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Abstract

Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level
semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while
neural computer systems first learn sentence semantic representations and then perform text matching based on learned
representation. However, without sufficient semantic information, computer systems will not perform very well. To
bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes
frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task.
Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which
leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with
attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR
model performs better than the state-of-the-art technologies on two text matching tasks.
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1. Introduction

Text matching aims to identify whether two sentences are semantically equivalent or not, which is a core research
area in Natural Language Understanding (NLU). In this task, a model takes two sequences as input and predicts a
category indicating their relationship, e.g. duplicate or not duplicate.

Text matching is one of the most critical tasks in many application domains, including, but not limited to, question5

answering, information retrieval, news recommendation and dialogue systems. Specifically, text matching is an im-
portant subtask of information retrieval, which aims to predict the probability of the document being relevant to users’
query. In news recommendation, system generates personalized news recommendations by calculating the distance
between the real-time news and historical news that user has read recently. In addition, text matching helps users
identify best answers that match given questions for question answering and dialogue systems.10

One of the intrinsic challenges for text matching is multi-level semantics learning in three different levels, i.e., at
sentence level, clause level and phrase/word level. Considering the sentences listed below:

S1: What is the reason for rising unemployment in India?
S2: How can we solve unemployment in India?
S3: How much would it cost to hire a high school math tutor for 2 hours?15

S4: How much does it cost to record a professional video for a 2 hour presentation?
S5: How do you draw a cat step-by-step?
S6: How do you draw an angel step-by-step?
For S1 and S2, their overall semantic scenario are different at sentence level. For S3 and S4, their overall semantic

scenario are same, but local semantics scenario at clause level are different. For S5 and S6, both overall and local20
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Figure 1: An Example Showing Frame-based Multi-level Semantics Representation.

semantic scenario are same, although their semantic scenario differ in word level, i.e. cat and angel. We can see that
different levels of semantic inference are needed to address the challenging text matching task. Human beings also
need multiple rounds of analysis to truly understand the overall semantics, local semantics, as well as the relationship
between two sentences through comparison.

Recently, deep neural network based methods, e.g. pre-trained language model [1–3], have achieved promising25

results for text matching task. They first utilize a sequence encoder to learn representations of two input sentences, and
subsequently calculate their similarity. However, they do not model the interaction between input sentences during
the encoding procedure. While many neural network models were proposed to match sentences from multi-level of
granularity [4, 5], their architectures completely rely on large number of model parameters and huge training data,
which need massive computation and do not really understand the natural language text [6]. As such, a new research30

explores to incorporate semantic knowledge of PropBank for text understanding [7], which directly connected multiple
predicate-argument structures to obtain the joint representation. However, PropBank only focuses on verbs and their
arguments. Thus, in this paper, we utilize frame semantics to model multiple granular semantic information, including
both nouns and more meaningful semantic roles.

FrameNet [8, 9], as a knowledge base, provides multi-level schematic scenario representation that could be po-35

tentially leveraged to better understand sentences. In particular, Frame is defined as a composition of Lexical Units
(LUs) and a set of Frame Elements (FEs). FEs are the basic semantic units of a Frame and defined specifically to
each frame. Given a sentence, if its certain word evokes a frame by matching a LU, then it is called Target. It is
worth mentioning that many sentences could have more than one target words that evoke multiple level frames [10].
Figure 1 provides an example of intuitive Frame-based multi-level semantic structures, where target word do in the40

sentence How do you draw a cat step-by-step evokes a frame Intentionally act, and the clause draw a cat step-by-step
belongs to FE Act. In this clause, target word draw evokes a frame Create representation, and a cat maps to FE
Represented. The noun word cat can act as target word and evoke a frame Animals. Note Zhang et al. [11] proposed
Frame-GBDT method to utilize FrameNet for text matching. But it is less effective due to three reasons: 1) ignores
semantically meaningful Frame Elements (FEs), 2) its frame embeddings are initialized randomly, 3) does not focus45

on critical multi-level semantic modeling.
To address the above problems, we propose a novel model Frame-based Multi-level Semantics Representation

(FMSR) model, which leverages rich frame semantic knowledge, including frame and FEs, to extract multi-level
semantics from sentences explicitly. We first employ an automatic semantic role labeling system to process sentences.
Then, we design attention mechanism to model the multi-level frame semantics structures. Finally, the labels of50

sentences are generated according to the hidden states of both pre-trained model and explicit semantic structure
information. Extensive experiments were conducted on both Quora Question Pair [12] and Stanford Natural Language
Inference [13], widely used benchmark datasets for text matching, showing promising results. The key contributions
of this work are summarized as follows:
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1. To our best knowledge, our work is the first attempt to leverage frame knowledge to extract multi-level semantics55

from sentences explicitly for text matching task.
2. We propose a novel FMSR model, which encodes frames and frame elements, as well as integrates multi-level

frame semantic information for richer sentence representation. In particular, we design novel co-attention to
model inter-sentence semantic interaction, as well as self-attention to model intra-sentence semantic interaction.

