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Abstract. Many real-world classification applications fall into the class of 
positive and unlabeled (PU) learning problems. In many such applications, not 
only could the negative training examples be missing, the number of positive 
examples available for learning may also be fairly limited due to the 
impracticality of hand-labeling a large number of training examples. Current 
PU learning techniques have focused mostly on identifying reliable negative 
instances from the unlabeled set U. In this paper, we address the oft-overlooked 
PU learning problem when the number of training examples in the positive set 
P is small. We propose a novel technique LPLP (Learning from 
Probabilistically Labeled Positive examples) and apply the approach to classify 
product pages from commercial websites. The experimental results demonstrate 
that our approach outperforms existing methods significantly, even in the 
challenging cases where the positive examples in P and the hidden positive 
examples in U were not drawn from the same distribution. 

1   Introduction 

Traditional supervised learning techniques typically require a large number of labeled 
examples to learn an accurate classifier. However, in practice, it can be an expensive 
and tedious process to obtain the class labels for large sets of training examples. One 
way to reduce the amount of labeled training data needed is to develop classification 
algorithms that can learn from a set of labeled positive examples augmented with a set 
of unlabeled examples. That is, given a set P of positive examples of a particular class 
and a set U of unlabeled examples (which contains both hidden positive and hidden 
negative examples), we build a classifier using P and U to classify the data in U as 
well as future test data. We call this the PU learning problem.   

Several innovative techniques (e.g. [1], [2], [3]) have been proposed to solve the 
PU learning problem recently. All of these techniques have focused on addressing the 
lack of labeled negative examples in the training data. It was assumed that there was a 
sufficiently large set of positive training examples, and also that the positive examples 
in P and the hidden positive examples in U were drawn from the same distribution. 
However, in practice, obtaining a large number of positive examples can be rather 
difficult in many real applications. Oftentimes, we have to do with a fairly small set of 
positive training data. In fact, the small positive set may not even adequately represent 
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the whole positive class, as it is highly likely that there could be hidden positives in U 
that may not be similar to those few examples in the small positive set P. Moreover, 
the examples in the positive set P and the hidden positive examples in the unlabeled 
set U may not even be generated or drawn from the same distribution. A classifier 
trained merely on the few available examples in P would thus be incompetent in 
recognizing all the hidden positives in U as well as those in the test sets.   

In this work, we consider the problem of learning to classify documents with only 
a small positive training set. Our work was motivated by a real-life business 
intelligence application of classifying web pages of product information. The richness 
of information easily available on the World Wide Web has made it routine for 
companies to conduct business intelligence by searching the Internet for information 
on related products. For example, a company that sells computer printers may want to 
do a product comparison among the various printers currently available in the market. 
One can first collect sample printer pages by crawling through all product pages from 
a consolidated e-commerce web site (e.g., amazon.com) and then hand-label those 
pages containing printer product information to construct the set P of positive 
examples. Next, to get more product information, one can then crawl through all the 
product pages from other web sites (e.g., cnet.com) as U. Ideally, PU learning 
techniques can then be applied to classify all pages in U into printer pages and non-
printer pages. However, we found that while the printer product pages from two 
websites (say, amazon.com and cnet.com) do indeed share many similarities, they can 
also be quite distinct as the different web sites invariably present their products (even 
similar ones) in different styles and have different focuses. As such, directly applying 
existing methods would give very poor results because 1) the small positive set P 
obtained from one site contained only tens of web pages (usually less than 30) and 
therefore do not adequately represent the whole positive class, and 2) the features 
from the positive examples in P and the hidden positive examples in U are not 
generated from the same distribution because they were from different web sites.  

In this paper, we tackle the challenge of constructing a reliable document (web 
page) classifier based on only a few labeled positive pages from a single web site and 
then use it to automatically extract the hidden positive pages from different web sites 
(i.e. the unlabeled sets). We propose an effective technique called LPLP (Learning 
from Probabilistically Labeling Positive examples) to perform this task. Our proposed 
technique LPLP is based on probabilistically labeling training examples from U and 
the EM algorithm [4]. The experimental results showed that LPLP significantly 
outperformed existing PU learning methods. 

