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Machine Reading Comprehension (MRC) is one of the most challenging tasks in Natural Language
Understanding (NLU). In particular, MRC systems typically answer a question by only utilizing the infor-
mation contained in a given piece of text passage itself, while human beings can easily understand the
meanings of the passage based on their background knowledge. To bridge the gap, we propose a novel
Frame-based Neural Network for Machine Reading Comprehension(FNN-MRC) method, which employs
Frame semantic knowledge to facilitate question answering. Specifically, different from existing Frame
based methods that only model lexical units (LUs), our FNN-MRC has a Frame representation model,
which utilizes both LUs in Frame and Frame-to-Frame (F-to-F) relations, designed to model Frames
and sentences (in passage) together with attention schema. In addition, FNN-MRC has a Frame-based
Sentence Representation (FSR) model, which is able to integrate multiple-Frame semantic information
to obtain much better sentence representation. As such, FNN-MRC explicitly leverages the above
Frame knowledge to assist its semantic understanding and representation. Extensive experiments
demonstrate that our FNN-MRC method is able to achieve better results than existing state-of-the-art
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techniques across multiple datasets.
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1. Introduction

Machine Reading Comprehension (MRC) requires machines to
read and understand text passages, and answer relevant ques-
tions about it. It is regarded as an effective way to measure lan-
guage understanding and typically requires a deep understanding
of the given passage in order to answer its question correctly.
Clearly, human beings can easily understand the meanings of a
text passage based on their background knowledge. For instance,
given a sentence Katie bought some chocolate cookies, people know
Katie is a buyer, and chocolate cookies are goods that belong to
Food class etc. Existing machine learning approaches, however,
face great challenges to address the complicated MRC questions,
as they do not have above semantic background knowledge.

Nevertheless, FrameNet [1,2], as a knowledge base, provides
schematic scenario representation that could be potentially lever-
aged to facilitate text understanding. It enables the development
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of wide-coverage Frame parsers [3,4], as well as various real-
world applications, ranging form event recognition [5], textual
entailment [6], question answering [7], narrative schemas [8] and
paraphrase identification [9], etc. In particular, a Frame (F) is
defined as a composition of Lexical Units (LUs) and a set of Frame
Elements (FEs). Given a sentence, if its certain word/phrase evokes
a Frame by matching a LU, then it is called Target (T). It is worth
mentioning that FrameNet arranges different relevant Frames
into a network by defining Frame-to-Frame (F-to-F) relations.
Fig. 1 provides an example of F, FEs, LUs, T and F-to-F, where
the target word bought in sentence Katie bought some chocolate
cookies evokes a Frame Commerce_buy as it matches with a LU
buy (bought is the past tense of buy). In addition, another target
word chocolate cookies evokes a different Frame Food. Finally,
a couple of relevant Frames, including Commerce_buy, Shopping,
Seeking, Locating, form F-to-F relations.

There exist other semantic resources, such as WordNet [10],
PropBank [11]. In particular, WordNet is a lexicon that clusters
words into sets of synonyms (synsets) and describes semantic
relationships between them. In comparison, FrameNet annotates
sentences/examples with both syntactic and semantic informa-
tion for each Lexical Unit, which clearly provides more rich infor-
mation than WordNet. On the other hand, PropBank is a corpus
annotated with argument role labels for verbs. Roles in PropBank
are general, while Roles in FrameNet are specific to lexical unit
(Buyer vs. Arg0, Goods vs. Argl).
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Commerce_buy

Frame (F) Definition: These are words describing a basic commercial transaction
involving a Buyer and a Seller exchanging Money and Goods, taking the
perspective of the Buyer.

Buyer
Frame Elements Goods

FrameNet (FEs)
Seller

Lexical Unites
(LUs)

The Buyer wants the Goods and offers Money to a Seller
in exchange for them.

The Goods is anything (including labor or time, for
example) which is exchanged for Money in a transaction.

The Seller has possession of the Goods and exchanges
them for Money from a Buyer

buy.v, buy.n, buyer.n, client.n, purchase.v, purchaser.n, ...

Target (T) [Katie]puyer boughtcommerce_ puy [SOme chocolate cookies]goods-

Frame-to-Frame
Relation (F-to-F)

Commerce buy—Shopping—Seeking—Locating

WordNet  |Synset (buy.v): buy, purchase; Synset (buy.n): bargain, steal

PropBank | [Katie]s,,0 bought [some chocolate cookies]a,,;.

Fig. 1. Example of F, FEs, LUs, T and F-to-F in FrameNet, and the comparison with other two semantic resources WordNet and PropBank.

It is clear that FrameNet can bring in additional background
semantic knowledge that could be leveraged to improve MRC per-
formance. However, how to effectively utilize these useful seman-
tic knowledge from FrameNet is an important issue. Previously,
feature-based [12] supervised learning models were proposed to
integrate Frame knowledge to MRC, where they require language
experts design complex features, which is typically a time con-
suming and expensive process and may not be generic enough
to handle different MRC tasks. Later, end-to-end solutions with
neural models [13-15] achieved good performance on the MRC
tasks. Although such techniques can effectively incorporate con-
textual information from large-scale external unlabeled data into
machine learning models, we still lack of effective representation
learning techniques to help us incorporate Frame knowledge into
a good representation so that we can leverage to build a suc-
cessful MRC system. In addition, we observe the existing works
mainly focus on LU embedding within a Frame [16-18], without
modeling a Frame as a whole. Furthermore, many sentences could
have more than one target words that evoke multiple semanti-
cally correlated Frames, but existing methods do not focus on
integrating multi-Frame from FrameNet to enrich accurate and
comprehensive sentence semantic representations.