2. Related Work60

Existing work on text matching task can be roughly categorized into three classes, namely, Feature Engineering,
Neural Network, Pre-Trained Language Model.

2.1. Feature Engineering
Early works usually focus on integrating shallow features into the text matching task [14, 15]. The common

features used are sentence length, bag of words (BOW), longest contiguous matching subsequence, term frequency65

and inverse document frequency (TF IDF), unigrams and bigrams. Later, more sophisticated models are used for
better measuring text similarity, such as knowledge graph, topic model, dependence parser [16, 17]. These features
focus on n-gram overlapping, word reordering and syntactic alignment phenomena. In addition, this category of
approaches can work well on a specific task or dataset, but it is usually time consuming to construct good features and
it is difficult to generalize well in other relevant tasks.70

2.2. Neural Network
With the renaissance of the neural network, neural-based frameworks have been proposed for the task of text

matching. Some methods use neural networks to represent each text as vectors and the vector distance is regarded as
the matching score, such as DSSM, Convolutional DSSM and LSTM-DSSM [18, 19]. Researchers also try to utilize
word interaction matrix to better capture the interaction information between text, such as DRMM [20] and Match-75

Pyramid [21]. Some frameworks are based on a siamese network [22], which consists of two sub-networks. While the
sub-networks in this framework share parameters, there is no interaction between the two sentences. To cope with the
limitations, one way is to use compare-aggregate framework, which first compares vector representations of smaller
units such as words from these sequences and then aggregates these comparison results to make the final decision
[23]. Wang et al. [5] proposed BiMPM, which utilizes an advanced bilateral multi-perspective matching operation.80

The other way to enhance the model is by using the attention-based framework, which models the interdependence
between sentences in a sentence pair. CSRAN [24] performs multi-level attention refinement with dense connections
among multiple levels and MwAN [25] utilizes multiple heterogeneous attention functions to compute the alignment
degree. RE2 [26] is a strong neural architecture with multiple alignment processes for text matching. For multi-label
text categorization task, works try to capture both the global and the local textual semantics and to model high-order85

label correlations, for example, CNN-RNN for multi-label text categorization [27]. Capsule networks [28] and Sentic
LSTM [29] are also utilized to improve the performance of text classification tasks. In addition, Generative models
for better sentence generation can be used to help train better classifiers [30]. These methods rely on sophisticated
architectures, which need massive computation and might not really understand the natural language texts [6].

2.3. Pre-Trained Language Model90

Pre-Trained Language Model are the most popular choice for text matching nowadays. Contextualized word vec-
tors from a language model trained on a large text corpus, such as ELMo [1], GPT [31], BERT [2], XLnet [32],
ERNIE 2.0 [3], have been shown to be effective for textual similarity task. Among the context-sensitive language
models, Bert has taken the NLP world by storm. So many optimized versions have been proposed. For instance,
SemBert [7] incorporates PropBank [33] semantic roles to train an improved language representation model. Span-95

Bert [34] extends BERT by masking contiguous random spans, rather than random tokens. RoBERTa ensemble [35]
uses a novel dataset for pre-training to improve performance on downstream tasks. StructBERT [36] aims to make
the most of the sequential order of words and sentences. All these methods first encode the sentences into vectors and
then compute the distance between the vectors, which mainly rely on uncontrollable model parameters and neglect
the level of different semantics granularity.100
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There are mainly two limitations for modeling “multiple granular semantic information”: (1) How to discover the
implicated multiple granular semantic information with respect to the central meaning of the sentence. (2) How to
model the multiple granular semantic information for reply relationship modeling. To overcome the two limitations,
we propose FMSR model, which integrates the information from the pre-trained model and semantic knowledge to
predict the label of sentences. In particular, we make use of FrameNet to extract multiple semantic structure in a105

sentence. In addition, pre-trained language model is used to build representation for structural semantic information,
and attention mechanism is employed to model the mutual semantic interactions.

