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Frame-semantic Parsing (FSP) is a challenging and critical task in Natural Language Processing (NLP). Most of

the existing studies decompose the FSP task into frame identification (FI) and frame semantic role labeling (FSRL)

subtasks, and adopt a pipeline model architecture that clearly causes error propagation problem. On the other

hand, recent jointly learning models aim to address the above problem and generally treat FSP as a span-level

structured prediction task, which unfortunately leads to cascading error propagation problem between roles and

less efficient solutions due to huge search space of roles. To address these problems, we reformulate the FSRL task

into a target-aware relation classification task, and propose a novel and lightweight jointly learning framework that

simultaneously processes three subtasks of FSP, including frame identification, argument identification and role

classification. The novel task formulation and jointly learning with interaction mechanisms among subtasks can

help improve the overall system performance, and reduce the search space and time complexity, compared with

existing methods. Extensive experimental results demonstrate that our proposed model significantly outperforms ten

state-of-the-art models in terms of F1 score across two benchmark datasets.

CCS Concepts: ∙ Computing methodologies; ∙ Artificial intelligence; ∙ Natural language processing;

Additional Key Words and Phrases: FrameNet, Frame-semantic parsing, Frame identification, Relation model

1 INTRODUCTION

Frame-semantic parsing (FSP) is a task of identifying the semantic frames evoked in text along with their

semantic roles, formalized in the FrameNet project [2, 8]. In particular, a frame represents an event’s semantic

scenario, and possesses frame elements or semantic roles that participate in the event [16], which is grounded

on the theory of Frame Semantics [9]. Frame-semantics has shown to be useful in event recognition [19],

machine reading comprehension [13, 14], relation extraction [35], and text generation [12], among others.

An example sentence my brother is locked up in the laundry room and its frame-semantic annotations

are shown in Figure 1. In the example, there are 3 frames, namely, Immobilization, Locative relation and
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Building subparts, evoked by 3 corresponding targets (target words include locked up, in, and laundry room)

respectively. In addition, 5 frame-specific semantic roles (e.g. Patient, Place, Figure, etc.) are filled by 5

target-related arguments respectively in the sentence, where an argument is a continuous and meaningful

text span in the given sentence. For example, “My brother” is an argument of target locked up, and it acts

as Patient role of frame Immobilization in this sentence. In other words, the semantic role of my brother is a

patient as he is locked up or in the semantic scenario of immobilization. Compared with PropBank-style

semantic role labeling (SRL), FSP has to handle the thousands 1 of frame-specific semantic roles, while

PropBank SRL only uses a small set of 26 syntactically motivated roles. Nevertheless, the more fine-grained

semantic roles result in much more rich semantic interpretation of text which is useful and critical for many

downstream tasks, although it makes the FSP task more challenging.

Early work adopts pipeline strategy that divides the FSP task into frame identification (FI) subtask and

frame-semantic role labeling (FSRL) subtask [4, 17, 27, 28, 33]. In particular, FI subtask aims to find the

exact frame evoked by a target word in a given sentence. Through FI step, the thousands of semantic roles

can be reduced to a small set of up to 30 frame-specific roles, which makes the subsequent FSRL subtask

easier. However, the pipeline strategy usually causes error propagation problem, as the overall performance

of FSP is more sensitive to the performance of first FI subtask.

Recently, jointly learning models have drawn much attention for the FSP task. Their models adopt

structured prediction paradigm, in which semantic roles are considered interdependent from each other, while

roles are dependent on the frame. An diagram of structured prediction paradigm is shown in Figure 2(a).

The main difference between these models is in how to capture the structural information of frame-semantic.

For instance, Peng et al.[21] propose a joint scoring model that learns a joint scoring function for FI and

FRSL subtask, and use a linear programming algorithm to search the global optimal solution under the

structural constraints of frame-semantic in its inference phase. The maximal searching space reaches to

𝑂(|𝐹 ||𝑛(𝑛+ 1)/2||𝑅|) , where 𝐹 and 𝑅 are frames set and roles set in FrameNet knowledge base, and 𝑛 is

the length of the sentence. Chen et al.[3] propose an encoder-decoder model which processes all the subtasks

jointly by optimizing them together, and treats FSRL as a role sequence generation process. The model

uses LSTM to explicitly capture the dependency between roles during training phase and predicts the roles

subsequently in the inference phase. Overall, existing joint learning models have achieved better performance

than pipeline models. However, they have two weaknesses:

(1) For the joint scoring model [21], it does not explicitly capture the structural information in its training

phase, and thus the huge searching space affects running efficiency and accuracy in its inference phase.

(2) For the encoder-decoder jointly learning model [3], the way that it predicts role sequence will still cause

cascading error propagation problem. As shown in Figure 2(a), if the predicted role of first argument “my

brother” is wrong, the subsequent prediction will also likely be wrong due to its role dependency assumption.

To address the above weaknesses, we propose a new span-based target-aware relation classification model

for FSP (TaRFSP), which jointly processes the FI and FRSL subtasks. In this model, (1) we relax the role

dependent assumption of structured prediction paradigm that previous FSP models adopt. In other words,

we only assume roles are dependent on frame, while roles are independent from each other. For example in

Figure 2(a), the roles between Patient and Null, and Null and Place do not have strong dependency at all.

1There are 1170 and 1285 roles in FrameNet 1.5 dataset and FrameNet 1.7 dataset respectively.
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My brother is    locked up      in      the laundry room .
lock up.v in.prep laundry room.n

 
Patient PlaceImmobilization

Locative

_relation
Figure Ground

Building_subparts

Building_part

Fig. 1. An example sentence with 3 groups of color-coded frame-semantic annotations below. The three targets are
highlighted in the sentence, and their lexical units (original words and corresponding part of speech) are shown italicized
below. Frames evoked by targets are shown under the targets in colored blocks, and the corresponding frame semantic roles
are shown under horizontal lines alongside the frame. Note that semantic role Building part is placed directly under its
frame, which is different from other role annotations, since the argument of this role and its target are totally overlapped.

My brother     is     locked up  in  the laundry room .

Patient PlaceNull

Immobilization

My brother     is     locked up  in  the laundry room .

Patient PlaceNull

Immobilization

(a) Diagram of structured prediction paradigm for FSP  (b) Diagram of relation classification paradigm for FSP

Fig. 2. The comparison between two schematic diagrams for FSP. The target are highlighted in red color. Frame
(Immobilization) and frame-specific roles (e.g. Patient) are shown next to block and circles respectively. In diagram (a), the
role of each argument is not only dependent on the current frame but also its neighbor roles. In diagram (b), the role of
each argument is only dependent on the current frame, and each role indicates a kind of relation between the argument and
its target (the semantic role of my brother is a Patient as he is locked up and in the semantic scenario of Immobilization).
Null denotes the word or span is not an argument of current target. For instance, “is” is not an argument of target locked
up.

(2) We model role classification of each argument as independent target-argument relation classification

conditioned on the frame evoked by the target. For instance, in Figure 2(b), target locked up evokes the frame

Immobilization which defines a semantic scenario with two semantic roles Patient and Place. Target-argument

relation between target locked up and argument my brother helps us to infer my brother cannot move in the

semantic scenario of immobilization due to locked up and thus should serve as the semantic role Patient. (3)

We decompose FSRL into two components: 1) argument identification and 2) role classification. Argument

identification is used to identify and filter the impossible arguments, while role classification is used to

predict the semantic roles of the most possible arguments.

Compared with previous jointly learning model based on structured prediction paradigm, as shown

Figure 2(b), our method predicts the role of each argument independently without considering the role of

argument prior to current argument (e.g. we infer in the laundry room as a role Place, which do not care

about arguments my brother and is and their corresponding roles), which can bring two benefits: overcoming

the cascading error propagation problem between roles and enhancing the running efficiency through

parallel running of each pair of target-argument classification. As shown Figure 2(b), the role prediction of

three possible arguments is processed as three independent target-argument relation classification problem,

and each relation is only dependent on the current frame. Furthermore, our method explicitly captures

the structural information in training phase, so the frame-roles dependence relations are learned in the
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trained model. In inference phase the model can identify frames, arguments and argument roles in turn

without considering the structural constraints, which makes the maximal searching space be reduced to

𝑂(|𝐹 |+ 2|𝑛(𝑛+ 1)/2|+ 𝑘|𝑅𝑓 |), where 𝑘 is the number of predicted arguments and 𝑅𝑓 is the roles set of

current predicted frame. In summary, our main contributions can be summarized as follows:

(1) We present a method of converting FSP task, generally regarded as a structured prediction task,

into a target-aware relation classification task. To the best of our knowledge, this is the first work to tackle

FSP based on semantic relation classification. Correspondingly, we develop a new non-structured prediction

paradigm for FSP which can significantly mitigate the error propagation problem and reduce the complexity

of FSP task comparing with the existing work, without using any optimization search algorithm.

