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Abstract

Motivation: Human microbes get closely involved in an extensive variety of complex human diseases
and become new drug targets. In silico methods for identifying potential microbe-drug associations
provide an effective complement to conventional experimental methods, which can not only benefit
screening candidate compounds for drug development, but also facilitate novel knowledge discovery for
understanding microbe-drug interaction mechanisms. On the other hand, the recent increased availability
of accumulated biomedical data for microbes and drugs provides a great opportunity for a machine learning
approach to predict microbe-drug associations. We are thus highly motivated to integrate these data
sources to improve prediction accuracy. In addition, it is extremely challenging to predict interactions for
new drugs or new microbes, which have no existing microbe-drug associations.
Results: In this work, we leverage various sources of biomedical information and construct multiple
networks (graphs) for microbes and drugs. Then, we develop a novel ensemble framework of graph
attention networks with a hierarchical attention mechanism for microbe-drug association prediction from
the constructed multiple microbe-drug graphs, denoted as EGATMDA. In particular, for each input graph,
we design a graph convolutional network with node-level attention to learn embeddings for nodes (i.e.,
microbes and drugs). To effectively aggregate node embeddings from multiple input graphs, we implement
graph-level attention to learn the importance of different input graphs. Experimental results under different
cross-validation settings (e.g., the setting for predicting associations for new drugs) showed that our
proposed method outperformed seven state-of-the-art methods. Case studies on predicted microbe-drug
associations further demonstrated the effectiveness of our proposed EGATMDA method.
Availability: Source codes and supplementary materials are available at: https://github.com/

longyahui/EGATMDA/

Contact: luojiawei@hnu.edu.cn and xlli@i2r.a-star.edu.sg
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Accumulated clinical and experimental reports confirm that human
microbes residing in and on the human body have close interactions with

human hosts (Huttenhower et al., 2012; Sommer and Bäckhed, 2013).
Microbe communities, mainly comprised of bacteria, viruses, archaea,
fungi, and protozoa, are shown to play a fundamental role in maintaining
human health, such as facilitating the metabolism (Ventura et al., 2009),
producing essential vitamins and gene products (Kau et al., 2011), and
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protecting against invasion from pathogens (Sommer and Bäckhed, 2013).
Therefore, the dysbiosis or imbalance of microbe communities can lead to
various human infection diseases (Huttenhower et al., 2012; Sommer and
Bäckhed, 2013), such as obesity (Zhang et al., 2009), diabetes (Wen et al.,
2008), systemic inflammatory response syndrome (Mshvildadze et al.,
2010) and even cancer (Schwabe and Jobin, 2013). As such, microbe is
considered as a new therapeutic target for precision medicine (Kashyap
et al., 2017).

However, with the increasing emergence of drug-resistant microbes,
there is an urgent need to identify microbe-drug associations on a large
scale for drug development. Recent studies have shown that microbes play
an important role in modulating drug activity and toxicity (Zimmermann
et al., 2019; Lewis and Strandwitz, 2019), and drugs can also, in turn,
change the diversity and function of microbe communities. Furthermore,
more and more microbe-drug associations have been reported in the
literature. For example, Haiser et al. (2013) demonstrated that gut
Actinobacterium Eggerthella lenta can result in the inactivation of the
cardiac drug digoxin. In addition, the microbial β-glucuronidases in the
gut assisted the treatment of irinotecan for colorectal cancer by reactivating
the excreted, inactive metabolite (Guthrie et al., 2017). Zimmermann
et al. (2019) revealed that gut bacterium Bacteroides thetaiotaomicron is
a prolific drug metabolizer, which can metabolize multiple kinds of drugs,
such as diltiazem. While these microbe-drug associations are detected
based on experimental methods, it is actually very difficult for them to
select target microbes, leading to slow progress for developing new drugs.
To tackle this problem, most efforts have been devoted to the optimization
or combination of already known compounds (i.e. drug repurposing and
drug combination) (Durand et al., 2019). However, the emerging of drug-
resistance brings a new challenge for drug development. It is thus highly
desired to develop an effective method to infer candidate target microbes
for new drugs, which is essential for drug discovery and repositioning,
as well as personalized medicine. As conventional wet-lab experiments
are time-consuming, labor-intensive and expensive, in silico methods can
thus serve as promising complements to computationally provide accurate
predictions of microbe-drug associations.