The work most related to our work is the Frame-GBDT approach [11]. The differences between our FMSR model
and Frame-GBDT are as follows: (1) Our FMSR model aims to extract frame semantic structures of sentences and
further utilize attention mechanism to aggregate multi-level frame semantic structure representations of sentences. In110

particular, co-attention is built to model the mutual semantic interactions of sentence. In addition, self-attention is
used to generate a better sentence representation by emphasizing most important frames within a sentence. We should
like to point out that the existing work, i.e. Frame-GBDT, does not use FrameNet in such innovative manner. (2)
Frame-GBDT only focuses on frame information, while our FMSR model involves not only frame information, but
also frame elements information to model sentence. Especially, frame elements are basic semantic units of FrameNet,115

and provide additional information to the semantic structure of a sentence, which can help the model to extract
essential constituents and find semantic related constituents to compare. (3) The frame embeddings in Frame-GBDT
are initialized randomly, while we employ BERT to encode the definition of frame from FrameNet to get frame vector.

3. The Proposed Frame-based Multi-level Semantics Representation Model (FMSR)

In this section, we present our FMSR, considering both context and frame semantics information. The basic120

idea of our FMSR model is to enrich the sentence representation with multiple frame semantic structure information.
Particularly, we first make use of an automatic semantic role labeling system to distill multi-level frame semantics of
sentences. Then a pre-trained language model is used to build representation for input raw texts and frame semantic
information. Attention mechanism is employed to model the multi-level frame semantics interactions. Finally, we
integrate the text representation and multi-level frame semantics representation to predict the labels of sentences.125

3.1. Problem Formulation and Model Overview
Formally, a general text matching task can be defined as: (P,Q) → y, where P = (p1, . . . , pM) is a sentence with

a length M, Q = (q1, . . . , qN) is the second sentence with a length N, y is the corresponding label vector, i.e. text
matching task is formalized as a classification problem. Particularly, for a paraphrase identification task, P and Q
are two sentences, y ∈ {0, 1} shows that P and Q are duplicate or not. For a natural language inference task, P is a130

premise, Q is a hypothesis, and y ∈ {0, 1, 2} indicates that P and Q belong to one of the three categories: entailment,
contradiction, neutral.

Figure 2 shows the overall framework of our proposed FMSR model, consisting of three key components:
(1) The Context Encoder computes deep and context-aware representations for the source context.
(2) The Frame Semantic Representation encodes the Frame and Frame Elements with definitions and takes full135

advantage their representations to model the multi-level semantic structures of sentences.
(3) The Answer Predictor integrates frame semantics and source context representations to classify given sen-

tences P and Q. Here we use natural language inference task as an example, i.e. y ∈ {0, 1, 2}. Next, we will introduce
these three key components.

3.2. Context Encoder140

Context encoder computes deep and context-aware representations for the two sentences P and Q. Given the input
context C = [CLS] P [SEP] Q [SEP], BERT is employed to encode context information as:

cr = BERT (C) (1)

Where cr is the contextual representation using the BERT encoder. For sentence pair S5 and S6 in our running
example, we will simply take the concatenation of S5 and S6 as input. Specifically, the input sequence can be denoted
as: [CLS] How do you draw a cat step-by-step? [SEP] How do you draw an angel step-by-step? [SEP].145
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Figure 2: The Architecture of FMSR Network.

3.3. Frame Semantic Representation

Given a sentence P = (p1, p2, . . . , pm, . . .), where pm represents the m-th word in P. Let Ti be the i-th frame-
evoking target of P, and Ti evokes Fi Frame. FEi j denotes the j-th Frame Element of Fi. Thus, the frame semantic
structure of P can be formulated as Ps = {Ps

1, . . . , P
s
i , . . .}, where Ps

i = [Fi, FEi j] represents the i-th frame semantic
structure of P. In Figure 1, T1 is “do” and Ps

1 = [Intentionally act, {Means, Agent, Act}], i.e. F1=Intentionally act,150

FE11=Means, FE12= Agent, FE13=Act.
Frame semantic representation provides an effective method to model the multi-level frame semantic structures,

which is the key component of our model. Particularly, it consists of three major modules: Frame-Semantic Role
Labeler, Frame Semantic Structure Encoder, and Context Structure Encoder.