(2) We propose a novel and lightweight model for FSP that jointly processes three subtasks of FSP,

including frame identification, argument identification and role-argument classification. Moreover, we also

design a group of lightweight interaction mechanisms among subtasks and one post-processing procedure for

handling the structure constraint.

(3) We have performed extensive experiments and our experimental results demonstrate that our proposed

model outperforms ten state-of-the-art models in terms of 𝐹1 score across two benchmark datasets.

2 RELATED WORK

FSP task was first proposed in 2002 [11] and has drawn great attention since the SemEval 2007 shared task

[1] was released. Early studies adopted a pipeline strategy, which involves FI subtask and FRSL subtask. In

general, FI is regarded as a multi-class classification task, while RFSL is regarded as a structured prediction

task. Before the popularity of representation learning, the researchers mainly used discrete syntax features

and statistical learning methods, such as SVM, CRF, etc., to construct models for FI and FRSL [4, 11]. Das

et al. adopted two separate conditional log-linear models to calculate the prediction scores for targets and

arguments, and subsequently used linear programming to search the optimal role sequences [4].

With the recent development on deep neural networks and representation learning, many researchers

converted the discrete syntax features into distributed representations, and used neural networks to construct

FI and FRSL models. For instance, Hermann et al. [17] proposed a FI model using word embedding to

represent the context and WSABIE algorithm [31] to train the model. Subsequently, as for FSRL, they

utilized the local log-probability to calculate the scores for each argument and performed global inference

by applying an integer linear program (ILP) optimization method, subject to hard structural constraints.

Michael Roth and Mirella Lapata [23] presented a semantic role labeling system that took into account

discourse context and used Glove [22] embedding to represent the features. Täckström et al. [29] proposed a

pipeline model for FI and FRSL using distributed context features, and it was the first to use a globally

normalized probabilistic model with structural constraints for FRSL. FitzGerald et al. [10] proposed a

graphical model for FSRL based on neural networks, which jointly models the assignment of arguments to

their semantic roles, subject to linguistic constraints. Yang and Mitchell [33] first presented two separate

models for FRSL, i.e., a sequence labeling model (SEQ) based on CRF, a relation model (REL) based

on a LSTM encoder and MLP potential function. Subsequently, they proposed an integrated model that

incorporated SEQ model into REL model by a unified training objective. They also proposed a FI model

using a linear potential function. Finally, they solved the joint inference for assigning frames and roles

to all predicates and their arguments by the 𝐴𝐷3 algorithm. Finally, Swayamdipta el al. [27] presented a
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FSP model with softmax-margin segmental RNNs, a variant of a semi-Markov CRF, which allows scoring

functions that directly model an entire variable-length segment, and used dynamic programming algorithm to

predict the labels. All of the above studies adopt pipeline model structure and used optimization algorithm,

such as liner programming, dynamic programming, 𝐴𝐷3 etc., to solve the optimal solution for FSP in their

inference phase.

Recently, jointly learning models have drawn more attention. Peng et al. [21] proposed a jointly structured

prediction model which uses a structured hinge objective for training and a linear programming procedure

for inference. Chen et al. [3] presented a novel architecture based on multi-decoder strategy to handle three

subtasks of FSP. Overall, jointly learning models have proved more effective than the pipeline models, since

these two models achieve the current state-of-the-art performance.

In this study, we also adopt the jointly learning strategy and decomposed the FSP task into three subtasks:

frame identification, argument identification and role classification, which is similar to Chen et al.’s work [3].

However, they adopt structured prediction paradigm based on its role interdependent assumption, while we

proposed a novel relation classification paradigm. As discussed in Introduction section, the interdependent

assumption may not be valid in practice. In addition, modeling a longer dependency chain can cause cascading

error propagation problem. Our work focuses on capturing the dependency between target-argument pair

and each role independently, which can avoid their problems and generate more accurate results.

Different from the graph-based neural model for end-to-end FSP recently proposed by Lin et al.[18], the

model includes an additional target identification subtask since the target word is assumed to be unknown,

while our work and the studies mentioned above focus on FSP task when the target word is given.

3 TASK FORMULATION

Frame-semantic parsing (FSP) consists of two subtasks, namely, FI and FSRL subtask. Specifically, for

a given sentence x with 𝑚 words 𝑥0, 𝑥2, ..., 𝑥𝑚−1 and a set 𝑇 of targets (target words or phrases) in the

sentence, FI aims to identify each frame 𝑓 evoked by each target word 𝑡, 𝑡 ∈ 𝑇 , and FSRL aims to identify

a set of non-overlapping arguments for each frame 𝑓 , where each argument 𝑎 = (𝑖, 𝑗, 𝑟) has a start index 𝑖,

end index 𝑗 (0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚− 1) and role label 𝑟. For simplicity, we call the word (or phrase) that can evoke

a frame (a semantic scenario) target in this paper. Each target is associated with a lexical unit (or LU)

in FrameNet, and a LU consists of the lemma and part-of-speech tag of the target. FrameNet also provides

mapping from a LU 𝑙 to a set of frames it evokes, denoted as ℱ𝑙, and mapping from a frame 𝑓 to a set of

semantic roles (or frame elements) ℛ𝑓 . Roles could be core roles and non-core roles.

For example, in Figure 1, lock up.v is the corresponding LU of target locked up that evokes frame

Immobilization. Its frame semantic roles Patient and Place are filled by the argument “My brother” and “in

the laundry room” respectively. Immobilization has 10 roles in total (including Agent, Anchor, Degree, etc.),

although some of them do not occur in this sentence. In this frame, Agent, Patient and Place are its core

roles, and other roles (e.g. Anchor, Degree, manner, etc.) are its non-core roles.

In this work, we parse each target (e.g. locked up) independently following the previous studies [4, 17, 27, 28].

Specifically, Given the sentence x and a target 𝑡, then the FSP model can be formalized as:

𝑓 = 𝑎𝑟𝑔𝑚𝑎𝑥P𝜃(𝑓 |x, 𝑡), (1)

𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥PΦ(𝑌 |x, 𝑡, 𝑓) (2)
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Fig. 3. Overall architecture of our model. Gray arrows, blue arrows and red arrows denote the data flows of arguments
identification module, role classification module and frame identification module respectively.

Here, 𝑓 ∈ ℱ𝑙 and 𝑌 = {(𝑖, 𝑗, 𝑟)𝑘}|𝑌 |
𝑘=1 are predicted frame and possible arguments respectively, where

𝑟 ∈ ℛ𝑓 ∪{𝑁𝑢𝑙𝑙} is the role of each argument, and 𝑁𝑢𝑙𝑙 is a special class that denotes the possible argument

is not an true argument of the given target. Each possible argument is usually a text span, consisting of

continuous words in a sentence, so we also call them argument span in the following. For instance, shown in

Figure 1, “My”, “My brother” and “My brother is” are three possible arguments of target locked up in the

sentence.

4 THE PROPOSED METHOD

4.1 Model Architecture

In this paper, we propose a new span-based target-aware relation classification model for FSP (TaRFSP),

which jointly processes three subtasks of FSP, i.e., frame identification, argument identification and role clas-

sification. As shown in Figure 3, the proposed framework mainly consists of five modules: (1) context encoder,

(2) span representation, (3) frame identification, (4) argument identification and (5) role classification.