Recently, a database called MDAD has been curated for clinically and
experimentally verified microbe-drug associations (Sun et al., 2018). In
addition, we can further derive potential microbe-drug associations by
linking the microbe-disease associations and drug-disease associations
from public databases, such as DrugBank and Disbiome. As graphs are
well-known structure to capture different kinds of relationships, we can
use different graphs to model the microbe-drug associations derived from
different sources. The above graph data for microbes and drugs provide a
golden opportunity for us to leverage graph-based deep learning techniques
for predicting their associations. In particular, graph attention network
(GAT) (Veličković et al., 2017) shows great potential in modeling complex
graph data, which has been successfully applied for node classification
(Wang et al., 2019), social influence analysis (Qiu et al., 2018) and
recommender system (Wu et al., 2019). It is thus natural for us to
customize GAT for novel microbe-drug association prediction. However,
there currently exist two main challenges in this important task. Firstly,
with the limitation of screening technologies, many drugs or microbes
do not have known microbe-drug associations, which are denoted as
new drugs or new microbes. As we have no training data for these new
drugs or microbes, it is thus very challenging for the trained model (e.g.,
GAT) to predict their associations. Secondly, as we mentioned above,
we construct multiple graphs for microbes and drugs. Different graphs
may have different biological meanings and the same node (i.e., microbe
or drug) may play different roles in different graphs. How to effectively
integrate multiple graphs remains a computational challenge.

To address the above issues, we propose a novel ensemble framework
of graph attention networks for microbe-drug association prediction,

named EGATMDA as shown in Figure 1. First, we derive comprehensive
features for both microbes and drugs. More importantly, we extract
potential or virtual microbe-drug associations for new drugs (microbes)
based on the meta-paths in different input graphs. For example, we generate
virtual microbe-drug associations using the meta-path ‘microbe-disease-
drug’ in microbe-disease-drug network as shown in Figure 1. With the
derived features and virtual interactions for new drugs (microbes), GAT is
thus able to propagate the information from local neighbors to learn their
representations and then make reasonable predictions for them. Second,
we develop a hierarchical attention mechanism, i.e., node-level attention
and graph-level attention, to learn node representations from multiple
graphs. In particular, we design a graph attention network with node-
level attention to learn representations for nodes (i.e., microbes and drugs)
in each input graph. To effectively aggregate the node representations
from multiple input graphs, we further implement graph-level attention to
learn the importance of different input graphs. Experimental results under
different cross-validation settings showed that our method consistently
outperformed seven state-of-the-art methods.

Overall, our main contributions are summarized as follows.

• We constructed three different genres of networks and also derived
comprehensive features for microbes and drugs, enabling accurate
predictions for new drugs and new microbes.

• We proposed a novel ensemble framework of graph attention
networks for predicting microbe-drug associations. To the best of our
knowledge, this is the first attempt to adopt graph attention network
(GAT) to tackle this important problem.

• We designed a hierarchical attention mechanism in our ensemble
framework to effectively learn node embeddings from multiple input
graphs for microbe-drug association prediction.

• Our comprehensive experimental results and case studies demonstrated
the proposed EGATMDA method outperformed seven state-of-the-art
methods significantly on the benchmark MDAD dataset.

2 Related Work
In this section, we first present graph neural networks, including graph
convolutional networks (GCN) and graph attention networks (GAT), and
their applications in bioinformatics. To our best knowledge, so far no work
has used GCN or GAT for predicting microbe-drug associations.

Graph Convolutional Network (GCN) (Kipf and Welling, 2016),
which aims to learn node embeddings/representations by implementing
convolution operation on a graph based on the properties of neighborhood
nodes, has recently drawn extensive attention and demonstrated superior
performance in various tasks, such as text classification (Yao et al., 2019),
recommender system (Liu et al., 2020) and relation extraction (Cai et al.,
2020; Zhang et al., 2018). Graph Attention Networks (GAT) (Veličković
et al., 2017; Wang et al., 2019) is an extension of graph convolutional
operations, which assigns different weights to different neighbors with
masked self-attentional layers. This operation enables the model to filter
our noise and focus on more important neighbors. Due to the powerful
capability, graph attention networks have been successfully applied for
node/text classification (Wang et al., 2019; Linmei et al., 2019), social
influence analysis (Qiu et al., 2018) and recommender system (Wu et al.,
2019).

Recently, researchers have developed numerous GCN/GAT-based
approaches to tackle various bioinformatics tasks. For example, Zitnik
et al. (2018) used a graph convolutional network for predicting
polypharmacy side effects based on multimodal data. Additionally, Zhao
et al. (2019) proposed a novel framework of graph convolutional attention
network (GCAN) to predict potential disease-RNAs associations. Very
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Fig. 1. The overall architecture of EGATMDA for microbe-drug association prediction.

recently, Han et al. (2019) developed a new framework named GCN-MF
for the identification of disease-gene associations by incorporating graph
convolution network with matrix factorization. Ravindra et al. (2020)
leveraged graph attention networks to deal with the problem of disease
state prediction from single-cell data. While above methods achieved
relatively good prediction performance, they failed to consider abundant
prior biological knowledge, which includes rich semantic information of
nodes. Furthermore, most only focused on the importance of immediate
neighbors (i.e., the first-order neighbor) and ignored the importance of
high-order neighbors in existing GCN/GAT based methods.