3.3.1. Frame-Semantic Role Labeler155

We employ SEMAFOR [37] to automatically process sentences with multiple semantic annotations [38].
Figure 1 provides an example sentence with three T, namely do, draw and cat. Each T and its evoked semantic

frames enclosed in the block. For each frame, its FE are shown with the arrows. For example, T do evokes the
Intentionally act frame, and has the Agent, Act, Means FEs fulfilled by you, draw an angel step-by-step and How.
Correspondingly, we can get its multi-level frame structure Ps = {Ps

1, P
s
2, P

s
3} , where Ps

i = [Fi, FEi j] (i=1, 2, 3)160

represents the i-th frame structure of P.
More specifically, the sentence P in Figure 1 has three Frame semantic structures:
1. Ps

1= [Intentionally act, {Means, Agent, Act}]
2. Ps

2= [Create representation, {Represented,Manner}]
3. Ps

3= [Animals, {Descriptor}]165

3.3.2. Frame Semantic Structure Encoder
Frame semantic structure encoder is used to learn the representation of frame semantic structure Ps. We take

sentence P as an example to illustrate how to encode its frame semantic representation, and clearly, the semantic
representation of sentence Q is formed analogously.
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We search the definition of frame Fd and the definitions of frame elements FEd from FrameNet, and use BERT to170

encode Fd and FEd to get their vectors f , f e respectively.

f = BERT (Fd) (2)

f e = BERT (FEd) (3)

For example, the Intentionally act frame in Figure 1 describes a common situation in which A Creator produces
a physical object which is to serve as a Representation of an actual or imagined entity or event, the Represented.
And FE Represented describes the entity–which may be a thing, an action or a state–that is represented by the Rep-
resentation. We use BERT to encode “Intentionally act and “Represented” to get their vectors f (Intentionally act),175

f e(Represented) respectively.
For the i-th frame structure of P, Ps

i = [Fi, FEi j], we feed the vector of frame fi, and FE f ei j into BiLSTM layer
to obtain the frame semantic structure representation P f

i .

−→
P f

i =
−−−−−−−−→
BiLS T M( fi, { f ei1, . . . , f ei j, . . .}) (4)

←−
P f

i =
←−−−−−−−−
BiLS T M( fi, { f ei1, . . . , f ei j, . . .}) (5)

P f
i =
−→
P f

i +
←−
P f

i (6)

Finally, the frame semantic structure representation of P is formulated as: P f = {P f
1 , . . . , P

f
i , . . .}.

For instance, the frame semantic structure representation of “S5: How do you draw a cat step-by-step?” is formu-180

lated as:P f = {P f
Intentionally act, P

f
Create representation, P

f
Animals}.

3.3.3. Context Structure Encoder
A novel context structure encoder is designed to aggregate multi-level frame semantic structure representations

(P f and Q f ) into an single vector c f . In particular, to fully model the relationship between the sentence pair P and
Q, co-attention is built to derive their pairwise representations, by modeling their mutual semantic interactions (i.e.185

inter-sentence semantic interactions). We take P f ∈ Rl∗|P| and Q f ∈ Rl∗|Q| to denote the frame semantic structure rep-
resentation of P and Q respectively, where |P| and |Q| are the lengths of the two sequences, and l is the dimensionality
of the frame semantic structure representation. As shown in Figure 3, co-attention representation between P f and Q f

can be calculated as:

ϕ(P f ,Q f ) = (WgP f + bg ⊗ e|P|)T Q f (7)

ϕ(Q f , P f ) = (WgQ f + bg ⊗ e|Q|)T P f (8)

S pq = so f tmax(ϕ(P f ,Q f )) (9)

S qp = so f tmax(ϕ(Q f , P f )) (10)

U p = Q f (S pq)T (11)

Uq = P f (S qp)T (12)

Where ϕ is a trainable scalar function that encodes the similarity between its two input matrixes, Wg ∈ Rl∗l and190

bg ∈ Rl are parameters to be learned. The outer product (· ⊗ eX) produces a matrix by repeating the vector for X times.
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Figure 3: The Proposed Co-Attention Module for FMSR.

S pq ∈ R|P|∗|Q| and S qp ∈ R|Q|∗|P| are the weight matrices between P f and Q f . U p ∈ Rl∗|P| and Uq ∈ Rl∗|Q| represent
co-attention representations for sentence P and Q respectively.

Considering S 5 and S 6 in our running example, we will simply use the attention mechanism to match each frame
semantic structure representation state of S 6 to S 5, and reveal how the frame structure of S 6 can be aligned to each195

frame structure of S 5. In particular, “Intentionally act” structure of S 5 corresponding to “Intentionally act” structure
of S 6 and “Animals” structure of S 5 corresponding to “angel” structure of S 6.

