = −logP(𝑎𝑝|𝑓 (𝑥𝑝; 𝜃 + 𝜃⋆)), (16)
where logp(⋅) is the cross-entropy loss function.

To maintain Reliability, we use Kullback-Leibler (KL)
divergence from the updated model to the original one. We
sample < 𝑥𝑜, 𝑦𝑜 > from 𝐷𝑜, and the KL pushes the updated
model to predict output distributions identical to the original
one:

𝐿𝑟𝑒𝑙 = KL(𝑃 (𝑓 (𝑥𝑜; 𝜃)||𝑃 (𝑓 (𝑥𝑜; 𝜃 + 𝜃⋆)), (17)
where 𝑃 (𝑓 (𝑥; 𝜃)) is the output of Language model with
parameters 𝜃 for the input 𝑥. The KL divergence helps us
optimize parameters by quantifying the differences between
representations and enables us to avoid uncertainties arising
from regularization constraints.

It is worth noting that for MoEditor, we optimize the
results of each Editor separately during training4. The total
training loss is defined as:

4We tried to merge them during training, but the results were poor.
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Table 1
Examples of the FEVER and ZsRE. We denote Output as the output of LMs, and the Target is the prediction we prefer.

Dataset Type Input Output Target

FEVER
𝑥𝑜 IMDb is not a website. REFUTES -
𝑥𝑢 Apple Inc. marketed the IPhone 4. REFUTES SUPPORTS
𝑥𝑝 Apple Inc. sold the IPhone 4. REFUTES SUPPORTS

ZsRE
𝑥𝑜 The continent of Kirkwood Islands is what? Antarctica -
𝑥𝑢 When was Ronaldo Pompeu born? 21 December 1981 8 April 1990
𝑥𝑝 What time was Ronaldo Pompeu born? 21 December 1981 8 April 1990

Loss =
𝑁𝑔
∑

𝑖=1
𝐿𝑖𝑒𝑑𝑖𝑡 +

𝑁𝑔
∑

𝑖=1
𝐿𝑖𝑟𝑒𝑙, (18)

where 𝑁𝑔 is the number of Editors, and we use Adam op-
timizer [43] to optimize the Loss. For ProEditor, we jointly
optimize𝜓 and the Editor. Since there is only one Editor, the
loss function is Loss = 𝐿𝑒𝑑𝑖𝑡 + 𝐿𝑟𝑒𝑙.The use of a single 𝜃⋆ in Eq. (16) to edit all modified data
can lead to poor generalization of the editing method. Our
method, described by Eq. (18), decomposes the optimization
problem into 𝑁𝑔 groups. This transformation of a complex
problem into multiple simple problems allows for better
implementation of multiple edits.

5. Experiment
5.1. Benchmark Datasets and Evaluation.

We evaluate our models on the FEVER fact-checking
dataset [77] and the ZsRE question-answering dataset [46].
See Table 1 for the example of two datasets.

Fact-checking benchmark dataset (FEVER) contains
104,966 training instances and 10,444 validation instances
respectively. Each instance is a True/False factual claim. The
input 𝑥𝑢 ∈ 𝐷𝑢 is a batch of facts. 𝑥𝑝 ∈ 𝐷𝑝 includes the
semantically equivalent inputs generated by De Cao et al.
[20]. Locality inputs 𝑥𝑜 ∈ 𝐷𝑜 are randomly sampled facts
distinct from the edit example.

Question-answering dataset (ZsRE) contains 244,173
training and 27,644 validation instances respectively. Every
input 𝑥𝑢 ∈ 𝐷𝑢 is a question about an entity, and 𝑦𝑢 is
sampled from the top-ranked predictions based on a BART-
base model trained on QA. 𝑥𝑝 ∈ 𝐷𝑝 is generated by De Cao
et al. [20]. 𝑥𝑜 ∈ 𝐷𝑜 are randomly sampled facts distinct from
the edit example.