To address the problems mentioned above, in this paper, we
propose a novel Frame-based Sentence Representation (FSR) model,
which leverages rich Frame semantic knowledge, including both
generalizations of LUs and F-to-F relations, to better model the
sentences in given text passage. To take full advantages of LUs and
F-to-F, we propose three different strategies for Frame represen-
tation. Finally, we integrate multiple-Frame semantic information
to get more comprehensive sentence representation based on
individual Frame representation.

In this paper, we propose a Frame-based Neural Network for
MRC (FNN-MRC). Specifically, we first utilize the FSR model to
capture the multiple Frame semantic information of every sen-
tence, and GRU [19] is used to aggregate a document-level frame-
based representation. In experiments, we evaluate our FNN-MRC
method on multi-choice MRC task, such as MCTest [20], non-
extractive MRC, which requests to choose the right option from a
set of candidate answers according to given passage and question.
This is different from relatively easy extractive MRC datasets
such as SQuAD [21] and NewsQA [22], which require a model to

extract an answer span to a question from reference passage. In
non-extractive MRC, however, machine learning models need to
perform reasoning and inference. In addition, its difficulty is also
reflected by the required background knowledge that are not ex-
pressed in given passage. We show improvements on two widely
used neural models, i.e., traditional deep learning methods (with
LSTM [23]) and Transformer (with BERT [15]) in the experiments.

The key contributions of this work can be summarized as
follows:

1. We propose novel attention-based Frame Representation
Models, which take full advantage of LUs and F-to-F rela-
tions to model Frames with attention schema.

2. We propose a new Frame-based Sentence Representation
(FSR) model that integrates multi-Frame semantic infor-
mation to obtain richer semantic aggregation for better
sentence representation.

3. We propose a Frame-based Neural Network for MRC (FNN-
MRC), which explicitly leverages the Frame representation
and Frame-based sentence representation knowledge to
assist non-extractive question answering.

4. Our experimental results demonstrate our Frame-based
Neural Network for MRC (FNN-MRC) is very effective on
Machine Reading Comprehension (MRC) task, comparing
with state-of-the-art techniques.

2. Related work

In this section, we will first provide a brief introduction to
MRC datasets, which play an important role in recent progress
in reading comprehension, and subsequently describe machine
learning models applied specifically to two MRC datasets, namely,
MCTest and RACE, in details.

2.1. Publicly available datasets for reading comprehension tasks

Machine reading comprehension has become one of central
tasks in natural language understanding, fueled by the creation
of many large-scale datasets. Existing datasets on MRC are cat-
egorized into three groups: cloze-style, question answering and
multiple-choice reading comprehension.
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Cloze-style reading comprehension task is to infer the missing
entity in the query by understanding the content of given article.
Hermann et al. [13] published the CNN and Daily Mail, which
paired news articles with their summarized bullet points. Cui
et al. [24] firstly published the Chinese cloze-style reading com-
prehension dataset, which consisted of People Daily news dataset
and Children’s Fairy Tale (CFT) dataset. Cloze-style shares most of
the characteristics of reading comprehension, but the answer is
a single word in the article [25]. So these datasets rarely test the
deep reasoning capabilities of the underlying machine learning
models.

Question answering reading comprehension task requires
models to form a span in the passage to answer the question. Ra-
jpurkar et al. [21] proposed SQuUAD, the answer to each question
was always a span in the context. In addition, Joshi et al. [26]
proposed TriviaQA, which only needed to form the span that
seems most related to the question, instead of checking whether
the answer is actually entailed by the passage. Since annotators
tend to copy spans as answers directly, the majority questions in
these datasets are still extractive answers.

For multiple-choice MRC datasets, given a question and a text
passage, we need to select the correct answer from multiple can-
didate answers. This is a non-extractive task, in which answers
are not restricted to extractive text spans and we should infer the
answer based on the semantics of passage and question. In par-
ticular, MCTest [20] was built by crowdsourcing, which involved
extensive human effort in designing questions and answers. More
recently, RACE [27] dataset has been proposed where its passages
and questions was complied by human experts (English instruc-
tors), which were carefully designed for evaluating the middle
and high school Chinese students’ ability in language understand-
ing and logic reasoning. Note this multiple-choice MRC task is
quite different from previous two groups of datasets discussed
above — besides surface matching between candidate answers
to given passage, it focuses more on semantic interpretation,
summarization and the use of prior background knowledge. So
in this paper, we focus on more challenging multiple-choice MRC
datasets MCTest and RACE.

2.2. Machine learning methods

Machine Learning Methods be categorized into classical ma-
chine learning methods and neural methods. Next, we elaborate
them in details.