Note each sentence typically contains multiple frames. Thus, we design self-attention to model the interactions
between these frames (i.e. intra-sentence semantic interactions) and generate a better representation by emphasizing
most important frames within a sentence. In this paper, we adapt source2token self-attention mechanism [39]. Next,200

we show how to model the intra-sentence semantic interactions for sentence P, which explores the dependency be-
tween up

i ∈ R
l and the entire sequence U p ∈ Rl∗|P|, and compresses the sequence U p into a vector Ũ p ∈ Rl, as shown

in Figure 4.

f (up
i ) = WTσ(W1up

i + b) (13)

For each frame structure up
i , a softmax function is applied to f (up

i ), which produces a specific distribution over all
dependent frame structure:205

ti = so f tmax( f (up
i )) (14)

The output of the attention mechanism is a weighted sum of the embedding for all tokens in U p, i.e.,

Ũ p =

|P|∑
i=1

ti � up
i (15)

Where � is element-wise multiplication. Similarly we can utilize source2token self-attention mechanism to obtain
intra-sentence semantic interactions Ũq ∈ Rl of sentence Q.

f (uq
j ) = WTσ(W2uq

j + b) (16)

t j = so f tmax( f (uq
j )) (17)

Ũq =

|Q|∑
j=1

t j � uq
j (18)
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Figure 4: The Proposed Self-Attention Module for FMSR.

Where uq
j ∈ R

l is the j-th frame structure of Uq ∈ Rl∗|Q|. t j is an indicator of which frame structure is important to

Q. That is, large t j means that uq
j contributes important information to Ũq.210

In our running example, we use self-attention to compress UP = {UP
Intentionally act,U

P
Create representation,U

P
Animals} into

a vector representation Ũq from the dependency between each frame structure up
i and the entire frame structure U p.

Finally, Ũ p and Ũq are concatenated to obtain context structure representation c f .

c f = [Ũ p; Ũq] (19)

Where the [; ] operator denotes vector concatenation across the rows.

3.4. Answer Predictor215

Answer predictor module is application-specific (e.g. could be for paraphrase identification or natural language
inference task), which is used to make a class prediction. This layer takes the vector representation of the source
context representation cr and frame semantic structure representation c f as input:

c = [cr; c f ] (20)

We apply a linear layer f (·) and a softmax layer on c and predict its class label l.

l = so f tmax( f (c)) (21)

For classification tasks, we minimize the training loss, defined by the Cross-Entropy:220

L(θ) = −
1
D

D∑
d

H∑
h

yd,hlog(ld,h) (22)

Where θ is the set of all parameters in the model, D is the total number of examples in the dataset, ld,h is the
predicted probability of class h for example d, and yd,h is the class indicator.

4. Experiments

This section introduces our datasets, experiment results, implementation details and detailed analysis.
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Table 1: Statistics of the dataset.

Datasets QQP SNLI

Data size (pairs)
Train 323,432 550,152
Dev 40,429 10,000
Test 40,429 10,000

Avg sentence len P (Question1/Premise) 12.3 14.1
Q (Question2/Hypothesis) 12.5 8.3

4.1. Benchmark Datasets225

We now introduce two benchmark datasets that have been used in the experiment. The statistics of the two datasets
are listed in Table 1.

Quora Question Pair (QQP)1 [12] is used to identify whether the given question pair is duplicate or not. It
consists of over 400,000 question pairs, and each question pair is annotated with a binary value indicating whether
the two questions paraphrase or not. We use the same dataset partition, as mentioned in Zhang et al. [11], and split230

train/dev/test set with a proportion of 8:1:1.
Stanford Natural Language Inference (SNLI)2 [13] is used to reason the semantic relationship between a

premise sentence and a hypothesis sentence. It consists over 570,000 premise-hypothesis pairs, with labels entail-
ment,contradiction and neutral.

Accuracy, widely used for evaluating classification performance, is deployed as our evaluation metric.235

4.2. Existing models
We compare our model with a number of baseline models. Now we briefly introduce several representative models.
Siamese-CNN/Siamese-LSTM [5] encode two sentences into sentence vectors with a CNN/LSTM encoder, and

make a decision based on the cosine similarity between the two sentence vectors.
AI-BLSTM + Frame-GBDT [11] combines frame embedding and word embedding at the input of neural net-240

works, and calculates matching degree of two representations. Frame embeddings are initialized randomly with a
uniform distribution between [−1, 1].

BiMPM [5] is a bilateral multi-perspective matching model, which first encodes two sentences with a BiLSTM
encoder and then matches the two encoded sentences in two directions.

RE2 [26] highlights three key features, namely previous aligned features (Residual vectors), original point-wise245

features (Embedding vectors), and contextual features (Encoded vectors) for inter-sequence alignment.
MT-DNN [40] is a Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple

natural language understanding tasks. They used the pre-trained BERTLARGE to initialize its shared layers, refined the
model via multi-tasks, and fine-tuned the model for each task using task-specific data.