2   Related Works 

A theoretical study of PAC learning from positive and unlabeled examples under the 
statistical query model was first reported in [5]. Muggleton [6] followed by studying 
the problem in a Bayesian framework where the distribution of functions and 
examples are assumed known. [1] reported sample complexity results and provided 
theoretical elaborations on how the problem could be solved. Subsequently, a number 
of practical PU learning algorithms were proposed [1], [3] and [2]. These PU learning 
algorithms all conformed to the theoretical results presented in [1] by following a 
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common two-step strategy, namely: (1) identifying a set of reliable negative 
documents from the unlabeled set; and then (2) building a classifier using EM or 
SVM iteratively. The specific differences between the various algorithms in these two 
steps are as follows. The S-EM method proposed in [1] was based on naïve Bayesian 
classification and the EM algorithm [4]. The main idea was to first use a spying 
technique to identify some reliable negative documents from the unlabeled set, and 
then to run EM to build the final classifier. The PEBL method [3] uses a different 
method (1-DNF) for identifying reliable negative examples and then runs SVM 
iteratively for classifier building. More recently, [2] reported a technique called Roc-
SVM. In this technique, reliable negative documents were extracted by using the 
information retrieval technique Rocchio [7]. Again, SVM is used in the second step. 
A classifier selection criterion is also proposed to catch a good classifier from 
iterations of SVM. Despite the differences in algorithmic details, the above methods 
all focused on extracting reliable negative instances from the unlabeled set.   

More related to our current work was the recent work by Yu [8], which proposed to 
estimate the boundary for the positive class. However, the amount of positive 
examples they required was around 30% of the whole data, which was still too large 
for many practical applications. In [9], a method called PN-SVM was proposed to 
deal with the case when the positive set is small. However, it (like all the other 
existing algorithms of PU learning) relied on the assumption that the positive 
examples in P and the hidden positives in U were all generated from the same 
distribution. For the first time, our LPLP method proposed in this paper will address 
such common weaknesses of current PU learning methods, including handling 
challenging cases where the positive examples in P and the hidden positive examples 
in U were not drawn from the same distribution. 

Note that the problem could potentially be modeled as a one-class classification 
problem. For example, in [10], a one-class SVM that uses only positive data to build a 
SVM classifier was proposed. Such approaches are different from our method in that 
they do not use unlabeled data for training. However, as previous results reported in 
[2] have already showed that they were inferior for text classification, we do not 
consider them in this work.  

3   The Proposed Technique 

Figure 1 depicts the general scenario of PU learning with a small positive training set 
P. Let us denote a space ψ that represents the whole positive class, which is located 
above the hyperplane H2. The small positive set P only occupies a relatively small 
subspace SP in ψ (SP⊆ ψ), shown as the oval region in the figure. The examples in 
the unlabelled set U consists of both hidden positive examples (represented by circled 
“+”) and hidden negative examples (represented by “-”). Since P is small, and ψ 
contains positive examples from different web sites that present similar products in 
different styles and focuses, we may not expect the distributions of the positive 
examples in P and those of the hidden positive examples in U to be the same. In other 
words, the set of hidden positive examples that we are trying to detect may have a 
very small intersection or is even disjoint with SP. If we naively use the small set P as 
the positive training set and the entire unlabelled set U as the negative set, the 
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resulting classifier (corresponds to hyperplane H1) will obviously perform badly in 
identifying the hidden positive examples in U. 

On the other hand, we can attempt to use the more sophisticated PU learning 
methods to address this problem. Instead of merely using the entire unlabelled set U 
as the negative training data, the first step of PU learning extracts some reliable 
negatives from U. However, this step is actually rather difficult in our application 
scenario as depicted in Figure 1. Since the hidden positive examples in U are likely to 
have different distributions from those captured in the small positive set P, not all the 
training examples in U that are dissimilar to examples in P are negative examples. As 
a result, the so-called reliable negative set that the first step of PU learning extracts 
based on dissimilarity from P would be a very noisy negative set, and therefore not 
very useful for building a reliable classifier. 