Evaluation metrics. We measure the consistency of a
model editor using edit success (ES) [53].

ES = 𝔼(𝑥𝑝,𝑦𝑝)∼𝐷𝑝 [𝟙𝑓 (𝑥𝑝;𝜃+𝜃⋆)=𝑎𝑝 ]. (19)

To assess reliability, we use drawdown (DD) [53]5, which is
defined as the performance degradation of the edited model

5Following KnowledgeEditor, We do not compute the drawdown met-
rics on all data, which would be very computationally demanding.

on the rest of the dataset:
DD = 𝔼(𝑥𝑜,𝑦𝑜)∼𝐷𝑜 [𝟙𝑓 (𝑥𝑜;𝜃+𝜃⋆)=𝑓 (𝑥𝑜;𝜃)] (20)

Finally, we employ the Language Model Performance (LMP)
of the two aforementioned scores.

LMP = ES − DD (21)
Specifically, when testing model performance, we randomly
select 𝑁𝑢 edits from 𝐷𝑢 and 𝐷𝑝 for testing and repeat the
process 𝑁𝑑 times (𝑁𝑑 is the size of 𝐷𝑢), and the mean of
the results is taken as the final result.
5.2. Implementations

We use the MEND with sharing as the Basic Editor, and
the fine-tuning Bert-base [24] model for the FEVER fact-
checking and BART-base [47] model for ZsRE question-
answering come from the checkpoints released by De Cao
et al. [20]. Both Editors are trained and evaluated on applying
𝑁𝑢 edits, with 𝑁𝑢 ∈ {25, 75, 125}, with a single extra
example to compute drawdown, regardless of the number of
edits. Following Mitchell et al. [53], we edit the MLP weight
matrices in the last two transformer blocks of the encoder
and decoder for BART and the last three transformer blocks
for BERT.

For all algorithms, we use early stopping to end training
early if the loss Eq.(18) does not decrease for 20000 steps
on a subset of 500 validation examples, with a maximum
number of training steps of 500,000. The learning rate for
ProEditor is 1e-4. We use the same hyper-parameter and
experimental settings as MEND[53] for other methods. All
runs are trained entirely on a single NVIDIA RTX A100
GPU.
5.2.1. State-of-the art models

We compare our models with the following four most
relevant editors that have multi-editing capabilities:

• MEND [53] training a hyper-network to learn a rank-1
decomposition of the gradient, which can edit multiple
edits simultaneously.

• FT [96] fine-tuning the LMs on the edits.
• FT+KL [53] enforcing a KL constraint on the outputs

of LMs when fine-tuning the LMs on the edits.
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Table 2
Simultaneous editing results on ZsRE with 𝑁𝑢={25, 75, 125}. For MoEditor, the 𝑁𝑔 corresponding to each 𝑁𝑢 is {3, 5, 5}.

25 75 125

ES↑ DD↓ LMP↑ ES↑ DD↓ LMP↑ ES↑ DD↓ LMP↑
MEND 0.890 0.011 0.879 0.780 0.011 0.769 0.670 0.012 0.658
ENN 0.350 0.005 0.345 0.160 0.005 0.155 0.110 0.006 0.104
FT 0.923 0.025 0.898 0.908 0.072 0.836 0.893 0.093 0.800
FT+KL 0.639 0.002 0.637 0.393 0.005 0.388 0.330 0.010 0.320
RaEditor 0.917 0.014 0.903 0.852 0.021 0.831 0.789 0.029 0.759
MoEditor 0.945 0.021 0.924 0.856 0.041 0.815 0.794 0.045 0.749
ProEditor 0.961 0.009 0.950 0.857 0.014 0.843 0.832 0.016 0.816

Table 3
Simultaneous editing results on FEVER with 𝑁𝑢={25, 75, 125}. For MoEditor, the 𝑁𝑔 corresponding to each 𝑁𝑢 is {3, 7, 7}.