SJRC [41] presents a semantic learning framework for jointly considering semantic role labeling (SRL) task and250

text comprehension task. This work makes attempt to let semantic role labeling (SRL) enhance text comprehension
and inference through specifying verbal predicates and their corresponding semantic roles.

SemBERT [7] passes words in the input sequence to PropBank [33] semantic role labeler to fetch multiple predi-
cate derived structures of explicit semantics. And then the word representations and semantic embedding are concate-
nated to form the joint representation for downstream tasks.255

4.3. Implementation Details
For Source Context Encoder, we use BERT-large (d = 1024) [2] as encoder, setting most of the hyperparameters as

described in the original paper. For Frame Semantic Representation, we set the hidden dimensionality of the Bi-LSTM
[11] to 300 to obtain the frame semantic structure.

Adam [42] has been selected as our optimizer with a batch size of 64 and the initial learning rate is set as 5e-5.260

Our model is trained on a single GPU, Nvidia TITAN Xp with 12G memory.

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://nlp.stanford.edu/projects/snli/
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Table 2: Experimental Results on Quora Question Pair. The four rows of third block are taken from [26]. The six rows of fourth block are obtained
from: https://gluebenchmark.com/leaderboard.

Model ACC.(%)
Human Baseline 80.4
Siamese-CNN [5] 79.60
Siamese-LSTM [5] 82.58
AI-BLSTM+Frame-GBDT [11] 88.53
BiMPM [5] 88.2
MwAN [25] 89.1
CSRAN [24] 89.2
RE2 [26] 89.4
ERNIE 2.0 [3] 90.6
XLNet ensemble [32] 90.3
BERT-Large [2] 89.3
SemBERT [7] 89.8
SpanBert [34] 89.5
RoBert ensemble [35] 90.2
FMSR 91.59

4.4. Main Results
Both datasets and its associated tasks are quite challenging, especially considering that new development in this

area and the latest performance improvement has already become very marginal.

4.4.1. Experiments on Quora Question Pair (QQP)265

In this subsection, we investigate paraphrase identification task using QQP dataset. Experimental results on QQP
dataset are listed in Table 2, which shows the performance comparison among human baseline, 13 state-of-the-art
models and our proposed FMSR model. We have the following four observations: First, Our proposed FMSR achieves
the best accuracy, i.e. 91.59%, comparing with other 13 state-of-the-art models. Second, our FMSR model is 2.29%
better than Only Bert (BERT-Large), which reveals that integrating frame semantic knowledge can clearly bring270

advantages and benefits. We would like to clarify that we compare our FMSR to Bert-Large for the following two
reasons: 1) The backbone of our FMSR method is Bert-Large. 2) Bert-Large is widely used in many areas and
achieves superior performance. Third, compared to SemBERT, our FMSR model improves the performance by 1.79%
in accuracy, which indicates that our proposed architecture can capture semantic information more accurately. Note
SemBERT simply concatenates predicate-argument structure of PropBank, while our FMSR mainly focuses on model275

the interaction of muti-frame semantic structures. So we compare our FMSR to SemBERT to verify the effectiveness
of our method. Finally, our FMSR model outperforms AI-BLSTM+Frame-GBDT 3.06%, which suggests our method
can take full advantage of frame semantics, including valuable frame elements, frame representation and multi-level
semantic modeling. The reason why we compare FMSR method to Frame-GBDT is that both of them use frame
semantic knowledge to improve text matching performance. In addition, the results of the baselines are produced by280

our implementation or retrieved from original papers, and we report the better one among them.

4.4.2. Experiments on Stanford Natural Language Inference (SNLI)
In this subsection, we study the natural language inference task using SNLI dataset. The detailed experimental

results of 8 state-of-the-art models and our proposed FMSR model are listed in Table 3. We can see that the perfor-
mance of our model is on par with two best models, namely SemBERT and MT-DNN. Therefore, we can conclude285

that our FMSR model is generic and also very effective for natural language inference task.