3 Materials

3.1 Re-construction of three networks

We collect known microbe-drug associations from the MDAD database
(http://www.chengroup.cumt.edu.cn/MDAD/) (Sun et al.,
2018), where there are 5505 clinically reported or experimentally validated
microbe-drug associations between 1388 drugs and 174 microbes. After
removing redundant information, we finally derive a microbe-drug
bipartite network Net1 (shown at the top of the second column of Figure
1), involving 2470 associations between 1373 drugs and 173 microbes.

We further derive two heterogeneous networks, namely microbe-
drug heterogeneous network and microbe-disease-drug network, from
multiple databases, such as DrugBank (Wishart et al., 2018), HMDAD
(Ma et al., 2017) and CTD (Davis et al., 2019). In particular, microbe-drug
heterogeneous network contains drug-drug interactions and microbe-
microbe interactions and microbe-drug associations. Based on the meta-
paths ‘drug-drug-microbe’ and ‘microbe-microbe-drug’, we can obtain
virtual microbe-drug associations and the corresponding network is
denoted as Net2. On the other hand, microbe-disease-drug network
contains drug-disease associations, microbe-disease associations, and
disease-disease relationships. Similarly, we derive corresponding microbe-
drug networkNet3 based on the meta-path ‘microbe-disease-drug’.Net2
and Net3 with virtual microbe-drug associations can help to better learn
the representations for microbes and drugs. Overall, the statistics of
the three microbe-drug networks above are shown in Table 1. More
information on network construction could be found in the Supplementary
Materials.

Table 1. The statistics for each microbe-drug network.

# Microbes # Drugs # Associations
Net1 173 1373 2470
Net2 123 1228 17182
Net3 29 92 394

For each graph, we define a binary matrix I ∈ Rnd×nm to represent
microbe-drug associations, with nd and nm representing the numbers of
drugs and microbes respectively. If drug di is associated with microbemj ,
Iij is equal to 1; 0 otherwise. Taking Net1 as an example, we define its
adjacent matrix A ∈ R(nd+nm)×(nd+nm) as follows :

A =

[
0 I

IT 0

]
. (1)

3.2 Features for drugs and microbes

We downloaded genome sequences in FASTA format in database NCBI
(https://www.ncbi.nlm.nih.gov/genome/) for 131 out of 173
microbes. In this work, we use one-hot coding to encoder the raw
genome sequences and align each sequence with the longest one with
0 as padding (without losing information). For those microbes without
sequence information available, we define their feature values as the
average ones of all other known microbes. Then, Principal Component
Analysis (PCA) (Chen et al., 2002) is deployed on the binary matrix to
extract more useful features and reduce dimension. We denote the microbe
feature matrix as Fm ∈ Rnm×k with k representing the dimension of
microbe features. For drugs, we treat the integrated similarity, obtained by
aggregating drug structure similarity and Gaussian kernel drug similarity,
as drug features. Then, we obtain a drug feature matrix Fd ∈ Rnd×nd.
The whole process to generate drug features is shown in the first column
of Figure 1 or find more details about drug feature extraction in the section
1.8 in the supplementary materials. In consistent with the bipartite network
in Equation 1, the feature matrix X ∈ R(nd+nm)×(nd+k) for microbes
and drugs is described as follows:

X =

[
Fd 0

0 Fm

]
. (2)

It should be noted that this feature matrix is shared across three input
networks as shown in Figure 1.
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4 Methods
Here we present our proposed EGATMDA framework, which consists
of three steps as shown in the right part of Figure 1. Firstly, we learn
graph-specific node embeddings from each input microbe-drug network.
Secondly, we aggregate the learned node embeddings and focus on
important information (remove irrelevant noise) via graph-level attention.
Finally, we learn a decoder for microbe-drug graph reconstruction based
on the learned representations to predict novel microbe-drug associations.
Next, we introduce each of the above steps in detail.