25 75 125

ES↑ DD↓ LMP↑ ES↑ DD↓ LMP↑ ES↑ DD↓ LMP↑

MEND 0.890 0.017 0.873 0.560 0.030 0.530 0.553 0.001 0.551
ENN 0.590 0.020 0.570 0.540 0.020 0.520 0.651 0.002 0.649
FT 0.906 0.038 0.868 0.931 0.230 0.701 0.910 0.192 0.709
FT+KL 0.873 0.004 0.869 0.680 0.008 0.672 0.643 0.003 0.641
RaEditor 0.802 0.165 0.638 0.802 0.077 0.725 0.638 0.012 0.626
MoEditor 0.913 0.031 0.882 0.804 0.059 0.745 0.779 0.056 0.723
ProEditor 0.955 0.069 0.886 0.907 0.056 0.851 0.843 0.064 0.778

• ENN [74] using gradient descent to update the model’s
predictions for edits based on the MAML algorithm.

To compare with the state-of-the-art models mentioned
above, we use the random group model RaEditor and the
dynamic structural model MoEditor with the functions
𝐺𝑎𝑡𝑒() and 𝜌(𝑥) that aggregate the outputs of each expert.
Additionally, we use the dynamic parametric model ProEd-
itor with the 𝜏 = 0.7 in Fisher information.
5.3. Experimental Results
5.3.1. Simultaneous Editing results

This section introduces the simultaneous editing results
on two standard benchmark datasets.

Table 2 and Table 3 show the multiple edit results of
different methods. The FT outperforms the other baseline
methods in ES and LMP, but its high DD results in poor
overall performance (i.e. LMP) compared to our two models.
This is due to severe overfitting on modified data, which
causes catastrophic performance degradation on unmodified
data. Adding KL helps reduce DD, but the success rate (ES)
significantly reduces.

As the number of edits increases, the performance of
the editor deteriorates to varying degrees, which aligns with
the common understanding that the more edits, the more
conflicts between them, making successful editing more
difficult. Moreover, methods like MEND and ENN show
more significant performance degradation, which can be
attributed to their neglect of the relationship between edits
during simultaneous editing which results in modifications

being made in the same way for all edits which further leads
to the modification result being affected by the data with a
large gradient value and different update direction compared
to other data.

Our proposed models exhibit significant performance
improvements compared to the baselines across all three
edit number settings. This suggests that our models can
dynamically handle conflicting data, and reduce their impact
on each other. However, the RaEditor and MoEditor exhibit
higher performance than the baseline only in some cases, in-
dicating their potential instability. In contrast, the ProEditor
outperforms both the RaEditor and MoEditor, demonstrating
that it can address the issues of parameter sensitivity and
secondary conflicts in the MoEditor.
5.3.2. Editing the large-scale LMs

In this section, we aim to demonstrate the effectiveness
of our editing method on the large-scale publicly-available
Transformer model, T5-XL, which has 2.8 billion parame-
ters and is fine-tuned on the NQ dataset [70]. We evaluate
our approach on the ZsRE dataset and present our results
in Table 4. Our method outperforms MEND on T5-XL,
while other methods like FT face memory constraints and
cannot modify 25 edits simultaneously. Interestingly, both
MEND and ProEditor only modify up to 25 edits at a
time, highlighting the limitations of gradient-based editing
methods when it comes to large-scale models with a high
number of modifications.
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Table 4
Simultaneous editing T5-xl (2.8B) results on ZsRE with
𝑁𝑢=25.