Classical Machine Learning Methods aim at mapping a se-
quence of texts (given passage, questions and candidate answers)
into a feature representation based on semantic or syntactic
features to select the best candidate answer according to given
passage and question. Simple text matching methods, such as
window-based and distance-based algorithms, only use lexical
features to count the number of overlapping words among the
given passage, question, and answers [20]. Smith et al. [28] fur-
ther improved the lexical matching method by taking into ac-
count multiple context windows, question types and coreference
resolution. As the simple text matching methods could not handle
complex questions, more expressive hidden variable models are
thus introduced. For instance, Wang et al. [12] used a simple
latent-variable classifier trained with a max-margin criterion by
augmenting baseline features [20] with additional features based
on syntax, Frame semantics, coreference, and word embeddings.
Narasimhan and Barzilay [29] proposed a discriminative Frame-
work with hidden variables that focused on discourse relation
features. Sachan and Xing [30] and Sachan et al. [31] proposed
unified max-margin Framework that utilized hidden variables
to find the alignment of question, correct answer, and passage.
Sachan and Xing [30] proposed a Framework that learned to
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find the latent mapping of the question-answer meaning repre-
sentation graph onto the passage meaning representation graph
using the Abstract Meaning Representation (AMR) formalism.
Sachan et al. [31] presented a Framework that learned to find the
hidden structure that explained the relation between the ques-
tion, correct answer, and passage based on rhetorical structure,
coreference links. Lu et al. [32] proposed multilayer network em-
bedding algorithms based on Nonnegative Matrix Factorization
(NMF), which can characterize the nature of a node with different
structural property constraints. Li et al. [33] studied interaction
among hidden variables for the machine comprehension by using
linguistic structures to help capturing global evidence in hidden
variable modeling.

Features in these methods often require significant effort to
design, and rely on various NLP tools to extract, which are typi-
cally time consuming and erroneous, and hard to apply in other
tasks/applications.

Neural models first encode given passage and concatenation
of question and one candidate answer (do four concatenations as
we usually have four candidate answers) into two vectors and
then compute the similarity between them. The candidate answer
with largest similarity will be chosen as the correct answer. After
the release of large-scale MRC datasets, various neural models
have been proposed recently. They built the representation of
words and then fed them into a deep neural network which
processes and compares the presentations between passage and
question + answer, where attention mechanism is mainly used
to model their interactions. For example, Lai et al. [27] adopted
and modified Gated Attention Reader (GA) [34] and Stanford
Attention Reader (Stanford AR) [35] for both cloze-style MRC
and multi-choice MRC problems. However, experimental results
showed that these models are not capable of tackling the tasks
effectively. Yin et al. [36] explored a hierarchical attention-based
convolutional neural network (HABCNN) for multi-choice MRC,
which employed an attention mechanism to detect key phrases,
key sentences and key snippets that are relevant to the question.
Xu et al. [37] proposed the Dynamic Fusion Networks (DFN),
which used multi-hop reasoning mechanism and employed re-
inforcement learning techniques for dynamic strategy selection
for this task. Tay [38] proposed Multi-Range Reasoning Units
(MRU), a new compositional encoder which constructed gates
from a novel contract-and-expand operation for multiple choice
MRC. Wang et al. [39] proposed a new co-matching approach
to this problem, which jointly modeled whether a passage can
match both a question and a candidate answer. Wen et al. [40]
proposed a multilabel image classification method, which aims
at projecting both labels and image features to a common latent
vector space. In this way, the frequently occurring labels and
features do appear closer in the latent space.

Research [15,41,42] demonstrated that by fine-tuning a pre-
trained language model can lead to a series of breakthroughs in
MRC. Among the pre-trained language models, BERT [15] has
taken the MRC world by storm. So many optimized versions of
BERT have been proposed. For instance, SpanBert [43] extended
BERT by masking contiguous random spans, rather than random
tokens. RoBERTa [44] used a novel dataset for pre-training to
improve performance on downstream tasks. Zhang et al. [45] pro-
posed a dual co-matching network (DCMN), which modeled the
relationship among passage, question and answers bidirection-
ally based on BERT. Megatron-BERT [46] implemented a simple
and efficient model parallel approach using intra-layer model-
parallelism.

It is worth noting we use BERT as the backbone to illustrate
how our proposed method works for its superior performance
in a range of natural language understanding datasets, although
many other pre-trained optimized models can be applied as well.
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Neural models + External Knowledge. As external knowl-
edge plays a critical role in MRC, some existing work have ex-
plored different ways to leverage external knowledge. For in-
stance, some work leverage data augmentation to improve MRC
performance. For instance, Pan [47] improved question answering
by utilizing intra-domain external question answering datasets
and enriching the reference corpus by out-domain external cor-
pora. Wang et al. [48] built an attention-based recurrent neu-
ral network model with the help of external knowledge, which
was semantically relevant to the current machine comprehension
task.

Note pre-trained language models have leveraged rich knowl-
edge by pre-training deep neural models with language model
objectives over large-scale unlabeled corpora (e.g., Wikipedia ar-
ticles). For example, Sue et al. [49] improved machine reading
comprehension task during fine-tuning stage, instead of incor-
porating more prior knowledge into a model via pre-training.
More specifically, they fine-tune a pre-trained language model
with reading strategies identified in cognitive science on the
multiple-choice MRC task.

In this paper, we aim to utilize Frame semantic knowledge
to improve multiple-choice question answering during the fine-
tuning stage. Our method explicitly leverages LUs and Frame-
to-Frame relations to model Frames and effectively integrates
multi-Frame semantic information to obtain richer semantic in-
formation.