4.1 Node-level attention for node representation learning

After obtaining the adjacent matrixA in Section 3.1 and feature matrixX
in Section 3.2, we can utilize them to learn node representations. Graph
convolutional network (GCN) is an effective tool for graph-structured
data and successfully applies to various real-world applications. Here,
we first leverage GCN to learn the node representations by aggregating
representations of their immediate neighbors. Suppose that every node is
connected to itself (i.e. self-loop), the normalized adjacent matrix Ã of
A could be defined as Ã = D−

1
2AD−

1
2 , where D is a diagonal matrix

with diagonal elements being Dii =
∑n
j=1 Aij . Feature matrix X is

normalized to avoid bias introduced by different nodes. After that, the
graph convolutional layer, i.e., the first layer, is formulated as follows:

HΦ = ReLU(ÃXWc +B), (3)

where HΦ ∈ R(nd+nm)×l is representation matrix of graph Φ, with
l representing embedding dimension; Wc ∈ R(nd+nm)×l and B ∈
R(nd+nm)×l are trainable parameters and bias matrices, respectively.

After the graph convolution layer, we derive the node representations
in Equation 3. We further introduce a graph attention layer to update the
node representations based on graph attention network (GAT) (Wang et al.,
2019; Linmei et al., 2019), which aims to preserve the importance of the
neighbors for node representation learning. Given a node, GAT first learns
the importance of its neighbors, and subsequently fuse the features of
all the neighbors according to their attention scores. In particular, the
attention score eΦij for an association pair between drug di and microbe
mj is computed by a fully connected neural network in Equation 4:

eΦij = (Wthj)
T tanh

(
(Wthi + b)

)
, (4)

where h represents the node representation derived from the graph
convolutional layer; Wt and b are trainable weight and bias parameters
respectively, which are both shared for all graph-specific microbe-drug
pairs. We further normalized the attention scores using the following
softmax function, whereNΦ

i is the set of neighbors of node i.

αΦ
ij =

exp(eΦij)∑
k∈NΦ

i
exp(eΦik)

. (5)

Eventually, we derive ZΦ ∈ R(nd+nm)×l as the representation
matrix of graph Φ, where the graph-specific representation of node i,
zΦ
i , is derived as follows:

zΦ
i = σ

( ∑
j∈NΦ

i

αΦ
ij · hj

)
, (6)

where σ denotes the nonlinear activation function, i.e., ReLU.

4.2 Graph-level attention for representation aggregation

Each node (i.e. microbe and drug) in different graphs may include diverse
semantic information. In order to effectively integrate the information and

remove noise from different graphs, we propose a graph-level attention
mechanism to aggregate multiple graph-specific representations for each
node. Given a node, it has an input feature vector as shown in Equation 2
and a graph-specific representation in Equation 6. Empirically, greater
relevance between these two types of features/representations indicate
that the graph would play a more important role in driving the final
representation for the node. Therefore, we learn the importance of each
graph according to the relevance between the above two types of features
for all the nodes. The attention score is defined as follows.

wΦ
i =

∑
i

vT tanh(Wz · zΦ
i +Wx · xi), (7)

where zΦ
i and xi are the graph-specific representation and input feature

vector for node i, respectively. Wz and Wx are trainable parameter
matrices and v is also a trainable vector. wΦ

i is the attention score
of graph Φ, indicating the importance of the representation zΦ

i to the
final representation of node i . To make coefficients of different graphs
comparable, we normalize the attention scores for all the graphs using the
softmax function in Equation 8.

βΦ
i =

exp(wΦ
i )

T∑
ϕ=1

exp(wϕi )

, (8)

where T denotes the number of graphs. We then obtain the final
representation matrix Y ∈ R(nd+nm)×l for each node by aggregating
the graph-specific representations as follows:

Y =

[
Yd
Ym

]
=

T∑
Φ=1

βΦ · ZΦ. (9)

4.3 Decoder for microbe-drug association reconstruction

We attain the learned feature matrices Ym ∈ Rnm×l for microbes and
Yd ∈ Rnd×l for drugs in Equation 9. Inspired by inductive matrix
completion (Jain and Dhillon, 2013), we reconstruct an adjacent matrix
for microbe-drug associations in Equation and define the loss function in
Equation 11:

A
′

= YdWd(YmWm)T , (10)

LREC =
∑

(i,j)∈P∪N
Θ(A

′
ij , Aij), (11)

whereWd ∈ Rnd×r andWm ∈ Rnm×r are trainable latent factors that
are used to project learned embeddings back to original feature space for
drugs and microbes. In addition, Θ is the MSE loss (i.e., mean square
error), and P and N denote the sets of positive samples and negative
samples, respectively.

4.4 Overall loss and optimization

Our EGATMDA model has a few parameters, such as Wd, Wm, Wc

and B. To limit their impact on the model, we add a regularization term
denoted asLΩ in Equation 12. Therefore, the overall loss functionLTotal
is defined in Equation 13.