ES↑ DD↓ LMP↑

MEND 0.648 0.004 0.644
ProEditor 0.705 0.002 0.703

5.4. Editing analysis
In this section, we examine the issue of data conflicts

that can arise during modifications, and demonstrate how our
proposed diversity strategy effectively resolves this issue.
5.4.1. Data conflict analysis

To measure the conflict between edits, we consider both
the angle and amplitude of the data gradient. Specifically, we
calculate the cosine value between the gradients of a group
of edits to determine the degree of conflicts between them. If
the cosine value is less than 0, we identify a directional con-
flict between two pieces of data. The Gradient Conflict Ratio
(GCR) for the group is the ratio of the number of conflicting
data pairs to the total number of data pairs 𝐷𝑝 in the group,
denoted as 𝐷𝑝 = < 𝑔0, 𝑔1 >1, < 𝑔0, 𝑔2 >2, ..., < 𝑔 ∗, 𝑔 ∗>𝐶 .

GCR =
∑𝐶
𝑚=1 𝑆𝑖𝑔𝑛(−𝑐𝑜𝑠(< 𝑔𝑖, 𝑔𝑗 >𝑚))

𝐶
, (22)

where 𝐶 = 𝑁!
2!(𝑁−2)! means taking any two combinations of

data from 𝑁 data. 𝑆𝑖𝑔𝑛(⋅) is the the symbolic function, and
𝑐𝑜𝑠(< 𝑔𝑖, 𝑔𝑗 >) is the cosine of 𝑔𝑖 and 𝑔𝑗 . When the gradient
direction conflicts, the cosine value is less than 0, we take its
opposite value as the conflict fraction.

The gradient magnitude similarity (GMS) [92] measures
the magnitude of the gradient values.

GMS =
∑𝐶
𝑚=1 𝛾(< 𝑔𝑖, 𝑔𝑗 >)

𝐶
, (23)

where 𝛾(< 𝑔𝑖, 𝑔𝑗 >) = 2||𝑔𝑖||2||𝑔𝑗 ||2
||𝑔𝑖||22+||𝑔𝑗 ||

2
2
∈ [0, 1]; the larger the 𝛾 ,

the closer the gradient values are.
We analyze data conflicts by counting the conflicting

values in each layer, as shown in Table 5. On both datasets,
the GCR values are around 40%, indicating that there is
around 40% conflict of the data, while the GMS values are
above 70%, indicating that the values of the gradient for most
of the edits are closer. In other words, for each of the two
data sets, each data has its characteristics. Using the same
way to modify these data simultaneously will ignore the
unique characteristics and thus inevitably lead to modifica-
tion failures. To overcome this issue, we dynamically group
the data, allowing editors to learn diverse editing strategies
that consider the differences between different data as much
as possible.
5.4.2. Partition analysis

This section presents our analysis of how to address
the problem of data conflict using the divide-and-conquer

Table 5
The conflict rate and gradient amplitude similarity between
edits. We edit the four feed-forward neural network (FFN)
layers (L1-L8) in each of the last two Transformer encoder
and decoder layers of the Bart model, as well as the three FFN
layers (L1-L6) in the last three Transformer layers of the Bert
model. L1-L8 denotes these layers in Bart and L1-L6 in Bert.

75-FEVER 125-FEVER 75-ZsRE 125-ZsRE

layer GCR GMS GCR GMS GCR GMS GCR GMS

L1 0.42 0.74 0.42 0.77 0.47 0.83 0.46 0.85
L2 0.43 0.76 0.40 0.77 0.49 0.83 0.49 0.85
L3 0.38 0.78 0.37 0.79 0.37 0.77 0.41 0.80
L4 0.38 0.81 0.37 0.80 0.48 0.85 0.49 0.86
L5 0.36 0.81 0.37 0.81 0.47 0.86 0.47 0.87
L6 0.34 0.82 0.32 0.80 0.44 0.74 0.46 0.76
L7 - - - - 0.3 0.91 0.27 0.92
L8 - - - - 0.39 0.85 0.38 0.86

approach. We let different editors learn diverse editing strate-
gies and employ parameter sparsity to combine the results
of multiple editors. This approach aims to mitigate the
performance degradation caused by conflicts, improving the
edited data’s overall quality.