3. Frame representation model

For each sentence in given passage, we can get its corre-
sponding Frame semantic annotations by Frame Annotator SE-
MAFOR [4], which will clearly bring additional background se-
mantic knowledge to help us to better tackle MRC task. In this
section, we present our Frame representation model to represent
the semantic information of Frames, considering Lexical Units
(LUs), Frame-to-Frame (F-to-F) relations and corresponding sen-
tence. In particular, Frame (F) is defined as a composition of LUs
and different relevant Frames that are arranged into a network
based on F-to-F relation. As shown in Fig. 2, we can find that the
lexical units (LUs) of Frame Commerce_buy contain buy.n, buy.v,
buyer.n, client.n, purchaser.n, purchase.v et al. In addition, Frame
Seeking, Shopping, Commerce_buy, Locating, Scrutiny have rel-
evant semantic relations according to the relations defined in
FrameNet. For example, Frame Shopping inherits from Frame
Seeking.

Let F = {F{,F,, ..., Fn,...} represents a set of all Frames in
FrameNet, where F,, € R" is the representation of m-th Frame
of F. Let Ufm = {uq’", ubm uﬁ’“, ...} be the LU set of a Frame
Fy,, where Ufm ¢ RN % N stands for the total number of LUs in
Fn and H is the frame dimension, and uﬁ’" be the n-th LU of F,.
tfm is a target word, matching a LU in F,,. We propose 3 different
Frame representation models.

3.1. Lexical Unit Aggregation Model (LUA)

Lexical Unit Aggregation Model (LUA) is a straightforward
idea. As shown in Fig. 3, given a Frame F,, it averages all its
underlying LU representation ubm (uﬁm e Ufm) to represent the
overall Frame:

1
Fn = Nzuff" (1)

UFm

For Frame Commerce_buy, we first map all the LUs (i.e., Buy,
Client, Purchase, Purchaser) to their corresponding vector rep-
resentations, and subsequently average their representations to
finally obtain the representation of Frame Commerce_buy.
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3.2. Lexical Unit Attention Model (TLUA)

Each Frame in above LUA model has the same representation
for different sentences, as they do not distinguish the importance
of each LU in the Frame with regards to its corresponding sen-
tence from given passage. To address this issue, we propose a
Lexical Unit Attention Model (TLUA) model, utilizing an attention
scheme to automatically weight different LUs for the Frame,
according to target word T in the corresponding sentence, shown
in Fig. 4.

More specifically, we compute the weighted sum of target
word T’s representation and other LUs’ representations based on
their importance w.r.t. T. In other words, we emphasize T as it
occurs in the context of given sentence where only certain LUs
should play more important roles in Frame representation. This
TLUA can thus reduce the potential noise introduced by irrelevant
LUs in the same Frame by taking semantics of given sentence
into consideration. For example, in sentence She bought some
chocolate cookies, bought evokes the Frame Commerce_buy. In
this case, bought called target word (T), which is more important
than other LUs (such as client) under the Frame Commerce_buy.
It should be noted that we encode multiple word target by
averaging of all word representations in it.

Fo= T+ att(ufr) - ufr 2)
UFm
exp(tfm . yfm
att(ufm) = al : ) -
Zuim <UFm EXp(t m . uk )

(3)

Here, EF'" represents the LU set of F;,; which does not include
tfm, and Ufm € RH(N-1),

3.3. Frame Relation Attention Model (FRA)

We propose a novel Frame Relation Attention Model (FRA),
which takes advantage of F-to-F relations to get much richer
semantic information without introducing too much noise, shown
in Fig. 5.

Given Frame Fp, F = {Fn1,...,Fnuw,...} represents its
expanded Frames, including all the Frames that can be linked
to F, through F-to-F relation chains in FrameNet. Note atten-
tion schemes have been designed for both intra-Frame and inter-
Frames. Particularly, intra-Frame attention focuses on relevant
LUs, while inter-Frames attention emphasizes relevant Frames,
avoiding the influence from less relevant but linked Frames. For
example, given the sentence She bought some chocolate cookies,
intra-Frame pays more attention to bought and inter-Frames pays
more attention to Frame Shopping (instead of Frame Scrutiny),
when modeling the Frame Commerce_buy.

w
F:;l :Fm+zatt(Fm,u,v)'Fm,1u (4)
w=1

fo(mew) — exp(Fm . Fm,w) (5)

S exp(Fa - Fk)

4. Frame-based sentence representation

Given a sentence s = {X1,X2, ..., Xk, ...}, where each x; is a
word, let T be the k-th Frame-evoking target of s, and Tj evokes
F, Frame. FE,; denotes the i-th Frame element of F;, and Py; denotes
the i-th span fulfilling FEy;. We define a Frame semantic quadruple
cx = (T, Fx, FExn, Prn), where ¢, represents the k-th quadruple
of s.
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. —-- Frame Seeking
Frame Shoopin . _Inheritance
i -
pping dig.v,feel.v,forage.v,
. LUs |look.v,pan.v,hunt.v,
LUs | shop.v, shopping.n... search.v.seek.v...
T - ~
Using Using’ See also
v e T~
Frame| Commerce_buy Frame Locating Frame Scrutiny
buy.n,buy.v,buyer.n, analyse.v,analysis.n,
LUs client.n,purchase.n, LUs find.v, locate.v... LUs |probe.v,scan.v,assay.
purchase.v... v,check.v...

Fig. 2. An example of Frame-to-Frame relations according to the lexical units.

Frame
) Y\
Embedding A A
[\ _/ [\ /|
f f
Lexical Unit LU, LU,

Fig. 3. Lexical Unit Aggregation Model.

att

=
N/ [\ \ /| L.J

¢ LU, LU, LU,

Fig. 4. Lexical Units Attention Model.