LΩ = ‖Wd‖2 + ‖Wm‖2 + ‖Wc‖2 + ‖B‖2, (12)

LTotal = LREC + γLΩ, (13)

where γ represents a weight factor. In this work, we deploy the Adam
optimizer (Kingma and Ba, 2019) for the optimization. Finally, we use the
scores in the reconstructed matrix A

′
to prioritize the unknown pairs for

microbe-drug association prediction.
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Table 2. The AUC and AUPR obtained under CVS1, CVS2 and CVS3 settings in 5-fold CV. The best results are marked in bold and the second best is underlined.

Methods
CVS1 CVS2 CVS3

AUC AUPR AUC AUPR AUC AUPR

HMDAKATZ 0.9365± 0.0073 0.9305± 0.0064 0.9146± 0.0246 0.9319± 0.0142 0.5376± 0.0448 0.5687± 0.0598

IMCMDA 0.7334± 0.0185 0.8038± 0.0215 0.6933± 0.0216 0.7692± 0.0321 0.5281± 0.0321 0.5272± 0.0412

NTSHMDA 0.8993± 0.0137 0.8965± 0.0149 0.9259± 0.0149 0.9347± 0.0085 0.5732± 0.0296 0.6533± 0.0299

GCMDR 0.8938± 0.0137 0.8956± 0.0142 0.8665± 0.0134 0.8486± 0.0152 0.5234± 0.0312 0.5032± 0.0123

NetLapRLS 0.9372±0.0078 0.9381±0.0085 0.9263±0.0125 0.9467±0.0086 0.5483±0.0554 0.5622±0.0569

BLM-NII 0.9136±0.0484 0.9394±0.0299 0.9488±0.0090 0.9697±0.0056 0.6459±0.0541 0.6789±0.0637

WNN-GIP 0.7799±0.0677 0.8587±0.0456 0.9356±0.0170 0.9445±0.0178 0.7503±0.0159 0.7536±0.0163

EGATMDA 0.9586±0.0083 0.9460±0.0112 0.9562±0.0088 0.9386±0.0179 0.8232±0.0671 0.7655±0.0534

5 Experimental Results
Here extensive experiments have been carried out to evaluate the
performance of our proposed EGATMDA model on MDAD database.
Next, we first briefly introduce the experimental setup and then
demonstrate the performance of our model by comparing it with seven
state-of-the-art methods, under three different cross-validation settings.

5.1 Experimental setup

In this work, we conducted standard 5-fold cross-validation (CV) under
the following three different settings:

• CVS1 (overall testing): CV on microbe-drug pairs—random known
entries in A (i.e., microbe-drug pairs) are selected for testing.

• CVS2 (horizontal testing for drugs): CV on drugs—random rows in
A (i.e., drugs) are blinded for testing.

• CVS3 (vertical testing for microbes): CV on microbes—random
columns in A (i.e., microbes) are blinded for testing.

For CVS1, we randomly divide known microbe-drug associations
pairs into five groups. For each round, one group of microbe-drug
associations (i.e., positive samples) with an equal-size set of unknown
randomly sampled pairs (i.e., negative samples) are treated as test samples
in turn. And the remaining four groups microbe-drug pairs together with
the same number of unknown pairs are used for training. Similarly for
CVS2 and CVS3, we randomly select 20% rows and columns as test
data respectively. Then, the performance is evaluated by two well-known
metrics that are extensively utilized for link prediction, namely, area under
ROC curve (AUC) and area under precision-recall curve (AUPR). For a fair
comparison, each experiment is conducted for 10 times, and the final AUC
and AUPR scores are calculated by the average over the 10 repetitions.
Note that the CV settings CVS2 and CVS3 are designed to evaluate the
capability of a method to identify the microbe-drug associations for new
drugs and new microbes respectively.

5.2 Comparison with state-of-the-art methods

As microbe-drug association prediction is a new problem, few
computational approaches have been presented for this important task.
We compare our method with seven state-of-the-art methods that
were proposed for different link prediction problems in the field of
computational biology.

• HMDAKATZ (Zhu et al., 2019) is KATZ measure based computational
method, developed for microbe-drug prediction.

• NTSHMDA (Luo and Long, 2018) is a random walk with restart based
model, proposed to predict microbe-disease associations.

• IMCMDA (Chen et al., 2018) is a matrix completion based model for
microRNA-disease association prediction.

• GCMDR (Huang et al., 2019) is a graph convolution network based
model for identifying miRNA-drug resistance relationships.

• NetLapRLS (Xia et al., 2010) is a Laplacian regularized least squares
(LapRLS) based method for drug-target interaction prediction.