In particular, context encoder module is responsible for modeling the context representation of the input

sentence, and span representation module is used to model the target-aware span representations for all

the possible arguments. These two modules are shared by the other three modules. Frame identification

module is responsible for identifying the frame evoked by the target and learning the frame embedding

simultaneously. Argument identification and role classification module are used to identify arguments and

predict the role of each argument respectively. Considering the running efficiency, we design two lightweight

and explicit interaction mechanisms. One is frame embedding sharing between frame identification module

and role classification module. The other is signal passing from argument identification module to role

classification module. Furthermore, These three modules interact implicitly by sharing the parameters of

span representation module and context encoder module.
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4.2 Context Encoder

Given a sentence x = 𝑥0, 𝑥2, ..., 𝑥𝑚−1, we obtain the hidden representation h𝑖 of each token 𝑥𝑖 via a deep

contextualized encoder.

h0,h1, ...,h𝑚−1 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥0, 𝑥1, ..., 𝑥𝑚−1) (3)

where the dimension of h𝑖 (0 ≤ 𝑖 ≤ 𝑚− 1) is 𝑑ℎ. In this work, we adopt two alternative model architectures

for the encoder, i.e. BiLSTM-based and BERT-based [5]. For the BiLSTM-based model, we initialize the

token embedding with Glove [? ]. For the sake of simplicity and running efficiency, we do not use any other

information of tokens, such as POS embedding, lemma embedding and char embedding, which is different

from the previous work [3, 21]. Meanwhile, we believe these information has little effect on improving the

performance of the model. For the BERT-based model, we conduct finetuning on original BERT model, and

use the outputs of last layer as the contextual representation for each token in the sentence.

4.3 Span Representation

In this work, we regard target 𝑡 as a special span and adopt different representation method to represent

it according to its usage. When it acts as a candidate argument span, we use Function (7) to represent it.

When it is used to identify the frame, its representation can be calculated by the following function:

h𝑡 = (h𝑏 + h𝑒)/2. (4)

Note that, since BERT adopts WordPiece tetanization, we simply use the representations of boundary

WordPiece instead of the representations of boundary word.

For argument span representation, we hope the representation can not only represent the semantic

of the span but also capture the semantic relations between target and argument. Given the sentence

x = 𝑥0, 𝑥2, ..., 𝑥𝑚−1, we use 𝑥𝑖:𝑗 denote a continuous words span from index 𝑖 to index 𝑗 (0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚− 1).

In the FSP task, The model aims to distinguish not only which span is true argument, but also the role

of the argument. So, we have to choose the most distinguishing features for argument identification and

role classification to represent each span. We believe the boundaries of a span contain rich syntactic and

semantic information which are beneficial for argument identification and argument role classification. For

example, as shown in Figure 1, the boundaries of span “in the laundry room” are “in” and “room”. Here

“in” signifies the beginning of a prepositional phrase, while “room” is a noun which acts as a prepositional

object of preposition “in” and indicates the end of the phrase. In addition, two boundary words together also

express the meaning of its rule as place. For the information of middle words in a span, we use target-aware

attention to weight the word representations in the span. The formulation of attention is shown as follows:

a𝑘 =
𝑒𝑥𝑝(ℎ𝑇

𝑘 ℎ𝑡)∑︀𝑙=𝑗
𝑙=𝑖 𝑒𝑥𝑝(ℎ

𝑇
𝑙 ℎ𝑡)

h𝑎𝑡𝑡 =

𝑘=𝑗∑︁
𝑘=𝑖

𝑎𝑘ℎ𝑘

(5)

where a𝑘 is the attention value of k -th word in the span from index i to index j in a sentence, and h𝑎𝑡𝑡 is

the target-aware representation of the span.
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Furthermore, the position relation between target and its argument span is also important to distinguish

their roles. In particular, the core-roles are usually closer to the target than noncore-roles in a sentence.

For instance, the argument “My brother” and “in the laundry room” act as core-role: Patient and Place,

and they are all near to the target “locked up”. In addition, the patient is usually occured after the verb

target in an active sentence, while it is usually occured before the target in an passive sentence. As shown in

Figure 1, “My brother” occurs before the target “locked up”, acting as patient in the passive sentence. Given

a span 𝑥𝑖:𝑗 , we use the relative distance to model the position relation between target and the span, and the

relative distance can be calculated using the following function:

𝐷(𝑡→ 𝑥𝑖,𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏− 𝑗, 𝑗 < 𝑏

𝑒− 𝑖, 𝑖 > 𝑒

0, 𝑖 = 𝑏, 𝑗 = 𝑒

(6)

where 𝑡 is the target in sentence x, and 𝑏 and 𝑒 are indices of 𝑡 in the sentence (0 ≤ 𝑏 ≤ 𝑒 ≤ 𝑚− 1). Here,

we regard target as a special span. This function is only used to measure the position from the target to its

candidate argument spans. The spans partially overlapping with the target are filtered in our method which

will be discussed in the following part of the paper.

In addition, the length of a span is one of the widely used features in span-based models [7, 20, 21, 36].

Thus, in the work, our span representations are computed based on three components, i.e. (1) boundary

word representations, (2)target-aware span representation, (3) the relative distance from the span to the

target, and (4) the length of span. Particularly, the representation of span 𝑥𝑖:𝑗 can be denoted as:

h𝑖:𝑗 = [h𝑖;h𝑗 ;h𝑎𝑡𝑡;E(𝐷(𝑡→ 𝑥𝑖,𝑗));E(|𝑥𝑖,𝑗 |)] (7)

where E(.) denotes an embedding function which converts the discrete value into distributed representation,

and [.;.] denotes vector concatenation.

4.4 Frame Identification

Frame identification is usually regarded as a classification task in the previous work [4, 15, 17], which

aims to identify the frame evoked by a given target in a sentence. In this work, however, the frame

identification module is not only responsible for frame classification, but also responsible for learning the

frame representation which is used to interact with role classification module. Thus, inspired by KGFI

model[26], we simply adopt a bi-encoder structure. One encoder is used to represent target, while the other

is used to represent frames. The bi-encoder maps the target and frames into the same space which facilitates

predicting the frame by calculating the similarity, along with obtaining the frame representation. As shown

in Figure 3, the frame embedding block denotes the representation of all the frames and the red vector

denotes the target representation. The detailed methods of obtaining the representations of frames and

target are described in the following.

Given the frame set ℱ = {𝑓1, 𝑓2, ..., 𝑓|ℱ|}, the frame encoder maps the discrete frame labels into distributed

representation. The mapping function is defined as:

M(ℱ) = [E(𝑓1);E(𝑓2); ...;E(𝑓|ℱ|)]
𝑇W(ℱ) (8)
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where E(.) denotes an embedding function, W(ℱ) is a learnable matrix, and M(ℱ) is the frame matrix in

which each row represents a frame embedding. The dimension of matrix M(ℱ) is |ℱ| × 𝑑𝑓 .

For the target 𝑡, we first use a deep contextualized encoder, such as BERT or BiLSTM, to obtain its

hidden representation h𝑡, and subsequently use the target encoder maps h𝑡 into the same space as frames.

The mapping function is defined as:

g𝑓 (𝑡) = W𝑓h𝑡 + b𝑓 (9)

where W𝑓 and b𝑓 are learnable parameters, and the demension of W𝑓 is 𝑑𝑓 × 𝑑ℎ.

After obtaining the representations of target and frames, we adopt dot product to calculate their similarity

scores, and then use a softmax function to normalize the scores into probability distribution:

𝑃 (𝑓 |x, 𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(M(ℱ).g𝑓 (𝑡)). (10)

In the inference phase, we choose the best score from the possible frame subset, and predict the frame with

the highest score:

𝑓 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓∈ℱ𝑙𝑃 (𝑓 |x, 𝑡) (11)

where 𝑙 is the LU of target 𝑡, and ℱ𝑙 is the frame subset which can be evoked by the target 𝑡. The mapping

from LU to frames are defined in FrameNet.

4.5 Argument Identification

Argument identification module identifies the true arguments of the target from all the possible continuous

word spans of a given sentence. We divide argument identification into two steps: candidate argument

generation and argument classification.

Suppose a sentence x with |x| words, the amount of possible argument spans is |x|(|x| + 1)/2, which

could be very big given a long sentence, especially compared with the ground truth, i.e., an average of about

up to 3 arguments for a target in a sentence2. To address this problem, we adopt three pruning strategies.

1) We set the maximum length of a span following the previous work [3, 21], and a argument span should

not exceed the maximum length. 2) We set up a window with fixed size centered on the target word and

generate the candicate arguments within the window, as most of the arguments are locally located around

the target. 3) An argument span can’t partially overlap with the target, while an argument may sometimes

totally overlap with the target. We call the span that meets these three criteria candidate argument. As

shown in Figure 1, the span “laundry room” is not only a target that evokes frame Building subparts, but

also a argument that acts as role Building part of frame Building subparts. In this case, the argument and

the target are totally overlapped, so the span totally overlapping with the target could be a candidate

argument. In addition, the “is locked up in” is partially overlapped with target locked up. So, it is not a

candidate argument of target locked up according to our criteria.