4.4.3. Number of Frame Semantic Structures
To investigate the influence of the number of frame semantic structure Ps = {Ps

1, . . . , P
s
i , . . .}, we change the

number of structures, i, among {0,1,2,3,4,5}, and keep the other options unchanged. Figure 5 shows the results. We
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Table 3: Experimental Results on SNLI. Results in the first block are taken from [26]. The second block are obtained from [7].
Model ACC.(%)
BiMPM [5] 86.9
MwAN [25] 88.3
CSRAN [24] 88.7
RE2 [26] 88.9
BERT-Large [7] 91.1
SemBERT [7] 91.6
MT-DNN [40] 91.6
SJRC [41] 91.3
FMSR 91.65

0 1 2 3 4 5
Number of Frame Semantic Structures

89.5

90.0

90.5

91.0

91.5

Ac
cu

rac
y (

%)

DEV
TEST

Figure 5: Results on QQP with different number of frame structures.

can see that i = 3 gives the best performance on both DEV and TEST of QQP. Too high dimension would cause290

severe over-fitting results, while too low dimension would cause under-fitting results. Note i = 0 corresponds to the
performance of our baseline model (Only-BERT). Even if we only utilize one frame (i = 1), our model performance
better than the baseline, indicating frame semantic structure is really effective for text matching.

We employ SEMAFOR [37] to automatically process sentences. Many sentences could have more than one target
words that evoke multiple frames. The number of sentences belong to different number of frame semantic structures295

in both QQP and SNLI are shown in Figure 6. These statistics suggest that largest percentage of sentences have 3
frame semantic structures, which verifies the rationality to choose i = 3 as the number of frame semantic structures.

4.4.4. Ablation Study
To evaluate the contributions of key components/factors in our FMSR model, a series of ablation studies are

performed on the QQP dev and test set.300

Attention Mechanism. To evaluate the effectiveness of attention mechanism, we build three different models to
integrate the multi-level frame semantic structures:

(1) -CoAttention, which directly uses P f and Q f to represent U p and Uq;
(2) -SelfAttention, which performs a simple sum function on U p and Uq to get Ũ p and Ũq;
(3) -Attention, which performs a simple sum function on P f and Q f to get Ũ p and Ũq.305

Table 4 shows the performance on the QQP. We observe both CoAttention and SelfAttention contribute to the
overall performance. Comparing the three models with the Full Model, we can observe that no Attention hurts
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Table 4: Comparison with Different Attention Mechanisms on QQP.
Model Dev Test
Full Model (MFSR) 91.60 91.59
-CoAttention 91.20 90.81
-SelfAttention 91.30 91.17
-Attention 90.62 90.03

the performance most. Therefore, integrating multi-level frame semantic information with attention mechanism is
important for achieving better performance.

Frame Semantic Information. Frame semantics are core part of our architecture. We conduct experiments to310

study how different parts of frame affects the performance of our method.
(1) -Frame, which only use frame elements, and frame are replaced with target word;
(2) -Frame elements, which only use frame, and frame elements are replaced with corresponding word in the

sentence;
(3) -Definition Embedding, frame and frame element embeddings are initialized randomly with a uniform distri-315

bution between [-1, 1].
The results shown in Table 5. The ablation results show that without richer semantic features, the performance

degrade significantly. We observe both frame and frame elements contribute to the overall performance. The per-
formance of random initialization embeddings degrades, indicating it is better to train the frame and frame element
vectors instead of direct random initialization, which has been used in Frame-GBDT model.320

Table 5: Comparison with Different Frame Semantic Information on QQP.
Model Dev Test
Full Model (MFSR) 91.60 91.59
-Frame 91.07 90.72
-Frame Elements 91.22 91.05
-Definition Embedding 90.18 89.98
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Table 6: Parameters, FLOPs and Accuracy for different models on QQP.
Model Parameters(M) FLOPs(G) Accuracy(%)
Frame-GBDT(Our) 43.58 0.024 88.29
BERT-base(Our) 109.48 10.19 88.70
FMSR(BERT-base) 164.59 11.27 90.10
BERT-large(Our) 335.14 36.24 89.15
FMSR(BERT-large) 392.6 37.34 91.59

Table 7: Experiment results on QQP. FMSR achieves a statistically significant improvements compared to the baselines with p<0.01 under t-test.
Standard deviation is reported in the parentheses.