 

Fig. 1. PU learning with a small positive training set 

Let us consider the possibility of extracting a set of likely positive examples (LP) 
from the unlabeled set U to address the problem of P’s being not sufficiently 
representative of the hidden positive documents in U. Unlike P, the distribution of LP 
will be similar with the other hidden positive examples in U. As such, we could 
expect that a more accurate classifier can be built with the help of set LP (together 
with P). Pictorially, the resulting classifier would correspond to the optimal 
hyperplane H2 shown in Figure 1. Instead of trying to identify a set of noisy negative 
documents from the unlabeled set U as existing PU learning techniques do, our 
proposed technique LPLP therefore focuses on extracting a set of likely positive 
documents from U.  

While the positive documents in P and the hidden positive documents in U were 
not drawn from the same distribution, they should still be similar in some underlying 
feature dimensions (or subspaces) as they belong to the same class. For example, the 
printer pages from two different sites, say amazon.com and cnet.com, would share the 
representative word features such as “printer”, “inkjet”, “laser”, “ppm” etc, though 
their respective distributions may be quite different. Particularly, the pages from 
cnet.com whose target readers are more technically-savvy may contain more frequent 
mentioning of keyword terms that correspond to the technical specifications of 
printers than those pages from amazon.com whose primary focus is to reach out to the 
less technically-inclined customers. However, we can safely expect that the basic 
keywords (representative word features) that describe computer printers should be 
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presented in both cases. In this work, we therefore assume that the representative 
word features for the documents in P should be similar to those for the hidden 
positive documents in U. If we can find such a set of representative word features 
(RW) from the positive set P, then we can use them to extract other hidden positive 
documents from U. 

We are now ready to present the details of our proposed technique LPLP. In 
Section 3.1, we first introduce a method to select the set of representative word 
features RW from the given positive set P. Then, in Section 3.2, we extract the likely 
positive documents from U and probabilistically label them based on the set RW. 
With the help of the resulting set LP, we employ the EM algorithm with a good 
initialization to build an accurate classifier to identify the hidden positive examples 
from U in Section 3.3. 

3.1   Selecting a Set of Representative Word Features from P 

As mentioned above, we expect the positive examples in P and the hidden positive 
examples in U share the same representative word features as they belong to the same 
class. We extract a set RW of representative word features from the positive set P 
containing the top k words with the highest s(wi) scores. The scoring function s() is 

based on TFIDF method [11] which 
gives high scores to those words that 
occur frequently in the positive set P 
and not in the whole corpus UP∪  since 
U contains many other unrelated 
documents. Figure 2 shows the 
detailed algorithm to select the 
keyword set RW. 

In step 1, we initialize the 
representative word set RW and 
unique feature set F as empty sets. 
After removing the stop words (step 3) 
and performing stemming (step 4) 
[11], all the word features are stored 
into the feature set F. For each word 
feature wi in the positive set P, steps 6 
to 8 compute the accumulated word 
frequency (in each document dj, the 
word wi’s frequency N(wi,dj) is 
normalized by the maximal word 
frequency of dj in step 7). Steps 9 to 
10 then compute the scores of each 
word feature, which consider both wi’s 
probabilities of belonging to a positive 
class and its inverted document 

frequency, where df(wi, P) and df(wi, U) are wi’s document frequencies in P and U 
respectively. After ranking the scores into the rank list L in step 11, we store into RW 
those word features from P with top k scores in L. 