The detailed generating processes are illustrated in Algorithm 1. Specifically, first, the algorithm obtains

the start and end index of target in the sentence 𝑥, as illustrated in line 5. Second, set up the window

boundary according the target position, as illustrate in line 6-7. Third, as illustrated in line 8-13, the

algorithm enumerates all the possible spans of sentence constrained on maximum length 𝑚𝑎𝑥 𝑙𝑒𝑛, and filters

the spans that partially overlapped with target. Meanwhile, the algorithm obtains the indexes of boundary

2The statistical result is from FrameNet 1.5 and FrameNet 1.7.
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Algorithm 1 Generating the candidate arguments

1: Input: sentence x and a target 𝑡 in x,
2: the max length of a span 𝑚𝑎𝑥 𝑙𝑒𝑛.
3: the fixed window size 𝑤𝑖𝑛 𝑠𝑖𝑧𝑒.
4: 𝒜 ← Ø
5: 𝑏, 𝑒← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥(𝑡,x)
6: 𝑤𝑖𝑛 𝑙=max(𝑏− 𝑤𝑖𝑛 𝑠𝑖𝑧𝑒/2,0)
7: 𝑤𝑖𝑛 𝑟=min(𝑒+ 𝑤𝑖𝑛 𝑠𝑖𝑧𝑒/2,|x|))
8: for 𝑖 in range(𝑤𝑖𝑛 𝑙,𝑤𝑖𝑛 𝑟):
9: for 𝑗 in range(𝑖+ 1,min(𝑤𝑖𝑛 𝑟,i+𝑚𝑎𝑥 𝑙𝑒𝑛)):

10: if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝((𝑖, 𝑗), (𝑏, 𝑒)) ==False:
11: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐷(𝑡, 𝑥𝑖:𝑗)
12: 𝑤𝑖𝑑𝑡ℎ = 𝑗 − 𝑖
13: 𝒜.𝑎𝑑𝑑((𝑖, 𝑗, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑤𝑖𝑑𝑡ℎ))
14: 𝒜 = 𝒜 ∪ {(𝑏, 𝑒, 0, 𝑏− 𝑒)}
15: return 𝒜

My My brother in the laundary roomin  laundary room  room......locked up...

0

1
0

0

10

Fig. 4. An example for argument identification based on span-level dependency relations.

words and calculates the distance and width of each span, and subsequent adds each span into candidate

argument set 𝒜. Finally, the target as a special candidate argument is added into 𝒜, as shown in line 14.

Inspired by word-level dependency parsing [25, 34], we formulate argument classification as a span-level

dependency parsing. In particularly, we only model whether there is a dependency between the target and

each candidate argument, regardless of the type of dependency. As shown in Figure 4, it is an example for

argument identification based on span-level dependency relations, where ”locked up” is the target in sentence

”My brother is locked up in the laundry room”. So, here, argument classification is a binary classification

task. We use biaffine network [6, 30] to model the span-level dependencies between the target and candidate

arguments.

Let 𝒜 = {𝑎1, ..., 𝑎|𝒜|} denote the candidate arguments of target 𝑡, the relation scores between target 𝑡

and 𝑘-𝑡ℎ candidate argument 𝑎𝑘 can be calculated by:

h𝑎(𝑎𝑘) = 𝐹𝐹𝑁𝑎(h𝑎𝑘(𝑖):𝑎𝑘(𝑗))

h𝑠(𝑡) = 𝐹𝐹𝑁𝑠(h𝑡)

g𝑎(𝑎𝑘) = h𝑎(𝑎𝑘)
𝑇U𝑎h𝑠(𝑡) +V𝑇

𝑎 [h𝑠(𝑡);h𝑎(𝑎𝑘)] + b𝑎

(12)

where 𝐹𝐹𝑁𝑎 and 𝐹𝐹𝑁𝑠 are two separate one-layer feedforward neural network (FFN) with relu activation

function, and 𝑎𝑘(𝑖) and 𝑎𝑘(𝑗) denote the start and end indices of argument span 𝑎𝑘 in the sentence. U𝑎 is a

𝑑𝑎 × 2× 𝑑𝑎 tensor, V𝑎 is a 2𝑑𝑎 × 2 matrix, and 𝑏𝑎 is the bias vector. g𝑎(𝑎𝑘) is a 2-dimension vector. Finally,
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we apply a softmax function to normalize the scores into probability distribution:

𝑃 (𝑦(𝑎𝑘) |x, 𝑡, 𝑎𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(g𝑎(𝑎𝑘)) (13)

where 𝑦(𝑎𝑘) ∈ {0, 1} denotes wether the candidate argument 𝑎𝑘 is a false or true argument of target 𝑡. In the

inference phase, we identify 𝑎𝑘 as an argument of target 𝑡 when 𝑃 (𝑦(𝑎𝑘) = 1 |x, 𝑡, 𝑎𝑘) > 𝑃 (𝑦(𝑎𝑘) = 0 |x, 𝑡, 𝑎𝑘)

is true.

4.6 Role Classification

Role classification module is responsible for predicting the roles of a set of arguments of target 𝑡 in a sentence.

We formulate role classification as multi-class relation classification task, where each class is a specific role

that denotes a semantic relation between the target 𝑡 and one of the arguments. Meanwhile, we observe both

arguments of a given target and their corresponding roles are independent from each other. For example, as

shown in Figure 1, the appearance of argument “My brother” will not necessarily lead to the appearance of

argument “in the laundry room”. Similarly, in a frame (semantic scenario) Immobilization, the appearance

of role Patient will not necessarily lead to the appearance of role Place. Thus, we independently model the

relation of each (target, argument) pair in a sentence, which is significantly different from existing approach.

Specifically, given a (target, argument) pair (𝑡, 𝑎𝑘 ∈ 𝒜), we calculate the relation score of the pair using

following functions:

h𝑟(𝑎𝑘) = 𝐹𝐹𝑁𝑟(h𝑎𝑘(𝑖):𝑎𝑘(𝑗))

h𝑜(𝑡) = 𝐹𝐹𝑁𝑜(h𝑡)

g𝑜(𝑎𝑘) = W𝑇
𝑜 [h𝑜(𝑡);h𝑟(𝑎𝑘)] + b𝑜

(14)

𝐹𝐹𝑁𝑎 and 𝐹𝐹𝑁𝑠 are two separate one-layer FFN with relu activation function. h𝑎𝑘(𝑖):𝑎𝑘(𝑗) and h𝑡 denote

the hidden representation of argument span 𝑎𝑘 and target 𝑡 respectively. W𝑜 is a 2𝑑𝑜 × (|ℛ|) learnable

matrix, and 𝑏𝑜 is the bias vector. Different from argument identification module, we use linear network

instead of biaffine network to construct the score function due to the following consideration. First, we

introduce the diversity between the two modules which can focus on different aspects of the relations between

the target and its arguments respectively. Second, the complexity of biaffine network is higher than that of

linear network, especially in our our role classification subtask, as there are many semantic roles (|ℛ| ≫ 2)

that need to be taken into account.