Model ACC.(%)
Frame-GBDT 88.29±(0.19)
FMSR 91.59±(0.44)
p-value 0.0001
BERT-Large 89.15±(0.13)
FMSR 91.59±(0.44)
p-value 0.0003

4.4.5. Model complexity and Statistical Significance
Model Complexity. It is commonly observed that the performance of neural networks is highly dependent on the

model complexity, which is measured by the model size (parameters) and computational consumption (FLOPs) [43].
Table 6 shows the complexity of the MFSR method as compared to the baselines on QQP. From Table 6, we can
observe that: (1) Our FMSR (BERT-large) outperforms all the other baselines and with the complexity close to BERT-325

Large, which is efficient and acceptable. In addition, our FMSR (BERT-base) outperforms the strong BERT-Large
baseline with FLOPs being 3× smaller and parameter size being 2× smaller than BERT-Large, indicating the effi-
ciency of our model. (2) Our proposed model, leveraging a more powerful backbone model with more parameters to
model complicated relationships and build more accurate mapping functions, significantly improved its accuracy. For
example, FMSR (BERT-base) achieves 90.10% accuracy on QQP and the network contains about 164.6M parameters.330

FMSR (BERT-large) contains 392.6M parameters and significantly improves the accuracy to 91.59%.
Statistical Significance. Furthermore, to verify statistical significance on accuracy difference between our frame-

work and compared baseline frameworks (BERT-Large, Frame-GBDT), we perform statistical significance test using
the t-test over 5 runs. Particularly, we compare our FMSR model with BERT-Large and Frame-GBDT, because
BERT-Large achieves comparable results and Frame-GBDT is most related to our FMSR model. Table 7 reports the335

classification performance on three methods. We can see that FMSR achieves a statistically significant improvement
over both the BERT-Large and Frame-GBDT baselines (p<0.01).

4.4.6. Case Study
In order to show the effectiveness of our model clearly, an example from QQP are shown in Figure 7. (1)

Frame-Semantic Role Labeler. We first process sentences with multiple frame semantic annotations. P and Q both340

have three frame semantic structures, i.e., Ps = {Ps
Intentionally act, P

s
Create representation, P

s
Animals}, Qs = {Qs

Intentionally act,
Qs

Create representation,Q
s
Arti f act}. (2) Frame Semantic Structure Encoder. We then make use of bi-directional LSTMs to

pre-process the frame semantic structures, P f = {P f
Intentionally act, P

f
Create representation, P

f
Animals} and Q f = {Q f

Intentionally act,

Q f
Create representation,Q

f
Arti f act}. (3) Context Structure Encoder. We further take full advantage of the attention mech-

anism to aggregate multi-level frame semantic structure representations of P and Q. Co-attention is built to learn345

the correlation between P f and Q f . Equipped with co-attention learning, we can obtain UP = {UP
Intentionally act,

UP
Create representation,U

P
Animals} and UQ = {UQ

Intentionally act,U
Q
Create representation,U

Q
Arti f act}, where UP

Animals and UQ
Arti f act pro-

vide complementary information to each other. Self-attention is utilized to generate a better representation by empha-
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Figure 7: An Example of Paraphrase Identification.

sizing most important frames within a sentence, which helps the model compress UP into Ũq and UQ into Ũq and
pays more attention on UP

Animals and UQ
Arti f act respectively. (4) Answer Predictor. The target words Do and Draw in the350

given sentences belong to the Intentionally act and Create representation frame, while Cat and Angel evoke two very
different frames Animals and Artifact respectively. Finally, utilizing the multi-level semantic information in FrameNet
facilitates us to identify the relationship between the sentences.

Limitations. Although MFSR method performs well on some benchmark datasets, it still has some limitations.
(1) MFSR only focuses on modeling the frame and frame elements while ignoring Frame-to-Frame relations, and355

it is worth mentioning that FrameNet arranges relevant frames into a network by defining Frame-to-Frame relations.
(2) MFSR ignores the world knowledge of text, which can improve prediction performance.
(3) Our model is designed to evaluate text matching systems. And it is necessary to adapt our model to other

language understanding systems.

5. Conclusion and Future Work360

In this paper, we have introduced an innovative FMSR model, which, to our best knowledge, is the first work to
take full advantages of frame, frame elements to model the multi-level semantic structure of sentences. We show, via
extensive experiments, that our FMSR model achieves very competitive performance comparing with state-of-the-art
methods (including those which have been enhanced by the latest BERT model) proposed for two text matching tasks,
i.e. paraphrase identification and natural language inference. Ablation studies validate the effectiveness of co-attention365

and self-attention mechanisms, and frame semantic structure.
There are three interesting future research directions: (1) We will explore more advanced methods to improve the

text matching performance, for example, capsule networks [28] and deep belief networks [44], which will accurately
represent the frame relation and structure information. (2) It is desirable to further design methods that can leverage
world knowledge to include content that is not covered by the text, inspired by related hybrid networks [29]. (3)370

Nevertheless, given the promising results that have been achieved in this paper, we hope our model can encourage
researchers to leverage multi-level frame semantic knowledge to improve machine reading comprehension tasks.
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