1. RW = , F = ;
2. For each word feature iw P
3. If (stopwords ( iw )!=true)
4. F = F {stemming( iw )};
5. total=0; 
6. For each word feature Fwi
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Fig. 2. Selecting a set of representative word 
features from P 
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3.2   Identifying LP from U and Probabilistically Labeling the Documents in LP  

Once the set RW of representative keywords is determined, we can regard them 
together as a representative document (rd) of the positive class. We then compare the 
similarity of each document di in U with rd using the cosine similarity metric [11], 

which automatically produces a set LP of 
probabilistically labeled documents with 
Pr(di|+) > 0. The algorithm for this step 
is given in Figure 3. In step 1, the likely 
positive set LP and the remaining 
unlabelled set RU are both initialized as 
empty sets. In steps 2 to 3, each 
unlabeled document di in U is compared 
with rd using the cosine similarity. Step 
4 stores the largest similarity value as m. 
For each document di in U, if its cosine 
similarity sim(rd, di)>0, we assign a 
probability Pr(+|di) that is based on the 
ratio of its similarity and m (step 7) and 
we store it into the set LP in step 8. 
Otherwise, di is included in RU  
instead (step 10). The documents in  
RU have zero similarity with rd and can 
be considered as a purer negative set 
than U. 

Note that in step 7, the hidden positive examples in LP will be assigned high 
probabilities while the negative examples in LP will be assigned very low 
probabilities. This is because the representative features in RW were chosen based on 
those words that occurred frequently in P but not in the whole corpus UP∪ . As such, 
the hidden positive examples in LP should also contain many of the features in RW 
while the negative examples in LP would contain few (if any) of the features in RW.  

3.3   The Classification Algorithm 

Next, we employ the naïve Bayesian framework to identify the hidden positives in U. 
Given a set of training documents D, each document is considered an list of words 
and each word in a document is from the vocabulary V = < w1, w2, … , w|v| > . We 
also have a set of predefined classes, C={c1, c2, … , c| C |} For simplicity, we will 
consider two class classification in this discussion, i.e. C={c1, c2}, c1=“+” and c2=“-”. 
To perform classification for a document di, we need to compute the posterior 
probability, Pr(cj|di), cj∈{+,-}. Based on the Bayesian probability and the multinomial 
model [12], we have 
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Fig. 3. Probabilistically labeling a set of 
documents 
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Here, Pr(cj|di)∈{0,1} depending on the class label of the document.  
Assuming that the probabilities of words are independent given the class, we 

obtain the naïve Bayesian classifier:  
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In the naive Bayesian classifier, the class with the highest Pr(cj|di) is assigned as 
the class of the document. The NB method is known to be an effective technique for 
text classification even with the violation of some of its basic assumptions (e.g class 
conditional independence) [13] [14] [1].  

The Expectation-Maximization (EM) algorithm is a popular class of iterative 
algorithms for problems with incomplete data. It iterates over two basic steps, the 
Expectation step, and the Maximization step. The Expectation step basically fills in 
the missing data, while the Maximization step then estimates the parameters. When 
applying EM, equations (1) and (2) above comprise the Expectation step, while 
equation (3) is used for the Maximization step. Note that the probability of the class 
given the document now takes the value in [0, 1] instead of {0, 1}. 

The ability of EM to work with 
missing data is exactly what we need 
here. Let us regard all the positive 
documents to have the positive class 
value “+”. We want to know the class 
value of each document in the unlabeled 
set U. EM can help to properly assign a 
probabilistic class label to each 
document di in the unlabeled set, i.e., 
Pr(+|di) or Pr(-|di). Theoretically, in EM 
algorithm, the probabilities of 
documents in U will converge after a 
number of iterations [4]. However, a 
good initialization is important in order 
to find a good maximum of the 
likelihood function. For example, if we 
directly use P as positive class and U as 
negative class (initially), then EM 
algorithm will not build an accurate 
classifier as the negative class would be 
too noisy (as explained previously). 
Thus, in our algorithm, after extracting 
likely positive set LP, we re-initialize 
the EM algorithm by treating the 
probabilistically labeled LP 
(with/without P) as positive documents. 
The resulting classifier is more accurate 