In addition, since the roles are constrained on frames, we design a explicitly interactive mechanism

that captures the semantic constraints using a simple linear network, which is beneficial for predicting

frame-specific roles. Meanwhile, to explicitly model the interaction between argument identification module

and role classification module, we simply pass the argument identification signal to role classification module,

which has been empirically proved useful for both modules. Thus, We directly replace the function g𝑜(𝑎𝑘)

with following two functions:

h𝑐(𝑎𝑘) = 𝐹𝐹𝑁𝑐([h𝑜(𝑡);h𝑟(𝑎𝑘)])

g𝑜(𝑎𝑘) = W𝑇
𝑟 [M

(ℱ)[𝑓 ];h𝑐(𝑎𝑘);g𝑎(𝑎𝑘)] + b𝑟

(15)

where M(ℱ) is the frame embedding matrix learned by frame identification module, 𝑓 is the predicted frame

of target 𝑡 by frame identification module, and M(ℱ)[𝑓 ] is the embedding of frame 𝑓 . g𝑎(𝑎𝑘) is the argument
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Algorithm 2 Inference with Non-overlap Constraint

1: Input: sentence x and a target 𝑡 in x,
2: the trained model 𝑃 (.),
3: candidate arguments 𝒜 = {𝑎1, ..., 𝑎|𝒜|}.
4: 𝑐𝑢𝑟 ← 0
5: 𝒞 = ∅
6: 𝑓 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑓∈ℱ𝑙𝑃 (𝑓 |x, 𝑡)
7: 𝒜+ ← {(𝑎𝑘, 𝑠𝑐𝑜𝑟𝑒) | 𝑎𝑘 ∈ 𝒜, 𝑦(𝑎𝑘) = 1

𝑎𝑛𝑑 𝑠𝑐𝑜𝑟𝑒 = 𝑃 (𝑦(𝑎𝑘) = 1 |x, 𝑡, 𝑎𝑘)}
8: 𝒜+ ←descending sort by score(𝒜+)
9: while |𝒜+| − 𝑐𝑢𝑟 > 2 :

10: 𝑓𝑙𝑎𝑔 ← 𝑐𝑢𝑟
11: for 𝑖𝑑𝑥 in range(𝑐𝑢𝑟, |𝒜+|):
12: if 𝑐𝑢𝑟! = 𝑖𝑑𝑥

and is overlap(𝒜+[𝑐𝑢𝑟],𝒜+[𝑖𝑑𝑥]):
13: 𝑓𝑙𝑎𝑔 = 𝑖𝑑𝑥
14: 𝑐𝑢𝑟 = 𝑐𝑢𝑟 + 1
15: if 𝑓𝑙𝑎𝑔 > 𝑐𝑢𝑟:
16: 𝒜+.remove by index(𝑓𝑙𝑎𝑔)
17: for 𝑎𝑘 in 𝒜+:
18: 𝒞.𝑎𝑑𝑑{(𝑎𝑘, 𝑙𝑎𝑏𝑒𝑙) | 𝑙𝑎𝑏𝑒𝑙 = 𝑟(𝑎𝑘) 𝑎𝑛𝑑

𝑟(𝑎𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟(𝑎𝑘)∈ℛ
𝑓
𝑃 (𝑟(𝑎𝑘) |x, 𝑡, 𝑎𝑘, 𝑓)}

19: return 𝑓 , 𝒞

score from argument identification module. W𝑟 is a (𝑑𝑜 + 𝑑𝑓 + 2)× (|ℛ|) learnable matrix, and 𝑏𝑟 is the

bias vector.

After obtaining the relation scores, we apply a softmax function to normalize the scores into probability

distribution:

𝑃 (𝑟(𝑎𝑘) |x, 𝑡, 𝑎𝑘, 𝑓) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(g𝑜(𝑎𝑘)). (16)

In our inference phase, since the golden frame 𝑓 is unknown, we can’t predict the roles from role subset ℛ𝑓 .

However, if we directly use the predicted frame 𝑓 to reduce the candidate roles to ℛ𝑓 , which may cause

error propagation. Since we consider the model can automatically focus on the most frame-specific roles

through interaction with frame and these roles can obtain higher scores, we have to predict the roles from

the full role set ℛ:
𝑟(𝑎𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟(𝑎𝑘)∈ℛ𝑃 (𝑟(𝑎𝑘) |x, 𝑡, 𝑎𝑘, 𝑓). (17)

In our training phase, we will calculate the relation scores for all of the (target, candidate argument) pairs,

just like argument identification module. However, in prediction phase, we only need to calculate the relation

scores of (target, argument) pairs that are predicted as arguments by argument identification module. This

two-steps roles labeling strategy is beneficial for both improving prediction accuracy and running efficiency.
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4.7 Training and Inference

During our training phase, we utilize cross-entropy loss to maximize the probability of the golden frame

type, argument type and role class:

L𝑓 = 𝑙𝑜𝑔(𝑃 (𝑓 |x, 𝑡))

L𝑎 =

𝑘=|𝒜|∑︁
𝑘=1

𝑙𝑜𝑔(𝑃 (𝑦(𝑎𝑘) |x, 𝑡, 𝑎𝑘))

L𝑟 =

𝑘=|𝒜|∑︁
𝑘=1

𝑙𝑜𝑔(𝑃 (𝑟(𝑎𝑘) |x, 𝑡, 𝑎𝑘, 𝑓))

(18)

The total loss is defined as:

L = L𝑓 + L𝑎 + L𝑟 (19)

where 𝛼, 𝛽 and 𝛾 are hyper-parameters that adjust the weights of each loss, and each function is the loss for

one training sample. Finally, we jointly optimize the losses of three subtasks over all the training data.

In our inference phase, the argument identification module first identifies the arguments of the target

from all the candidate arguments, and then the role classification module predicts the roles for the identified

arguments instead all the candidate arguments, which can reduce the searching space of roles from 𝑂(|𝒜|𝑅𝑓 |)
to 𝑂(𝑘|𝑅𝑓 |), where 𝑘 (𝑘 ≪ |𝒜|) is the amount of identified arguments and |𝑅𝑓 | is the amount of roles of

current predicted frame 𝑓 . Taking our proposed pruning strategies into account, the overall searching space

of all the subtasks, including frame identification, argument identification and role classification, is less than

𝑂(|𝐹 |+2|𝑛(𝑛+1)/2|+ 𝑘|𝑅𝑓 |), since the window size used in arguments pruning stage is always less than or

equal to the sentence length 𝑛.

Most of the previous studies [4, 10, 17, 27, 28] have enforced non-overlap constraint on the arguments. The

constraint requires that the argument spans of the target do not overlap. The argument identification module

can efficiently identify the arguments and their boundaries, but it can not guarantee that the arguments meet

the non-overlap constraint, since the argument identification module identifies each argument independently

in this work. To deal with this issue, we adopt a post-processing strategy that greedily select higher scoring

arguments subject to the constraint in the overall inference process.

Given one testing sample 𝑥, the detailed inference process with non-overlap constraint is described in

Algorithm 2. Firstly, the inference process predicts frame of the target 𝑡 in the sentence 𝑥, as shown in

line 6. Secondly, the process obtains the predicted argument set 𝒜+ and sorts them using their scores in

descending order, as illustrated in lines 7-8. Thirdly. the process searches the overlap arguments, and then

reserves the argument with highest score and removes other arguments overlapped with this argument from

the set 𝒜+, as illustrated in lines 9-16. Finally, the inference process predicts the role for each predicted

argument in 𝒜+, as shown in line 18.
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Table 1. Numbers of instances in two datasets

#exemplar #train #dev #test

FN 1.5 153946 16621 2284 4428
FN 1.7 192431 19391 2272 6714

5 EXPERIMENTS

5.1 Datasets

We employ two full-text annotation datasets3 from both standard FrameNet 1.5 [2] and FrameNet 1.7 [24]

respectively, and follow the same train/development/test split as the existing work [3, 21, 27]. In addition,

we also utilize the partially-annotated exemplar sentences (each exemplar sentence has only one annotated

frame and its roles.) in FrameNet as training data, following the previous studies [3, 3, 21]. For the two

full-text annotation datasets, we treat one annotated sentence for one target as one training sample. So,

both the annotated sentence from full-text and exemplar sentence are processed into the same format. Table

1 shows the numbers of instances in two datasets. Note we have employed the standard evaluation script

that measures the performance of full structure extraction, including three evalution metrics: precision,

recall and F1 score4.

5.2 Baselines for Performance Comparison

We have conducted extensive experiments to compare our proposed model with following ten models.

Specifically, Semafor [4] is a well-known FSP system which uses a variety of syntactic features to construct

two separate probabilistic models, i.e., frame identification model and role labeling model. The system applies

the AD algorithm to conduct collective prediction of a target’s arguments, incorporating declarative linguistic

knowledge as constraints. Hermann-14 [17] is a pipeline model that uses feature representation based on

dependency path embedding, and utilizs WSABIE algorithm[31] to learn FI model and linear programming

to search the optimal roles sequence. Framat+context [23] is an extension version of Framat5, which adds

extra context features in discourse and frame structure information to the model. Täckström uses dynamic

programming algorithm to conduct inference with constraints based on a globally-normalized log-linear

model using syntactic features [29]. FitzGerald extends the model of Täckström et al. by replacing its

linear potential functions with a multi-layer neural network which maps arguments and roles of a given

target into a shared embedding space [10]. Yang and Mitchell (SEQ) [33] is a sequence tagging model

based on LSTM and CRF. Yang and Mitchell (REL) [33] is a relation model that uses the dependency

path and dependency to represent the relations between target and its arguments. Open-SESAME [27] is

a model based on Semi-Markov CRF that models a conditional distribution over labeled segmentations of an

input sequence. Peng et al. (Basic) [21] is a jointly learning model using a structured hinge objective, and

it is the current SOTA model on FrameNet 1.7 dataset for FSP task. Chen et al. [3] is a jointly

learning model that adopts multi-decoder to handle the subtasks of FSP together, and it is the current

SOTA model on FrameNet 1.5 dataset for FSP task.