4.1. Sentence semantic annotations with multiple frames

In this paper, we employ SEMAFOR [4] to automatically pro-
cess sentences and assign them with multiple semantic annota-
tions [50].

Fig. 6 provides an example sentence with three T, namely
bought, some, chocolate cookies. Each T has its evoked semantic
Frame right below it. For each Frame, its FEs are shown enclosed

o B B e e
BRI
sseeb

LU LU LU

LU LU

Fig. 5. Frame Relation Attention Model.

in the block where dark gray indicates the corresponding T, and
the words fulfilling the FEs are connected to the corresponding
text. For example, T bought evokes the Commerce_buy Frame,
and has the Buyer, Goods FEs fulfilled by Katie and some chocolate
cookies.

The sentence s in Fig. 6 has three quadruples:

1. c; = (T4, Fq, FEq,, P1y) =<bought, Commerce_buy, [Buyer,
Goods], [Katie, chocolate cookies]>
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Katie bought some chocolate cookies.
Commerce_buy Proportional_quantity Food
Denoted_quantity Food
Buyer Goods
Fig. 6. A Sentence of FrameNet Annotations.
s
C
t
c
t
Cr
t t
1 ¢ ﬁ ¢3
L e ———— R — !
! T; F; FE; |\ P; 363
| P! |
|
i 1, F, FE, P e
| | |
Ty F FE P ¢
,,,,,,,,,,,,,,,,,,,,,, |
X; X X3 X4 S
Fig. 7. Frame Integration Representation Model.
2. ¢; = (T, F5, FE5,, Py;) =< some, Proportional_quantity,

[Denoted_quantity], [some]>
3. c3 = (Ts, F3, FE3n, P3;) =<chocolate cookies, Food, [Food],
[chocolate cookies]>

4.2. Frame Integration Representation (FIR)

In Fig. 7, ¢, (k=1, 2, 3) is the input. We first compute its
representation cf, with columns denoting different semantic in-
formation. Target embeddings are pretrained by GloVe [51]. FEs
embeddings are initialized randomly with a uniform distribution.
We use three different methods, namely, LUA, TLUA, TFA, for
Frame representation according to the lexical unit embeddings,
and we emphasize T as it occurs in the given sentence.

Then, we formalize sentence representation as follows:

s =.#(c) (6)

cf=¢(c) (k=1,...K) (7)

Where K represents the total number of quadruples in the
sentence. qb(c,ﬁ) is aggregate operation, used to form Frame set
representation ¢t based on the information of P and T in the
sequence. Finally, we encode sentence information by neural
network models .#(-).

Next, we introduce aggregate operation ¢(cf). Given a sen-
tence, we first compute the semantic coverage of every Frame
cov(F}), which is simply based on the ratio of the number of
Frame annotation words num(F;) to the total number of words
in the source sequence num(s).

num(F;)
num(s)

cov(F’) =

(8)

For instance, the coverage of Commerce_buy cov(Commerce_
buy) in sentence [Katie]pyer bOUghteommerce by [SOMechocolate
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cookies]googs 1S 1, as the total number of words in the source
sequence num(F;) and the number of Frame annotation words
num(Commerce_buy) are both 5. While the coverage of Food
cov(Food) in sentence Katie bought some [chocolatecookies]r,oq
is 0.4, as the number of Frame annotation words num(Food) is 2.

We then iteratively replace words with Frames and Frame
elements embedding according to the coverage of every Frame,
based on the information of P and T position information in the
source sequence.

5. Frame-based Neural Network for Machine Reading Compre-
hension

Frame-based Neural Network for Machine Reading Compre-
hension (FNN-MRC) architecture comprises three key compo-
nents: raw context representation, Frame-based context repre-
sentation and answer prediction. The architecture is illustrated in
Fig. 8. In this section, we provide the details on how to implement
the three components and explain how they work.

5.1. Task definition

The multiple-choice machine comprehension task can be for-
mulated as follows: (P, Q,A), where Q is the question, A =
{ay,a3,...,4a;,...,ay} is a candidate answer set for the ques-
tion, and N = 4 in this paper (as well as in many datasets),
which means there are four candidate answers for every ques-
tion and we need to choose one correct answer from A. P =
{s1,82,...,8j,...,Sm} is the text passage, and s; represents the
Jj-th sentence of P. The objective of machine reading comprehen-
sion is to select a best answer a* (a* € A) for question Q according
to the passage P.

5.2. Raw context representation

We construct the input as: the passage as sequence A, and the
concatenation of question and one candidate answer as sequence
B. The raw context can be denoted as: RawContext = [[CLS] Pas-
sage [SEP] Question + Candidate Answer[SEP]]. The single input
sequence RawContext is then fed into Neural Network to get its
representation c’.

¢" = NN(RawContext) 9)

We consider two widely used neural models: (i) traditional
deep learning methods (with LSTM [23]), (ii) ubiquitous trans-
former architecture [52] (with BERT [15]).

When the neural network is Bi-LSTM, we first run LSTM on
RawContext independently, and then aggregate their vectorized
representations into a vector.

B Sy

¢ = BiLSTM(RawContext) (10)

< <

¢" = BiLSTM(RawContext) (11)
— <«

c"=[c";c"] (12)

Specifically, Bi-LSTM consists of a forward network and a

backward network, where the forward network BiLSTM(-) han-
dles RawContext from left to right, and the backward network

BiLSTM(-) processes it in reverse order. Here, ¢ is the forward

hidden state from the forward network and c¢” is the backward
h_i)dden state from the backward network. Finally, we concatenate
¢" and c’, resulting in c".