• BLM-NII (Mei et al., 2012) is a bipartite local model with Neighbor-
based Interaction profile Inferring for drug-target interaction
prediction.

• WNN-GIP (Van Laarhoven and Marchiori, 2013) is a weighted
nearest neighbor-Gaussian interaction profile model, developed for
drug-target interaction prediction.

For a fair comparison, we ran seven state-of-the-art methods on MDAD
dataset with their default parameters. For CVS1, our EGATMDA model
achieves the best performance in terms of both AUC and AUPR as shown
in Table 2, indicating it is effective for identifying novel microbe-drug
associations. For CVS2, our method achieves the best average AUC score,
while it achieves a lower AUPR than NetLapRLS and BLM-NII. Note that
CVS3 simulates the microbe-drug association prediction for new microbes.
Under this scenario, our EGATMDA model attains the best AUC value of
0.8232 and AUPR value of 0.7655, which are 9.72% and 1.58% better than
the second best method WNN-GIP. While all the above results are based
on 5-fold CV, we also report the performance of various methods using 2-
fold CV and 10-fold CV in Supplementary Table S1. Overall, our method
outperforms other methods for microbe-drug association prediction under
different scenarios.

We can observe that the performance of various methods under the
CVS2 setting is significantly better than that under CVS3 as shown in
Table 2. As the number of microbes (173) is much smaller than that of drugs
(1373), the drug similarity matrix (1373×1373) is thus more informative
than the microbe similarity matrix (173×173). Hence, the information
propagated from neighbors to new drugs is expected to be more abundant
and accurate than new microbes. In addition, the performance of various
methods under CVS1 is generally superior to that under CVS2 and CVS3
except BLM-NII and WNN-GIP. For new drugs and new microbes, we
have no microbe-drug associations in training data for them, which results
in lower performance under CSV2 and CSV3.

5.3 The influence of different data sources

Recall that we construct three different genres of microbe-drug networks
as shown in Table 1, as inputs to collectively learn node representations.
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Here, we conduct an ablation study to evaluate the impact of each network
for microbe-drug association prediction. Specifically, we evaluate the
performance of the model in 5-fold CV by leveraging diverse combination
of three networks as inputs. As shown in Table 3, we can uncover that
the best performance reaches when three networks are simultaneously
fed to the model, indicating that all of three different sources of existing
biomedical data are useful and can boost the prediction performance.

The original microbe-drug bipartite network Net1 plays the most
important role, as it achieves higher AUC and AUPR values than two other
networks. In addition, we can conclude that Net2 constructed from the
microbe-drug heterogeneous network contributes more than Net3 that is
derived from the microbe-disease-drug heterogeneous network. The main
reason is thatNet3 is extremely sparse with a limited number of microbes
and drugs.

Table 3. Performance comparison among different network combinations under
the setting CVS1.

Networks AUC AUPR
Global Net 0.8943±0.0114 0.8835±0.0153

Net1 0.9527±0.0054 0.9189±0.0174
Net2 0.9126±0.0140 0.9075±0.0196
Net3 0.8677±0.0142 0.8473±0.0157

Net1 +Net2 0.9551±0.0054 0.9300±0.0145
Net1 +Net3 0.9542±0.0112 0.9170±0.0126
Net2 +Net3 0.9139±0.0127 0.8942±0.0197

Net1 +Net2 +Net3 0.9586±0.0083 0.9460±0.0112

In particular, Global Net represents the global network that is
constructed by integrating Net1, Net2 with Net3. As Global Net
is a single network, we can only run the node-level attention to learn
node representations. As shown in Table 3, Global Net achieves
much lower performance than Net1 + Net2 + Net3, indicating that
our ensemble framework with graph-level attention indeed boosts the
prediction performance. The results of the ablation study under CVS2
and CVS3 can be found in Supplementary Table S2, from which we can
draw similar conclusions.

5.4 Analysis of hierarchical attention mechanism

Our EGATMDA model consists of dual attention, including node-level
attention and graph-level attention. The goal of these two attention is to
learn the importance of graph-specific neighbors and graphs, respectively.
Here, we conduct an ablation study to evaluate their impact on the
performance. In particular, we derive the following model variants for
ablation study:

• EGATMDA-G: it uses graph-level attention only, i.e., it uses a random
matrix instead of the node-level attention matrix in Equation 5.

• EGATMDA-N: it uses node-level attention only, i.e., it uses equal
weight instead of bias weight in Equation 8 for graph-level attention.

Fig.2 shows that both EGATMDA-G and EGATMDA-N achieve
consistently worse performance than EGATMDA under three CV settings,
indicating that both node-level and graph-level attention are effective in
capturing different semantic information of nodes in different networks.
In addition, we can observe that graph-attention plays a more crucial role
than node-attention, as EGATMDA-N achieves lower performance than
EGATMDA-G.