3http://framenet.icsi.berkeley.edu
4http://www.cs.cmu.edu/ ark/SEMAFOR/eval/
5An open-source semantic role labeling tool proposed by Björkelund et al. (2010)

http://framenet.icsi.berkeley.edu
http://www.cs.cmu.edu/~ark/SEMAFOR/eval/
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Table 2. Details of hyper-parameter settings with respect to different encoders (BERT/BiLSTM).

Parameters Values

Encoder type BERT-Base/BiLSTM
BiLSTM layers - /2
Word embedding - /300-d Glove[22]
Embedding dropout - /0.2
Hidden size 𝑑ℎ,𝑑𝑎,𝑑𝑜 768/300
Frame embedding 𝑑𝑓 150
Span length embedding 150
Span width embedding 150
max len 20
win size 40
Dropout rate for FFNs 0.2
Pre-train epoch 50
Train epoch 150
Learning rate 1e-3
Optimizer AdamW
Warmup proportion 0.1

Note that some of the existing systems may also report the results of ensemble learning models based on

different types of ensemble learning methods, and some of the systems adopt multi-task learning framework

using additional training data except for FrameNet dataset. In addition, the graph-based FSP model recently

proposed by Lin et al.[18] is based on the assumption that the target word is unknown. The basic setting is

different from our work, so we did not compare the performance since the comparison is unfair. For fair

comparison, we only report the performance of models that were trained on FrameNet data only (without

leveraging additional training data) and did not use an ensemble learning strategy. Furthermore, we will pay

much attention on the performance comparison between our models and two jointly learning models [21] [3],

since our model also adopts jointly learning strategy and these two models achieve the SOTA performance.

5.3 Parameter Settings

We adopt two alternative encoders, i.e., BERT and BiLSTM. Thus we have two groups of different parameter

settings. In particular, BiLSTM adopts 2-layer structure and the word embeddings are initialized with 300-

dimension Glove embeddings [22], while BERT uses the default settings of BERT-base. We set win size=40

since the performance of the model on dev dataset remains stable after it is grater than 40. Following the

previous work[3, 21, 27], the max len is set to 20 for the fair comparison. We fine tune BERT encoder in our

training phase. The detailed hyper-parameter settings are shown in Table 2.

Note the way that utilizes standard train samples and exemplar samples together to train our model has

important effect on its performance. A straightforward way is to simply mix two kinds of samples together

and the model is trained on this mixed data. However, this way may cause semantic drift since two kinds of

samples are from different domains. We have proposed a different way, that is to conduct pre-training on

partially-annotated exemplar samples first and then followed by continually training on standard training

samples [3]. The pre-training epoch and training epoch are set to 50 and 150 respectively. We evaluate our

model on the development test and select the best model for test purpose.
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Table 3. Frame identification accuracy on FrameNet test dataset. ‘ALL’ and ‘Amb’ denote testing on test data and on
ambiguous data respectively. ‘*’ denotes these models are trained on both the standard train data and exemplar data . The
best performance among the models based on BERT encoder are denoted in bold face, and the best performance among
the models based on BiLSTM or other non-BERT encoders are denoted with underline.

FN 1.7 FN 1.5

Models All Amb All Amb

Semafor - - 83.60 69.19
Hermann-14 - - 88.41 73.10
SimpleFrameId 83.00 71.70 87.63 73.80
Open-SESAME 86.55 72.40 86.40 72.80
*Yang and Mitchell - - 88.20 75.70
*Peng et al.+BiLSTM 88.60 76.60 89.20 76.30
*Chen et al.+BiLSTM 88.65 76.70 89.40 76.70
*Chen et al.+BERT 90.10 78.90 90.50 79.10
*TaRFSP

+BiLSTM 88.71 76.80 88.78 76.20
+BERT 91.71 82.45 92.07 81.20

5.4 Overall Results

Following the existing work, we first evaluate the model performance on frame identification in terms of

accuracy, and then evaluate the comprehensive performance with full structure extraction using precision,

recall and F1 score. The results of frame identification include accuracy on both ambiguous data and all

data. In particular, ambiguous data refers to the sentences in which the given target may evoke more than

one possible frame in FrameNet. All data means all the test data including both ambiguous data and

non-ambiguous data.

The results of frame identification are shown in table 3. All methods are partitioned into three groups: (1)

pipeline models (first block), (2) jointly learning models (second block), and (3) our proposed models (third

block) respectively. In particular, pipeline models are separately trained for frame identification, while jointly

learning models refer to those models trained simultaneously for frame identification and frame-semantic

labeling. Note that we do not list the FI accuarcy for some pipeline models mentioned in baselines, as these

models directly use the results of FI of other models and did not report their results in the original papers.

Overall, due to the error propagation problem, jointly learning models perform better than pipeline models.

For fair comparison, we focus on the comparison between our models and three joint learning models, since

they are all jointly learning models and adopt similar encoders. We observe that our TaRFSP+BERT

achieves the best performance and outperforms Chen et al.+BERT and all of the other models by a relatively

large margin. Compared with those baseline models based on BiLSTM, our TaRFSP+BiLSTM slightly

outperforms Peng et al.+BERT on FrameNet 1.7, and slightly lags behind Chen et al.+BiLSTM in terms of

accuracy. Considering BERT is now the state-of-the-art encoder with better representation capabilities, our

method with BERT achieves the best performance for both benchmark datasets consistently, indicating it

can be better used for FSP task than all the existing methods.



A Span-based Target-aware Relation Model for Frame-Semantic Parsing 17

Table 4. Full structure extraction result on FrameNet 1.5 test data. Bold font indicates the best performance of model
with BERT encoder, and the best performance of model with BiLSTM or other non-BERT encoder are denoted in underline.
‘*’ denotes these models are trained on both the standard train data and exemplar data.

Models P R F1

Semafor 69.2 65.1 67.1
Hermann-14 72.8 64.9 68.6
Framat+context 71.1 64.8 67.8
Täckström 75.4 65.8 70.3
FitzGerald et al. 74.8 65.5 69.9
Open-SESAME 71.0 67.8 69.4
*Yang and Mitchell (SEQ) 69.6 70.9 70.2
*Yang and Mitchell(REL) 77.1 68.7 72.7
*Peng et al.+BiLSTM 79.2 71.7 75.3
*Chen et al.+BiLSTM 75.1 76.9 76.0
*TaRFSP+BiLSTM 78.1 75.4 76.7
*Chen et al.+BERT 78.2 82.4 80.2
*TaRFSP+BERT 82.5 82.4 82.5

Table 5. Full structure extraction result on FrameNet 1.7 tset data. Bold font indicates best performance of model with
BERT encoder, and the best performance of model with BiLSTM encoder are denoted in underline. † denote the result is
reproduced according the original paper.

Models P R F1

Peng et al.+BiLSTM 78.0 72.1 75.0
† Chen et al.+BiLSTM 74.0 77.1 75.5
TaRFSP+BiLSTM 79.2 74.0 76.5

† Chen et al.+BERT 80.0 81.8 80.9
TaRFSP+BERT 83.8 82.1 82.9

Full semantic structure extraction is a task, concerning the overall performance of FSP, which jointly

evaluates the performance of frame identification and role classification that require exact match the

boundaries of each argument as a role filler.