Alternatively, if BERT is employed to encode context, then we
formulate it as follows:

¢" = BERT(RawContext) (13)

Where ¢ is the contextual representation using the BERT
encoder.
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Fig. 8. Frame-based Neural Network for Machine Reading Comprehension.

5.3. Frame-based context representation

Frame-based context representation aims at distilling seman-
tic information from text. Given a passage P = {s1,52,..., ),
..., Su}, question Q and a candidate answer q;, we utilize the FIR
model, described in 4.2, to capture the multiple Frame semantic
information of every sentence. Note we will get M + 2 Frame-
based sentence representation ¢* = [}, C5, ..., Cyys Cyypqs Crppals
that is, M sentences of passage, 1 question sentence and 1 candi-
date answer sentence.

After the Frame semantics of every sentences are sufficiently
modeled, GRU [19] is used to aggregate a document-level repre-
sentation ¢/. We define the function as:

c = GRU(c, ¢S, .. (14)

Where GRU (Gated Recurrent Unit) is a type of recurrent neu-
ral networks. We feed Frame-based sentence representation c*
into GRU, and regard the output of the GRU ¢ as the Frame-based
document representation.

S S S
- Cys C1> Ciag2)

5.4. Answer prediction

After we obtain the raw context representation ¢” from 5.2 and
the Frame-based context representation ¢/ from 5.3 separately, a
concatenate function is used to merge both two representations
to get the final context representation c”.

¢ = concat(c"; /) (15)

Where concat(-) represents concatenation operation, which is
used to combine the hidden states of the ¢™ and ¢/. And c” is
the final representation, containing context and Frame semantic
information.

Finally, an answer prediction is drawn from the softmax dis-
tribution over the scores of the four candidate answers. Specially,

we apply a linear layer and a softmax layer on the final hidden
state ¢ and the model predicts the answer with the maximal
probability across all the candidate answers:

¢i = softmax(g(c®)) (16)

a* = argmax(c;) (17)

Where g(-) is a linear function, and softmax(-) is used to nor-
malize the final hidden state ¢/ to a probability distribution c;. a*
is the correct answer, which has the maximum value argmax(c;)
among candidate answers.

6. Experiments

In this section, we conduct comprehensive experiments to
compare our FNN-MRC model with existing state-of-the-art tech-
niques. To better analyze the performance of our FNN-MRC
method on MRC, we consider two types of neural models:
(i) traditional deep learning methods LSTM [23], (ii) the powerful
pre-trained language model. For pre-trained model, we use BERT
as the backbone to illustrate how the proposed method works, as
its superior performance in a range of MRC tasks.

6.1. Datasets for MRC

For experiments, we employ two benchmark datasets, namely,
MCTest [20] and RACE [27], to evaluate the system performance
of multiple-choice machine comprehension task.

In particular, MCTest [20] consists of two subsets, namely
MCTest-160 and MCTest-500. They are from open-domain, yet
restricted to concepts and words that a seven-year-old child
is expected to understand. In addition, it contains a corpus of
fictional story sets that were constructed with a crowd-sourcing
method.
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Table 3
The performance comparison of different models on RACE.

Method MCTest-160 (%) MCTest-500 (%) Method RACE-M (%) RACE-H (%) RACE (%)
Richardson et al. [20] 69.16 63.33 Sliding Window [27] 37.3 304 322
Wang et al. [12] 75.27 69.94 Stanford AR [35] 44.2 43.0 433
Li et al. [33] 74.58 72.67 Co-Match [39] 55.8 48.2 50.4
Attentive Reader [13] 463 419 OPe‘;‘,A‘ GPT [54] , 62.9 57.4 59.0
Neural Reasoner [53] 476 456 Reading Strategies [49] 69.2 61.5 63.8
Reading Strategies [49] 81.7 82.0 BERT+DCMN+ [45] 792 721 741
Bert [45] 7338 80.4 bi-LSTM 535 453 477
BERT+DCMN+ [45] 85.0 86.5 FNN-MRC(bi-LSTM) 57.2 47.4 50.3
FNN-MRC 361 342 Bert [45] 76.6 70.1 72.0
FNN-MRC(Bert) 81.3 73.5 75.8
RoBERTa [55] 86.5 81.3 83.2
Table 2 . . . . Amazon Mechanical Turker 85.1 69.4 73.3
Performance comparison with three different frame representation models on L
MCTest Human Ceiling Performance 95.4 94.2 94.5
Method MCTest-160 (%) MCTest-500 (%)
Bert [45] 73.8 80.4 Table 4
- - Performance comparison with three different frame representation models on
Bert (Our implementation) 825 80.9 RACE
Bert+LUA 82.7 79.5 - - - -
Bert+TLUA 846 827 Method RACE-M (%) RACE-H (%) RACE (%)
Bert+FRA (FNN-MRC) 86.1 84.2 Bert [45] 76.6 70.1 72.0
bi-LSTM 54.2 49.5 Bert+LUA 79.8 71.6 741
bi-LSTM+LUA 59.4 57.5 Bert+TLUA 80.7 72.8 75.2
bi-LSTM+TLUA 61.5 58.2 Bert+FRA (FNN-MRC) 81.3 73.5 75.8
bi-LSTM+FRA (FNN-MRC) 62.7 59.6 bi-LSTM 535 453 47.7
bi-LSTM+LUA 54.9 45.8 48.5
bi-LSTM+TLUA 56.1 46.3 49.2
bi-LSTM+FRA (FNN-MRC) 57.2 47.4 50.3

RACE [27] also consists of two subsets: RACE-M and RACE-H.
RACE-M comes from middle school English examinations while
RACE-H comes from high school English examinations in China,
both of which were constructed from real-world examinations.