5.5 Parameter sensitivity analysis

Several important parameters influence the model performance, such as
the original feature dimension of microbes k, the size of latent factor

AUC AUPR
0.85

0.9

0.95

1

A
U

C
(5

-f
ol

d 
C

V
)

EGATMDA-G
EGATMDA-N
EGATMDA

(a) CVS1
AUC AUPR

0.85

0.9

0.95

1

A
U

C
(5

-f
ol

d 
C

V
)

EGATMDA-G
EGATMDA-N
EGATMDA

(b) CVS2
AUC AUPR

0.5

0.6

0.7

0.8

0.9

1

A
U

C
(5

-f
ol

d 
C

V
)

EGATMDA-G
EGATMDA-N
EGATMDA

(c) CVS3

Fig. 2. Comparative analysis between EGATMDA and its variants.

l in GCN and weight factor γ. It should be noted that we perform the
parameter sensitivity analysis using 5-fold CV for all parameters. Fig.3
shows the AUC results under CVS1.

k determines the original feature information for microbes to be
fed to the model. We select its value from {8, 16, 32, 64, 128, 173}
to evaluate its impact. Fig.3(a) indicates that a large or small value
of k is not good for the model performance. The best performance is
achieved when k is set as 64. To determine the influence of latent factor
dimension l, we evaluate the performance of the model by varying l in
the range of {8, 16, 32, 64, 128, 256, 512, 1024}. As shown in Fig.3(b),
the performance first slightly increases and then decreases with l being
increased. In particular, the best performance is achieved when l is set as 64.
Lastly, the weight factor γ in our model is used to control the contribution
of the regularization term in Equation 12 (i.e. the regularization for the
weight matrices in the encoder and decoder). In our experiment, we vary
γ from 0.000005 to 0.5 with a step value of 10. From Fig.3(c), we can
observe that the best performance is achieved when γ is around 0.0005 and
the performance decreases if we further increase the value ofγ. In addition,
Fig.S2 and Fig.S3 in our supplementary materials show the results under
CVS2 and CVS3, respectively.

8 16 32 64 128 173
0.85

0.9

0.95

1

A
U

C
(5

-f
ol

d 
C

V
)

(a) k
8 16 32 64 128 256 215 1024

0.8

0.85

0.9

0.95

1

A
U

C
(5

-f
ol

d 
C

V
)

(b) l
5e-6 5e-5 5e-4 5e-3 5e-2 5e-1

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
(5

-f
ol

d 
C

V
)

(c) γ
Fig. 3. Parameter sensitivity under CVS1 for (a) k, (b) l and (c) γ.

5.6 Case study

To further confirm the effectiveness of EGATMDA, we apply our model on
two popular drugs, i.e., Ciprofloxacin and Moxifloxaxin, and two microbes,
i.e., Pseudomonas aeruginosa and Escherichia coli, for our case studies.
For each of them, we reset all known entries as unknown to simulate the
prediction for new microbes and new drugs. Then, we prioritize candidate
microbes (or drugs) according to their predicted scores. We evaluate the
performance of the model by verifying the top 10, 20, and 50 predicted
candidate microbes (or drugs) using a literature search.

Particularly, drug Ciprofloxacin is a fluoroquinolone antibacterial
agent (Davis et al., 1996), which mainly treats Gram-negative pathogens-
causing infectious diseases. An increasing number of reports have
indicated that it closely interacts with an extensive range of human
microbes. For example, Gollapudi et al. (1998) demonstrated that
Ciprofloxacin can inhibit Human immunodeficiency virus 1 (HIV-1),
which is predicted by our model to be the best possible candidate microbe
for Ciprofloxacin. Hacioglu et al. (2019) confirmed that Ciprofloxacin can
generate activity against Candida albicans. Kim and Woo (2017) showed
that Enterococcus faecalis is a high-level Ciprofloxacin-resistant microbe.
Eventually, the results indicated that 10, 18 and 45 out of top 10, 20,
and 50 predicted Ciprofloxacin-associated microbes can be validated by
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Table 4. The top 20 predicted Ciprofloxacin-associated microbes. The first column records top 10 microbes, while the third column records top 11-20 microbes.