The results of full semantic structure extraction are shown in Table 4. All methods are partitioned into

three groups: (1) pipeline models (first block), (2) jointly learning models with BiLSTM encoder(second

block), and (3) jointly learning models with BERT encoder (third block) respectively. The results demonstrate

that our proposed models achieve the best F1 score compared with the existing models on FrameNet 1.5

test data. Specifically, Our TaRFSP+BiLSTM model outperforms the current SOTA model with BiLSTM

(i.e., Chen et al.+BiLSTM) by 0.7%, and our TaRFSP+BERT model outperforms the current SOTA

model (i.e., Chen et al.+BERT) with BERT encoder by 2.3 %, indicating our method is able to perform

frame-semantic parsing more accurately. For precision and recall, comparing with Peng et al.+BiLSTM

model, our TaRFSP+BiLSTM model performs 1.1% worse in terms of precision but manages to achieve

3.7% high recall. Comparing with Chen et al.+BiLSTM model, our TaRFSP+BiLSTM model performs 1.5%

worse in terms of recall but manages to perform 3.0% better in terms of precision. Our TaRFSP+BERT

model achieves the improvement over the current SOTA BERT-based (Chen et al.+BERT) model by 5.7%,
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Table 6. Full structure extraction results of ablation study on FrameNet 1.5 and FrameNet 1.7 tset data. The sign
’w/o’ denotes the model without corresponding module. Each Δ represents the difference between our full model and the
corresponding ablation model.

TaRFSP (our model)
FN 1.5 FN1.7

F1 ∆ F1 ∆

+BiLSTM 76.7 - 76.5 -

w/o frame interaction 74.4 2.3 74.5 2.0
w/o argument interaction 76.1 0.6 76.1 0.4
w/o non-overlap constraint 76.6 0.1 76.4 0.1
w/o relative distance 75.7 1.0 75.7 0.8

+BERT 82.5 - 82.9 -

w/o frame interaction 81.3 1.2 81.8 1.1
w/o argument interaction 82.2 0.3 82.7 0.2
w/o non-overlap constraint 82.4 0.1 82.8 0.1
w/o relative distance 81.7 0.8 82.3 0.6

with the comparable recall score, leading to 2.3% overall improvement. This is more important given that

BERT is better than BiLSTM in many existing research [7, 30, 32] and our results also demonstrate that

BERT based methods are around 4% better than BiLSTM based methods.

Note Chen et al. [3] do not conduct experiments on FrameNet 1.7 in their original paper. We reproduce

the experiment on FrameNet1.7. For the performance on FrameNet 1.7 dataset, as shown in Table 5, our

models outperform the current SOTA model in terms of all of the metrics. Overall, our models achieve the

best score in terms of F1 consistently across both FrameNet 1.5 and FrameNet 1.7 test data.

To further analyze the features of our proposed model based on independency assumption, we compare

it with the SOTA model proposed by Chen et al., which adopts structured prediction paradigm based on

role interdependent assumption, and incremental identify arguments and roles so as to explicitly model the

interdependency relations between roles. Modeling interdependency relations in the model is beneficial to

achieve higher recall, but it seems to be unhelpful for improving the precision. We believe this phenomenon is

caused by the error prorogation problem between roles, because the previously identified roles directly affect

the subsequently identified roles. If the previous identified role is wrong, the subsequent identified roles may

be also wrong. By contrast, our proposed TaRFSP model obtains better balance between recall and precision

and achieves the better performance than Chen et al.’s model as well as other models. We attribute this

mainly to our target-aware relation classification model based on role independency assumption. In other

word, the model predicts the role of each argument independently without taking other roles of arguments

of current frame into account, which can eliminate the error prorogation problems between roles.

6 ANALYSIS

To evaluate the performance of our models in different settings as well as the function of each model

component, we conduct detailed ablation experiments on the two datasets.
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Fig. 5. All of the metrics comparison between full model and model without frame interaction on FrameNet 1.5 test data.

6.1 Effect of Frame Interaction

In FrameNet, the fine-grained roles are frame-specific roles, so the role and frame interaction is beneficial

for the model to more precisely identify its roles in a given sentence. As shown in Table 6, no matter the

BiLSTM-based model or BERT-based model, their F1 scores have declined in some degree without the

frame interaction, although there are less effect on BERT-based model than BiLSTM-based model, possible

due to BERT’s strong representation capacity. For the BiLSTM-based model, the improvement over F1 score

achieves 2.0%, with the help of frame interaction. So we can conclude that our proposed lightweight frame

interaction mechanism is effective and feasible for improving the performance of FSP models, indicating

that semantic roles dependent on its frame that defines the semantic scenarios is reasonable.

How does the frame interaction affect the performance of our models? We answer this question through

analyzing the other specific metrics thoroughly which influence the F1 metric. As shown in Figure 5, both

the recall and precision of the BiLSTM-based model and BERT-based model have decreased significantly

without the frame interaction, and we also observe that the influence on recall is much higher that on

precision. So, with frame interaction, the models can not only more accurately predict the roles for the

predicted arguments, but also identify more arguments to fill the roles. The models without frame interaction

tend to predict those predicted arguments whose roles are hard to identify as Null role. One reason is that

the imbalance role distribution of training samples in which the Null role labeled samples account for the

vast majority. The other reason is that models need to predict the role for a certain predicted argument

from all of the roles of FrameNet. On the other hand, with the frame interaction, the model tends to predict

the role for a certain predicted argument from a small set of frame-specific roles, which makes the prediction

of role more easier, and the model tends to assign the potential argument a exact frame-specific role instead

of Null role.

6.2 Effect of Argument Interaction

In this study, the argument identification module is mainly used to identify the arguments of the given

target. Meanwhile, we also design a lightweight explicit interaction mechanism with the role classification

module through simply passing the output of the biaffine layer of the argument identification module to the

role classification module, as described in Section 3.7.

As shown in Table 6, no matter with the BiLSTM-based model or BERT-based model, their F1 scores

have declined in some degree without the argument interaction, although there are less effect on BERT-based

model than BiLSTM-based model, possible due to BERT’s strong representation capacity. Overall, the
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Table 7. Full structure extraction result and frame identification accuracy considering the influences of different way using
the exemplar data. Each Δ represents the metric difference between two models in corresponding settings. The signs pre,
mix and w/o exe denote pre-training, mixture and without using exemplar data respectively.

TaRFSP
FN 1.5 FN 1.7

F1 Acc. F1 Acc.

+BiLSTM (w/o exe) 73.7 88.4 74.2 88.0
+BiLSTM (mix) 75.3 87.9 75.7 87.9
+BiLSTM (pre) 76.7 88.8 76.5 88.7

(mix)-(w/o exe)∆ 1.6 -0.5 1.5 -0.1
(pre)-(w/o exe)∆ 3.0 0.4 2.3 0.7

+BERT (w/o exe) 81.2 91.4 81.4 91.3
+BERT (mix) 81.9 91.2 82.5 91.6
+BERT (pre) 82.5 92.1 82.9 91.7

(mix)-(w/o exe)∆ 0.7 -0.2 1.1 0.3
(pre)-(w/o exe)∆ 1.3 0.7 1.5 0.4

interaction between frame identification and role classification module is beneficial for improving model’s

overall performance.

6.3 Effect of Non-overlap Constraint

Table 6 shows that the F1 scores of both BiLSTM-based models and BERT-based models have dropped

without the non-overlap constraint in general. Although the impact of the non-overlap constraint on the

overall performance seems to be small, it is still necessary for keeping the well-formed argument structure of

the given target.

In addition, the experimental results also demonstrate that: (1) our proposed method based on target-

aware relation classification for argument identification has already eliminated the overlap arguments to

some extend, since there are very few overlapping arguments. (2) Our proposed inference algorithm with

non-overlap constraint is effective to handle the overlap arguments, since it can not only eliminate the

overlap arguments but also improve the model’s performance in terms of F1 score.

6.4 Effect of Relative Distance

The relative distance represent the span’s position and distance relation corresponding to the target. To

test its effect, we separately train the models without using the relative distance information. As show in

Table 6, no matter with the BiLSTM-based model or BERT-based model, their F1 scores have declined in

some degree without incorporating relative distance into the span representation. The experimental results

show that the relative distance information is beneficial for improving the model’s overall performance.

6.5 Effect of Exemplar Data and Pre-training

The previous studies have shown that the exemplar data included in FrameNet is useful for enhancing the

FSP model’s performance, although these exemplars as a part of FrameNet are initially used to illustrate the

meaning of frames and collected from a variety of domains. It is worth discussing how to use the exemplar

data. We simply adopt two types of way in using exemplar data: (1) mixture: mixing the exemplar with
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Table 8. The simulation results of inference speed. ”tgt/s” denotes the FSP speed for one target per second.