Table 6 reveals that each sub-editor 𝐸𝑖 achieves great
editing results on their respective group of 𝑁𝑢 records (We
use random grouping and ensure that each sub-editor mod-
ified different data.), suggesting that diverse editing strate-
gies are being learned. However, merging the outputs of
the sub-editors (cf. Eq. (14)) leads to a slight decrease in
overall performance, which becomes more pronounced as
𝑁𝑢 increases, indicating the presence of secondary conflicts
during merging. Nevertheless, the merged output still out-
performs the baseline MEND model. In contrast, ProEditor
leverages dynamic parameters to prevent secondary con-
flicts arising from merging and delivers better performance,
demonstrating the effectiveness of the divide-and-conquer
approach.

Figure 6: The results of different grouping numbers with
MoEditor, Left: Result on FEVER, Right: Result on ZsRE.

5.5. Further Analysis
5.5.1. Model parameter analysis

In this section, we analyze the parameters of the two
divide-and-conquer models and obtain the optimal number
of groups in MoEditor as well as the modification granularity
in ProEditor through comparative experiments.
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Table 6
Performance Analysis using Divide-and-Conquer Approach. We employ five sub-editors (E1-E5) on 𝑁𝑢 edits. Each sub-editor 𝐸𝑖
modified 𝑁𝑢∕5 edits, and we ensure they edit different data. We denote the output merged by five sub-editors as RaEditor, and
denote the results of MEND as MEND. Both RaEditor and MEND modify 𝑁𝑢 edits.

ZsRE
𝑁𝑢 E1 E2 E3 E4 E5 RaEditor MEND ProEditor
25 0.960 0.960 0.960 0.957 0.964 0.918 0.879 0.950
75 0.883 0.901 0.894 0.895 0.891 0.813 0.769 0.843
125 0.872 0.866 0.867 0.866 0.871 0.770 0.658 0.816

FEVER
25 0.959 0.956 0.961 0.955 0.963 0.620 0.873 0.886
75 0.844 0.831 0.846 0.829 0.815 0.637 0.530 0.851
125 0.826 0.851 0.828 0.822 0.843 0.517 0.551 0.778

Figure 7: Results at different levels using ProEditor.

Figure 6 illustrates the results of our comparative exper-
iments on MoEditor, where we aim to determine the opti-
mal number of sub-editors. Surprisingly, the performance
does not necessarily improve as the number of sub-editors
increases. Instead, we observe that three to five sub-editors
performed best on the two tasks we have tested. Moreover,
having more sub-editors will require more computational
resources and double the computation needed, which mo-
tivates us to propose the ProEditor with dynamic parameter
selection.

For ProEditor, the results presented in Figure 7 indicate
that sentence-level granularity performs better than token-
level in most cases. This is because the number of tokens
increases significantly with the number of sentences, which
can lead to many parameters in the model that are diffi-
cult to train effectively. On the other hand, sentence-level
granularity allows the model to generate specific parameters
for each sentence, effectively designing the most suitable
modification strategy for each sentence.

Finally, we compare the number of parameters required
by different Editors. As shown in Table 7, ProEditor requires
similar parameters as MEND, and both require fewer param-
eters than FT. As far as efficiency is concerned, MoEditor
and FT require more time, while ProEditor and MEND
have similar time requirements, taking approximately 12

Table 7
Parameter Analysis. ℎ1 and ℎ2 are the dimensions of the edited
parameter matrix (Both ℎ1 and ℎ2 are larger than 102), and 𝑁𝑔
is the number of groups in ProEditor output (the maximum for
𝑁𝑔 is modification number 𝑁𝑢)

Editor Editor Parameters

FT 𝑂((ℎ1 × ℎ2)2)
MEND 𝑂((ℎ1 + ℎ2)2)
ProEditor 𝑂((ℎ1 + ℎ2)2 +𝑁𝑔(ℎ1 + ℎ2))

hours and one day on a single A100 GPU for 25 and 75
modifications, respectively.
5.5.2. Impact of Refining starge

In this section, we analyze different merging strategies
in the Refining stage. In the MoEditor model, editors learn
various modification patterns. To reduce secondary conflicts
caused by merging multiple results, we conduct experiments
to test four different fusion methods:

• Add: Sum the outputs of multiple editors and directly
update the sum into the language model to apply the
modification.