Microbe Evidence Microbe Evidence
Human immunodeficiency virus 1 PMID:9566552 Plasmodium falciparum PMID:17214980
Candida albicans PMID:31471074 Streptococcus pneumoniae PMID:26100702
Staphylococcus epidermis PMID:10632381 Enteric bacteria PMID:27436461
Staphylococcus epidermidis PMID:28481197 Actinomyces oris Unconfirmed
Enterococcus faecalis PMID:27790716 Serratia marcescens PMID:23751969
Streptococcus mutans PMID:30468214 Streptococcus epidermidis Unconfirmed
Vibrio harveyi PMID:27247095 Listeria monocytogenes PMID:28355096
Salmonella enterica PMID:26933017 Vibrio vulnificus PMID:28971862
Eikenella corrodens PMID:16875802 Burkholderia cenocepacia PMID:27799222
Burkholderia pseudomallei PMID:24502667 Porphyromonas gingivalis PMID: 15231772

previously published literature. The high prediction accuracy, i.e., 100%,
90%, and 90%, indicates that EGATMDA is a very promising tool to
assist the screening of candidate compounds for drug development in
real-life applications. Table 4 shows the top-20 candidate microbes for
Ciprofloxacin. Top-50 Ciprofloxacin-related microbes could be found in
Supplementary Table S3.

On the other hand, drug Moxifloxacin is an extended-spectrum
fluroquinolone antibacterial agent (Balfour and Wiseman, 1999),
which can treat patients with community-acquired pneumonia, acute
exacerbations of chronic bronchitis or acute sinusitis (Balfour and
Lamb, 2000), and skin structure infections (Tulkens et al., 2012).
For example, Grillon et al. (2016) demonstrated that the inferred top
candidate microbe, Pseudomonas aeruginosa, was highly susceptibility
to Moxifloxacin. Greimel et al. (2017) indicated that Moxifloxacin was
an effective candidate treatment compound for the infection caused by
Staphylococcus aureus. Alharbi et al. (2019) found that more than 50% of
Escherichia coli isolates obtained from wound infections were resistant
to Moxifloxacin. As a result, 8, 17, and 38 out of top 10, 20, and
50 predicted candidate microbes related to Moxifloxacin are verified by
existing publications, demonstrating EGATMDA has powerful capability
in identifying potential target microbes for drugs and thus is extremely
helpful for drug repurposing. The top 20 and 50 predicted candidate
microbes for Moxifloxacin are displayed in Table 5 and Supplementary
Table S4.

With regards to microbes, Pseudomonas aeruginosa is a Gram-
negative bacillus that is classified as an opportunistic pathogen (Colmer-
Hamood et al., 2016). It causes frequent disease in patients with underlying
or immunocompromising conditions. Supplementary Table S5 indicated
that among the top 10, 20, and 50 predicted Pseudomonas aeruginosa-
associated candidate drugs, 7, 12, and 25 microbe-drug interactions are
confirmed by published reports, respectively. Finally, Escherichia coli is a
bacterium commonly found in the human intestine (Tenaillon et al., 2010).
Most Escherichia coli are harmless and benefit human health, but some
strains can cause diseases of the gastrointestinal and urinary (Nataro and
Kaper, 1998). The prediction results show that 8, 17, and 38 out of 10, 20,
and 50 Escherichia coli-related candidate drugs are verified from existing
evidences, as shown in Supplementary Table S6.

Overall, the above case study demonstrates our model’s strong
capabilities to accurately predict unknown microbes for existing drugs,
as well as predict unknown drugs for existing microbes.

6 Discussion and conclusion
In this work, we propose a novel end-to-end deep learning model,
named EGATMDA, based on graph neural network to predict new
microbe-drug associations. In order to take full advantage of different
semantic information of nodes from diverse networks, we design a

hierarchical dual attention mechanism, i.e., node-level and graph-level
attention, which can efficiently preserve the importance of graph-specific
neighbors and graphs and remove irrelevant noise. Furthermore, we
combine graph convolutional network with graph attention network to
learn the importance of high-order neighbors in the node-level attention.
In the graph-level attention, a knowledge-aware attention mechanism is
developed, which assigns greater weight values to more useful graphs
for preserving the importance of graphs, leading to more accurate node
presentations. Comprehensive experiments demonstrate that the proposed
EGATMDA model is reliable and promising in identifying potential target
microbes for drugs, including both new drugs and new microbes.

However, there are still some limitations that influence the performance
of our model. Currently, our model can make predictions for new drugs
and new microbes using multiply types of biological data (e.g., drug
structure similarity and microbe sequence similarity information). Due
to the noises in the features extracted from such similarities, our model is
still far away from perfect and there is room for us to further improve our
prediction results. In the future, we aim to improve and enrich the features
for drugs and microbes by incorporating more biological data, such as
microbe functional similarity (Kamneva, 2017) and side-effect-based drug
similarity (Kuhn et al., 2010).
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