Model FN1.5 FN1.7

Peng et al.+BiLSTM 20.24 tgt/s 20.78 tgt/s
Chen et al.+BiLSTM 28.15 tgt/s 28.56 tgt/s
TaRFSP+BiLSTM 36.12 tgt/s 36.68 tgt/s

Table 9. Percentage of errors made by BERT-based and BiLSTM-based models on the FN1.5 development dataset.

Error type Description
TaRFSP+

BiLSTM BERT

Frame error Frame misprediction 10.3 8.1

Role error Matching span with incorrect role. 14.4 11.3

Span error Matching role with incorrect span boundary 12.3 7.0

Extra predicted arguments Predicted argument that does not overlap any gold argument 19.8 21.2

Missing arguments Gold argument that does not overlap any predicted argument 35.0 22.6

train data; (2) pre-training: pre-train on exemplar data followed by training on our training data. As shown

in Table 7, compared with the model trained without using exemplar data, no matter which way (mixture

or pre-training) we adopt, the F1 scores of both the models trained using extra exemplar data have been

improved significantly. Specifically, for the BiLSTM-based model trained with the way of mixture, the

improvement over F1 score achieves 1.6% on FrameNet 1.5 test dataset, while the improvement over F1

score achieves 3.0% on FrameNet 1.5 test dataset for the BiLSTM-based model trained with pre-training.

We also notice that the mixture strategy may be harmful to FI in terms of accuracy, although it is beneficial

for overall performance in terms of F1 score. Therefore, we can conclude that pre-training is more effective

for improving the model’s overall performance than mixture. It is probably because pre-training strategy is

beneficial to handle the semantic drift problem, and the mixture strategy can not effectively handle this

problem well which can produce negative effect on the performance of FI.

6.6 Inference speed analysis

Table 8 shows the running speed of our model and two strong baseline models. Experimental results are

all obtained by running models on a single V100 GPU. For Peng et al.+BiLSTM model, we simulate the

inference process by replacing the original score function for each span with our span-based score function

and use linear programs to search the optimal solution just like the original paper. Although we can not

accurately assess the inference speed of each model, we can find the tendency that our proposed method

has the advantage in inference speed. Furthermore, we find that the pruning modules used in argument

identification are effective since the inference speed has dropped to 32 tgt/s when they are removed from

the model.

6.7 Error analysis

To further analyze the performance of our proposed method, we conduct the error analysis and categorize

the error type into for categories [3, 21]. We conduct the error analysis on development dataset of FrameNet

1.5. As show in Table 9, no matter with the BiLSTM-based model or BERT-based model, frame error, role
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Table 10. Case analysis for four sentences. In each block, the first two lines are sentences with golden labels and predicted
labels respectively, and the third line describes the error types and causes of the predicted results. The span in bracket are
arguments and the bold words in bracket are targets. The roles of arguments and frames evoked by targets are denoted as
subscript of their corresponding right bracket.

∙ [Steve, who was sitting next to John,]𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑟 [got]𝐷𝑖𝑠𝑒𝑚𝑏𝑎𝑟𝑘𝑖𝑛𝑔 down [in Rome]𝑃𝑙𝑎𝑐𝑒.
1 ∙ [Steve, who was sitting next to John,]𝑇ℎ𝑒𝑚𝑒 [got]𝐴𝑟𝑟𝑖𝑣𝑖𝑛𝑔 down [in Rome]𝐺𝑜𝑎𝑙.

∙ Frame error:Arriving, Role error: Theme, Goal

∙ All parties have agreed that they seek a non-unclear Korean peninsula, but it [remains]𝑆𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

[unclear]𝑆𝑡𝑎𝑡𝑒 [how this objective will be achieved]𝐸𝑛𝑡𝑖𝑡𝑦.
2 ∙ All parties have agreed that they seek a non-unclear Korean peninsula, but it [remains]𝑆𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

[unclear how this objective will be achieved]𝑆𝑡𝑎𝑡𝑒.
∙ Span error: [unclear how this objective will be achieved]𝑆𝑡𝑎𝑡𝑒

∙ Since April 2003, multilateral talks have been held in Beijing to [resolve]𝑅𝑒𝑠𝑜𝑙𝑣𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 [the
nuclear crisis]𝑝𝑟𝑜𝑏𝑙𝑒𝑚.

3 ∙ Since April 2003, [multilateral talks]𝐶𝑎𝑢𝑠𝑒 have been held in Beijing to [resolve]𝑅𝑒𝑠𝑜𝑙𝑣𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

[the nuclear crisis]𝑝𝑟𝑜𝑏𝑙𝑒𝑚.
∙ Extra predicted argument: [multilateral talks]𝐶𝑎𝑢𝑠𝑒

∙ He also sold [the XYZ-11]𝑃𝑎𝑟𝑡, the [key]𝑃𝑎𝑟𝑡 𝑃𝑟𝑜𝑝 [part]𝑃𝑎𝑟𝑡 𝑤ℎ𝑜𝑙𝑒 necessary for the trigger.
4 ∙ He also sold the XYZ-11, the [key]𝑃𝑎𝑟𝑡 𝑃𝑟𝑜𝑝 [part]𝑃𝑎𝑟𝑡 𝑤ℎ𝑜𝑙𝑒 necessary for the trigger.

∙ Missing argument: [the XYZ-11]𝑃𝑎𝑟𝑡

error and span error account for a relatively small fractions, which missing arguments and extra predicted

arguments account for most of the errors. In combination with the error case studies, as shown in Table 10,

we observe that these errors are closely related. Firstly, The error of frame identification directly affects the

errors of role classification since roles are dependent on frame. For example, although the span boundaries

of two arguments are correctly predicted, the roles of these arguments are incorrectly predicted as Theme

and Goal due to the wrong prediction of frame evoked by target got in case 1. Secondly, span error can

directly causes the errors of missing arguments and extra predicted arguments. For example, in case 2, due

to the incorrect boundary of argument ’unclear how this objective will be achieved ’ predicted by the model,

this argument becomes extra predicted argument, and the argument ’unclear ’ and ’how this objective will be

achieved ’ are missing arguments. Thus it can be seen that frame prediction and span boundary identification

of arguments are two bottlenecks of improving the performance of FSP.

Due to the large number of frames and frame-specific roles in FrameNet knowledge base, we observe that

frames and frame-specific roles have serious long tail distribution problem that considerable frames and

roles appear in train dataset very few times. Therefore, the learned model tends to predict frames, argument

spans and corresponding roles as these labels with high frequency in train dataset. For example, the frame

Disembarking only appears one time in train dataset, while the frame Arriving appears many times. So the

model incorrectly predicts the frame of target got in case 1 as Arriving instead of Disembarking. The role

Entity of frame State continue usually precedes the target and role State is after the target in a sentence

in train dataset. Thus the model incorrectly predicts the whole span ’unclear how this objective will be

achieved ’ as argument for role State. In addition, some uncommon words or phrases make the model unable

to accurately obtain its semantic representations, so that they are predicted as null arguments (i.e. missing

arguments) or wrong roles. For example, the argument ’the XYZ-11 ’ in case 4 is missing, since it is an

uncommon phrase. How to solve the long tail distribution problem will be a challenge work for FSP.
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7 CONCLUSION

In this work, we propose a innovative relation-based paradigm for FSP, which relaxes the role interdependent

assumption in structured learning paradigm, and regards the frame semantic role labeling as a relation

classification task. Based on this paradigm, we present a novel and lightweight jointly learning framework

for FSP, which decomposes the FSP task into three subtasks: frame identification, argument identification

and role classification, which incorporates lightweight interaction mechanism among the three subtasks. Our

detailed experimental analysis shows that interaction with predicted frame is very important to improve the

overall performance of FSP models, and interaction with argument identification is useful for enhancing

the model’s precision and reducing the inference time. The exemplar data contained in FrameNet is also

useful for improving our model’s performance, especially for BiLSTM-based models. Extensive experimental

results demonstrate our relation-based jointly learning model outperforms ten state-of-the-art FSP models

by a large margin in F1 score. As such, relation-based method for FSP is a promising direction given our

proposed jointly learning framework is both efficient and accurate.

For our further work, we will explore a more sophisticated method to handle the long-tail distribution

problem so as to improve the performance of FSP, especially in enhancing the performance of two bottleneck

subtasks (i.e. frame identification and span boundary identification of arguments). For example, we will try

to utilize more extra data and linguistic knowledge and adopt prompt learning paradigm to construct the

model.
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