In total, we have four datasets from MCTest and RACE data.

6.2. Existing models

We compare our model with a number of baseline models.
Now we briefly introduce several representative models.

Sliding Window [20,27] computes the matching score based
on the matched words between the question-answer pair and
passage with a fixed window size.

Co-Match [39] treats the question and the candidate answer
as two sequences and jointly models whether a passage can
match both a question and a candidate answer.

Reading Strategies [49] aims at improving machine reading
comprehension by fine-tuning a pre-trained language with three
reading strategies (i.e., back and forth reading, highlighting, and
self-assessment).

BERT [15]) inputs the passage as sentence A and the concate-
nation of the question and the candidate answer as sentence B,
and applies a softmax layer for selecting the answer.

BERT+DCMN+ [45] uses dual co-matching network (DCMN)
to model the relationship among passage, question and answer
options bidirectionally, and also adds passage sentence selection
and answer option interaction into the model to select the answer.

6.3. Experiment results on MCTest

Table 1 shows our FNN-MRC model achieves 86.1% accuracy
on MCTest-160, which is significantly better than all the eight
state-of-the-art methods. In addition, it also achieves very com-
petitive results on MCTest-500, i,e, much better than seven ex-
isting methods, slightly worse than BERT+DCMN + model. This is
encouraging, as our model is much simpler than BERT+DCMNH+,
which uses much more sophisticated architecture and is hard to
transfer to other tasks.

Recall in Section 3, we proposed three different methods,
namely, LUA, TLUA, FRA, for Frame representation. Table 2 shows
their detailed results. We have the following three observations:

(1) No matter for BERT or Bi-LSTM, if we add Frame semantic
information, the performance improves by several percents, in-
dicating Frame information is very valuable in helping semantic
understanding.

(2) Comparing TLUA with LUA, TLUA performs better, signify-
ing attention scheme in TLUA can capture semantic information
more accurately.

(3) Finally, FRA further improves LUA and TLUA’s performance,
as sentences within a passage typically have semantic connec-
tions with each other, and it is thus necessary to take advantage
of F-to-F relations to enrich semantic information.

6.4. Experiment results on RACE

We further conduct experiments on RACE (RACE-M and RACE-
H) and the results are shown in Table 3. We report the per-
formance of the following models: majority baselines, our FNN-
MRC method with two widely used encoding models (BERT and
bi-LSTM), optimized versions of BERT-style model, and human
performance. Note Turkers is the performance of Amazon Turkers
on a randomly sampled subset of the RACE test set and Ceiling
is the percentage of the unambiguous questions with a correct
answer in a subset of the test set.

The overall performance is worse compared to the optimized
versions of BERT (RoBERTa), trained with much larger corpus,
but the perform substantially better than the majority baselines
on both RACE-M and RACE-H. Furthermore, our proposed FNN-
MRC method obtains significant improvement over two widely
used neural models proposed in this paper, which leads to a
4.7%, 3.4% and 3.8% performance boost over the original BRET
model on RACE-M, RACE-H and RACE-ALL, and 3.7%, 2.1% and
2.6% performance boost over bi-LSTM on RACE-M, RACE-H and
RACE-ALL. Note we choose original BERT as our backbone, as it
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Parameters, FLOPs, latency and accuracy for different models on RACE.

Model Parameters (M) FLOPs (G) Latency (ms) Accuracy (%)
Bi-LSTM 1.8 32 63.9 47.7
Co-Match [39] 333 7.1 105.6 50.4
BERT-base [45] 110.0 174.0 293.1 65.0
FNN-MRC(BERT-base) 141.6 177.6 603.9 69.9
BERT-large [45] 335.1 618.5 963.1 72.0
FNN-MRC(BERT-large) 367.3 623.5 1219.2 75.8

Table 6

A case study example.

Passage Katie went to the store..She looked around for the flowers. Katie then looked for the
snacks. She wanted cookies not chips. She found some chocolate cookies. Katie then
looked for a bow....

Question What snack did Katie buy?

Option (A) Chips (B) Chocolate cookies (C) Flowers (D) Bows

Answer B

Frame semantic

{Chips , Chocolate cookies} € Food
{Flowers , Bows} ¢ Food

Found, Buy and looked have relations, as their Frames are connected.

is widely used in many areas. Nevertheless, some other trans-
former models, which are optimized versions of BERT, can also
be applied.

In addition, we also test the performance of our three different
Frame representation methods (LUA, TLUA, FRA) on RACE. Table 4
shows their detailed results, where we observe the advantage of
incorporating Frame semantics. Besides, the performance gained
by adding Frame semantics is larger, signifying Frame semantics
can incorporate more semantic knowledge into the model. FNN-
MRC using different neural models (LSTM and BERT) outperforms
themselves in all settings, 72.0% — 75.8% on BERT and 47.7% —
50.3% on LSTM. In fact, all the models using BERT outperforms
the LSTM with significantly large margins, indicating pre-training
model is very effective for learning semantics from unsupervised
data.