1. For each di RU,
2. Pr(+ | di) = 0; 
3. Pr(- | di) = 1; 
4. PS = LP  P (or LP);
5. For each dj PS
6. If dj P
7. Pr(+ | dj) = 1; 
8. Pr(- | dj) = 0; 
9. Else
10. Pr(+ | dj ) = mdrdsim j /),( ;
11. Pr(- | dj ) = 0; 
12. Build an NB-C classifier C using PS

and RU based on equations (1), (2);  
13. While classifier parameters change 
14. For each di PS RU
15. Compute Pr(+|di) and Pr(-|di)

using NB-C, i.e., equation (3); 
16. Update Pr(cj) and Pr(wt|cj) by 

replacing equations (1) and (2) 
with the new probabilities 
produced in step 15 (a new NB-
C is being built in the process) 

 

Fig. 4. The detailed LPLP algorithm 
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because 1) LP has the similar distributions with other hidden positive documents in U, 
and 2) the remaining unlabeled set RU is also much purer than U as a negative set. 

The detailed LPLP algorithm is given in Figure 4. The inputs to the algorithm are 
LP, RU and P. Steps 1 to 3 initialize the probabilities for each document di in RU, 
which are all treated as negative documents initially. Step 4 sets the positive set PS; 
there are two possible ways to achieve this: we either (1) combine LP and P as PS, or 
(2) use only LP as PS. We will evaluate the effect of the inclusion of P in PS in the 
next section. Steps 5 to 11 will assign the initial probabilities to the documents in P (if 
P is used) and LP. Each document in P is assigned to the positive class while each 
document in LP is probabilistically labeled using the algorithm in Figure 3. Using PS 
and RU, a NB classifier can be built (step 12). This classifier is then applied to the 
documents in (LP ∪ RU) to obtain the posterior probabilities (Pr(+|di) and Pr(-|di)) 
for each document (step 15). We can then iteratively employ the revised posterior 
probabilities to build a new (and better) NB classifier (step 16). The EM process 
continues until the parameters of the NB classifier converge. 

4   Evaluation Experiments 

In this section, we evaluate the proposed LPLP technique under different settings and 
compare it with existing methods, namely, Roc-SVM [2] and PEBL [3]. Roc-SVM is 
available on the Web as a part of the LPU system1. We implemented PEBL ourselves 
as it is not publicly available. The results of S-EM [1] were not included here because 
the performance was generally very poor due to its reliance on similarity of positive 
documents in P and in U, as expected.  

4.1   Datasets 

Our evaluation experiments were done using product Web pages from 5 commercial 
Web sites: Amazon, CNet, PCMag, J&R and ZDnet. These sites contained many 
introduction/description pages of different types of products. The pages were cleaned 
using the web page cleaning technique in [15], i.e., navigation links and 
advertisements have been detected and eliminated. The data contained web pages of 
the following product categories: Notebook, Digital Camera, Mobile Phone, Printer 
and TV. Table 1 lists the number of pages from each site, and the corresponding 
product categories (or classes). In this work, we treat each page as a text document 
and we do not use hyperlinks and images for classification. 

Table 1. Number of Web pages and their classes. 

 Amazon CNet J&R PCMag ZDnet 
Notebook 434 480 51 144 143 
Camera 402 219 80 137 151 
Mobile 45 109 9 43 97 
Printer 767 500 104 107 80 
TV 719 449 199 0 0 

                                                           
1 http://www.cs.uic.edu/~liub/LPU/LPU-download.html 
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Note that we did not use standard text collections such as Reuters 2  and 20 
Newsgroup data3 in our experiments as we want to highlight the performance of our 
approach on data sets that have different positive distributions in P and in U.  

4.2   Experiment Settings 

As mentioned, the number of available positively labeled documents in practice can 
be quite small either because there were few documents to start with, or it was tedious 
and expensive to hand-label the training examples on a large scale. To reflect this 
constraint, we experimented with different number of (randomly selected) positive 
documents in P, i.e. |P| = 5, 15, or 25 and allpos. Here “allpos” means that all 
documents of a particular product from a Web site were used. The purpose of these 
experiments is to investigate the relative effectiveness of our proposed method for 
both small and large positive sets. 