• Max: Select the maximum absolute value of each
element in each output matrix as the final output while
preserving its positive or negative sign, then add them
as the final result.

• Mean of Sign sum (SSM): Use Eq. (13) to calculate
the final result, with the 𝜌 =

∑𝑁𝑔
𝑖=1 𝑥𝑖
𝑁𝑔

.
• Sum of Sign sum (SSS): Use Eq. (13) to calculate the

final result with the 𝜌 = ∑𝑁𝑔
𝑖=1 𝑥𝑖.

Figure 8 illustrates that only Max or SSM fusion methods
yield undesirable results. Our analysis suggests that both
methods result in a final output that is too one-sided, causing
the loss of some information. Conversely, both the Add
and SSS methods add up the results, while SSS sums up
the values with the same sign, thus retaining the modified
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information to the maximum extent and achieving superior
performance.

Figure 8: Impact of fusion methods with MoEditor. We test
on both FEVER and ZsRE datasets.

Inspired by the fusion results on MoEditor, we investi-
gate the necessity of the parameters in the output of ProEd-
itor during editing. We assume that some parameter shifts
may be meaningless or detrimental to the editing perfor-
mance. To investigate this, we conduct experiments using
MEND to test the performance changes under different
Fisher thresholds 𝜏 in Eq. (15) on two datasets under 25
data conditions, as shown in Figure 9. The results indicate
that a threshold of 0.4 achieves performance close to using
all parameters, suggesting that we can achieve better editing
performance by using only 40% of the parameters. In partic-
ular, the blue node in Figure 9 indicates that when 90% of
the parameters are used, the result is better than using all the
parameters, which suggests that some parameters in the shift
𝜃⋆ are harmful to performance.

Figure 9: The performance change of MEND under different
Fisher thresholds. 0.1 indicates that only parameters with a
Fisher value of the top 10% are used, and 1.0 indicates that
all parameters are used.

6. Conclusions & Future work
This paper proposes a novel divide-and-conquer frame-

work for simultaneous knowledge editing to address data
conflicts through dynamic computation. Our framework
consists of a dynamic architecture model and a dynamic pa-
rameter model, and they learn diverse modification strategies
for different editors. We demonstrate that diverse editing

strategies exist for the same data, and our divide-and-
conquer method can effectively learn the optimal combina-
tion of these strategies. Extensive experiments conducted on
two benchmark datasets under various modifying conditions
show that our proposed method outperforms four state-of-
the-art models by a significant margin.

Our approach has the advantage of addressing data con-
flicts with dynamic inference. In the future, there are three
potential directions to extend our work. Firstly, although
our divide-and-conquer framework has improved the editing
limit of the baseline editor (MEND), the limit still exists,
such as editing on a large number of edits and the more
large-scale LMs. A stronger and alternative baseline or a
more robust divide-and-conquer algorithm is the key to
breaking through the limit. Secondly, Gradient-based editing
methods still have some limitations: (i) the requirement for
model open-sourcing to obtain the gradient information of
parameters and (ii) the need for stronger computing power
to run a large number of modifications on large-scale lan-
guage models. These two factors make it challenging to
use gradient-based editing methods for large-scale models
with over 10 billion parameters (e.g. T5-XXL) or not open-
sourced models (e.g. GPT3 or GPT3.5) to perform large-
scale knowledge editing tasks. Finally, we are interested in
model interpretability, further explaining the internal mech-
anism of the language model through knowledge editing and
feeding back to the editorial model.
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