Model complexity. It is commonly observed that the perfor-
mance of deep neural networks is highly dependent on the model
complexity, which is measured by the model size and computa-
tional consumption. Table 5 list the measured parameters, FLOPs
and latency of different models on RACE. From Table 5, we can
observe that: (1) A general trend is that the larger the model is,
the higher accuracy it can achieve in a given task. For examples,
BERT-base achieves 65.0% accuracy on RACE and the network
contains about 110M parameters. BERT-large contains 335.1M pa-
rameters and significantly improves the accuracy to 72%. (2) Mod-
els with more parameters and more FLOPs will need more time
to finish the computation and therefore will have higher latency.
(3) Our FNN-MRC model is focusing on the model performance
and not the model efficiency. It seems reasonable to reduce model
sizes to achieve acceptable speed-accuracy balances and we leave
it for future work.

6.5. Case study

For case study, Table 6 shows an example in MCTest, where
our proposed model is able to answer it correctly. Note both
Chips, Chocolate cookies belong to the Food Frame, while Flow-
ers and Bows evoke two different Frames Plants and Accou-
trements respectively. The target words Found, Looked and Buy
in the given passage/question evoking different Frames Loca-
tiong, Seeking and Commerce_buy — in FrameNet they are con-
nected due to their semantic relations, as shown in Fig. 9, facili-
tating us to find answer B) Chocolate cookies.

6.6. Discussions

We observed that the proposed FNN-MRC model can utilize
Frame semantic information to boost the MRC performance. From
Tables 2 and 4, we can see that the Frame information makes a
great contribution to the overall improvement, which confirms
our hypothesis that Frame is useful for sentence understanding.

On the one hand, Frame provides generalizations about lex-
ical units at a useful level of abstraction. As shown in Table 6,
according to the word snack in question, FNN-MRC model focuses
on Chips and Chocolate cookies, as all of them belong to the Food
Frame.

On the other hand, Frame relations provide a way to find
semantic related sentences. For example, for the question “What
snack did Katie buy” in Table 6, FNN-MRC model can help identify
sentences “Katie then looked for the snacks” and “She found some
chocolate cookies” with Frame relations information, which are
very useful for answer selection.

Error Analysis. To better understand the performance of FNN-
MRC model, we also conduct a manual error analysis and find two
main types of samples that lead to the misclassification.

(1) Require world knowledge. These questions not only need
knowledge contained in the given passage, but also need external
world knowledge. For instance, Example 1 in Table 7, humans can
easily know “tomorrow” is “Saturday” as “today” is “Friday”. But
it is very difficult for the model to find the correct answer as it
does not have world knowledge.

(2) Require arithmetic operation. These questions require sim-
ple arithmetic operation over story elements to select the correct
answer. For instance, Example 2 in Table 7, the question is “How
many friends did Little Bunny want to invite?". It is challenging for
the model since it must perform numerical addition, according
to the sentences “Bunny wanted to invite Rabbit, Bear, Duck and
Goose", "He thought about Turtle", “He thought about Fox" and "all
of your friends can have some".

Limitations. Although FNN-MRC model performs well on
some benchmark datasets, it still has some limitations.

(1) FNN-MRC model pays attention to Frame representation,
but ignores critical Frame Elements representation, which is
equally vital to MRC.

(2) Both syntax and semantics information of text are essen-
tial components for text understanding. FNN-MRC model focuses
on modeling the semantics information while ignoring syntax
structures.
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Table 7

MCTest error cases. The correct answer is marked with %, and the answer guessed by the model is marked with 1.

Example 1: Require world knowledge

Passage: It was a beautiful Friday morning in Los Angeles. Angela woke up and got dressed...She chose to make a salad for lunch

tomorrow and Sunday.
Question: What day was Angela making salad for lunch?
(A) today * (B) Saturday 1(C) Sunday (D) Friday

Example 2: Require arithmetic operation

Passage: Tomorrow was Little Bunny’s birthday. “We only have enough cake for five friends.” His mother said. He wanted to invite
Rabbit, Bear, Duck and Goose. Little Bunny could invite one more friend. He thought about Turtle. He thought about Fox... “I'll make

a batch of cupcakes, and all of your friends can have some.”

Question: How many friends did Little Bunny want to invite?

(A)8 #(B)5 =*(C)6 (D)4

(3) FNN-MRC model performs poorly in cases requiring ex-
ternal knowledge or requiring deep comprehension, as shown in
Table 7.

7. Conclusion and future work

In this paper, we proposed a novel Frame-based Neural Net-
work for Machine Reading Comprehension (FNN-MRC). Specif-
ically, we utilize both Lexical Units (LUs) and Frame-to-Frame
(F-to-F) relations to built the Frame representation model, and
propose a novel Frame-based sentence representation model to
integrate multi-Frame semantic information in order to facilitate
sentence modeling. Our extensive experimental results across
four datasets demonstrate our proposed FNN-MRC works very
well for the challenging machine reading comprehension tasks.
Our error analysis suggests that incorporating world knowledge
can yield further improvements on this task.

There are three interesting future research directions to ex-
tend our work. First, FNN-MRC model mainly focuses on Frame
representation, which is relatively coarse-grained, and it is desir-
able to further design fine-grained semantic information repre-
sentation method (e.g. Frame Elements representation). Second,
our model can be improved by integrating external knowledge,
such as structured information (like syntax) or word knowledge,
to obtain richer and more comprehensive representation. Finally,
it would be interesting to improve model efficiency with minimal
quality degradation.
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