We conducted a comprehensive set of experiments using all the possible P and U 
combinations. That is, we selected every entry (one type of product from each Web 
site) in Table 1 as the positive set P and use each of the other 4 Web sites as the 
unlabeled set U. Three products were omitted in our experiments because their |P|<10, 
namely, Mobile phone in J&R (9 pages), TV in PCMag (no page), and TV in ZDnet 
(no page). A grand total of 88 experiments were conducted using all the possible P 
and U combinations of the 5 sites. Due to the large number of combinations, the 
results reported below are the average values for the results from all the combinations. 

To study the sensitivity of the number of representative word features used in 
identifying likely positive examples, we also performed a series of experiments using 
different numbers of representative features, i.e. k = 5, 10, 15 and 20 in our algorithm.  

4.3   Experimental Results 

Since our task is to identify or retrieve positive documents from the unlabeled set U, it 
is appropriate to use F value to evaluate the performance of the final classifier. F 
value is the harmonic mean of precision (p) and recall (r), i.e. F=2*p*r/(p+r). When 
either of p or r is small, the F value will be small. Only when both of them are large, 
F value will be large. This is suitable for our purpose as we do not want to identify 
positive documents with either too small a precision or too small a recall. Note that in 
our experiment results, the reported F values give the classification (retrieval) results 
of the positive documents in U as U is also the test set.  

Let us first show the results of our proposed technique LPLP under different 
experimental settings. We will then compare it with two existing techniques. 

The bar chart in Figure 5 shows the F values (Y-axis) of LPLP using different 
numbers of positive documents (X-axis) and different numbers of representative 
words (4 data series). Recall that we had presented two options to construct the 
positive set PS in step 4 of the LPLP algorithm (Figure 4). The first option is to add 
the extracted likely positive documents (LP) to the original set of positive documents 
P, represented in Figure 5 by “with P”. The second option is to use only the extracted 
likely positive documents as the positive data in learning, i.e., dropping the original  
 

                                                           
2 http://www.research.att.com/~lewis/reuters21578.html 
3 http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes/20_newsgroups.tar.gz 
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Fig. 5. F values of LPLP with different numbers of positive documents 

positive set P (since it is not representative of the hidden positive documents in U). 
This option is denoted by “without P” in Figure 5.  
 
Inclusion of P for constructing PS: If there were only a small number of positive 
documents (|P| = 5, 15 and 25) available, we found that using option 1 (with P) to 
construct the positive set for the classifier is better than using option 2 (without P), as 
expected. However, interestingly, if there is a large number of positive documents 
(allpos in Figure 5), then option 1 is actually inferior to option 2. The reason is that 
the use of a big positive set P, which is not representative of the positive documents in 
U, would have introduced too much negative influence on the final classifier (many 
hidden positive examples in U will be classified as negative class). However, when 
the given positive set P is small, its potential negative influence is much less, and it 
will therefore help to strengthen the likely positive documents by providing more 
positive data. This is a subtle and rather unexpected trade-off here.  
 
Number of positive documents in P: From Figure 5, we also observe that the 
number of the given positive documents in P does not influence the final results a 
great deal. The reason for this is that the computed likely positive documents from U 
are actually more effective positive documents for learning than the original positive 
documents in P. This is a very compelling advantage of our proposed technique as 
this means that the user does not need to label or to find a large number of positive 
examples for effective learning. In fact, as discussed above, we also notice that even 
without using any original positive document in P, the results were very good as well. 
 
Number of representative word features: The results in Figure 5 also showed that 
there is no need to use many representative words for detecting positive documents. 
In general, 5-15 representative words would suffice. Including the less representative 
word features beyond the top k most representative ones would introduce unnecessary 
noise in identifying the likely positive documents in U.  

Next, we compare the results of our LPLP technique with those of the two best 
existing techniques mentioned earlier, namely, Roc-SVM [2] and PEBL [3]. Figure 6 
shows two series of results. The first series, marked “P”, showed the classification 
results of all three methods using all positive documents (“allpos”), without the use of 
the likely positive documents LP as suggested in this paper. In other words, learning 
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was done using only P and U. Note that for the strictest comparison what we have 
shown here are the best possible results for Roc-SVM and PEBL, which may not be 
obtainable in practice because it is hardly possible to determine which SVM iteration 
would give the best results in these algorithms (both Roc-SVM and PEBL algorithms 
run SVM many times). In fact, their results at convergence were actually much worse.  

We can see that PEBL performed better than both LPLP and Roc-SVM. However, 
the absolute F value of PEBL is still very low (0.54). Note also that because of the use 
of “allpos” for training, the LPLP’s result for this was obtained without using the 
likely positive set LP (it is now the EM standard algorithm), hence it was unable to 
perform as well as it should have. 

The second series in Figure 6 shows the comparative results of using the extracted 
likely positive documents instead of P for learning. Here, our LPLP algorithm 
performs dramatically better (F=0.94) even against the best possible results of PEBL 
(F=0.84) and Roc-SVM (F=0.81). Note that here PEBL and Roc-SVM also use the 
likely positive documents LP extracted from U by our method (we boosted the PEBL 
and Roc-SVM for the purpose of comparison). The likely positives were identified 
from U using 10 representative words selected from P. Unlike our LPLP algorithm, 
both Roc-SVM and PEBL do not take probabilistically labels, but only binary labels. 
As such, for these two algorithms, we chose the likely positive documents from U by 
requiring each document (d) to contain at least 5 (out of 10) selected representative 
words. All the likely positive documents identified were then treated as positive 
documents, i.e., Pr(+|d) = 1. We also tried using other numbers of representative 
words in RW and found that 5 words performed well for these two algorithms with 
our datasets. We can see that with the use of the likely positives (set LP) identified by 
our method (instead of P), the classification results of these two existing algorithms 
have also improved dramatically as well. In fact, by using LP instead of P, the 
previously weaker Roc-SVM has caught up so substantially that the best possible 
result of PEBL is only slightly better than that of Roc-SVM now.    

Finally, in Figure 7, we show the comparative results when the number of the 
positive documents is small, which is more often than not the case in practice. Again, 
we see that our new method LPLP performed much better than the best possible  
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results of the two existing methods Roc-SVM and PEBL (which may not be 
obtainable in practice, as explained earlier) when there were only 5, 15, or 25 positive 
documents in P. As explained earlier, including P together with LP (for all the three 
techniques) gave better results when P is small. 

In summary, the results in Figures 6 and 7 showed that the likely positive 
documents LP extracted from U can be used to help boost the performance of 
classification techniques for PU learning problems. In particular, LPLP algorithm 
benefited the most and performed the best. This is probably because of its ability to 
handle probabilistic labels and is thus better equipped to take advantage of the 
probabilistic (and hence potentially noisy) LP set than the SVM-based approaches.   

5   Conclusions 

In many real-world classification applications, it is often the case that not only the 
negative training examples are hard to come by, but the number of positive examples 
available for learning can also be fairly limited as it is often tedious and expensive to 
hand-label large amounts of training data. To address the lack of negative examples, 
many PU learning methods have been proposed to learn from a pool of positive data 
(P) without any negative data but with the help of unlabeled data (U). However, PU 
learning methods still do not work well when the size of positive examples is small.   

In this paper, we address this oft-overlooked issue for PU learning when the 
number of positive examples is quite small. In addition, we consider the challenging 
case where the positive examples in P and the hidden positive examples in U may not 
even be drawn from the same distribution. Existing techniques have been found to 
perform poorly in this setting. We proposed an effective technique LPLP that can 
learn effectively from positive and unlabeled examples with a small positive set for 
document classification. Instead of identifying a set of reliable negative documents 
from the unlabeled set U as existing PU techniques do, our new method focuses on 
extracting a set of likely positive documents from U. In this way, the learning can rely 
less on the limitations associated with the original positive set P, such as its limited 
size and potential distribution differences. Augmented by the extracted probabilistic 
LP set, our LPLP algorithm can build a much more robust classifier. We reported 
experimental results with product page classification that confirmed that our new 
technique is indeed much more effective than existing methods in this challenging 
classification problem. In our future work, we plan to generalize our current approach 
to solve similar classification problems other than document classification.  
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