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ABSTRACT
This paper presents a novel RL algorithm, S-REINFORCE,
designed by leveraging two types of function approxima-
tors, namely Neural Network (NN) and Symbolic Regres-
sor (SR), to produce numerical and symbolic policies for
dynamic decision-making tasks, respectively. A symbolic
policy uncovers functional relations between the underly-
ing states and action-probabilities. Further, the symbolic
policy is utilized through importance sampling (IS) to im-
prove the rewards received during the learning process. The
effectiveness of S-REINFORCE has been validated on var-
ious dynamic decision-making problems involving low and
high dimensional action spaces. The results obtained clearly
demonstrate that by leveraging the complementary strengths
of NN and SR, S-REINFORCE generates policies that exhibit
both good performance and interpretability. This makes S-
REINFORCE an excellent choice for real-world applications
where transparency and causality play a crucial role.

Index Terms— interpretable policy, policy gradient, sym-
bolic regression, importance sampling

1. INTRODUCTION

While reinforcement learning (RL) has gained popular-
ity due to its effectiveness in finding optimal solutions
to various sequential decision-making tasks ranging from
two-player games [Silver et al.(2018)], indoor localization
[Salimibeni and Mohammadi(2023)] to text semantic analy-
sis [Gao et al.(2022)] and drug discovery [Popova et al.(2018)],
the underlying function approximation remains a challenge.
In the realm of RL, neural networks (NNs) are commonly
used to approximate complex, nonlinear and/or unknown
functions. However, NNs lack interpretability in the learned
input-output mapping [Landajuela et al.(2021)], involving
numerous non-linear operators and transformations that hin-
der the deployment of NN-generated policies in real-world
applications. In contrast, symbolic regressors (SRs) offer
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interpretable input-output mappings by employing sym-
bolic basis function expansions in their approximations
[Soni et al.(2022)]. Unlike NNs, SRs do not require a
large amount of data for fitting purposes. Symbolic poli-
cies derived from SRs are inherently interpretable, transpar-
ent, and easily reproducible due to their functional forms.
Moreover, these policies offer economic deployment solu-
tions while meeting memory or latency-related constraints
[Landajuela et al.(2021)].

To obtain compact and tractable analytical policies, sev-
eral offline methods exist, including symbolic value iteration,
symbolic policy iteration, and direct solutions to the Bell-
man equation [Alibekov et al.(2016), Kubalik et al.(2021)].
However, these require access to the governing dynam-
ics equations that are not available in complex, uncertain
environments [Kubalik et al.(2021)]. When the govern-
ing state-transition laws are unavailable, alternative tech-
niques such as model distillation and regression-based ap-
proaches can be leveraged to symbolically approximate poli-
cies [Hein et al.(2018)]. However, a conflict arises between
the training objective of mimicking a pre-trained offline pol-
icy and the evaluation metric for improving the RL agent’s
performance. Recently, researchers have explored the use
of autoregressive recurrent neural networks to symbolically
approximate a distribution over a discrete sequence of to-
kens representing operators, input variables, and constants
[Landajuela et al.(2021)]. However, their RNN-based risk-
seeking policy gradient approach suffers from limited ex-
ploration ability due to early commitment and initialization
bias. In this work, we utilize the exploration power of a
population-based genetic programming approach for SR and
transfer knowledge online from NN to SR to offer an eco-
nomical solution.

Although SR produces analytical functions, the symbolic
regression incurs a higher computational cost compared to
training NN. This is because when functions are encoded by
strings of symbols, the number of such strings grows expo-
nentially with the string length [Udrescu and Tegmark(2020),
Biggio et al.(2021)], giving rise to the combinatorial chal-
lenge of an exponentially large search space (NP-hard prob-
lem). To strike a balance between the interpretability of
solutions and the associated computational costs, this study
leverages the strengths of both NN and SR within an RL



framework. The NN component is exhaustively trained to
learn a numerical probability distribution over the possible
actions, while the SR component is periodically fitted to
capture the functional relationships between the underlying
states and the corresponding action probabilities.

To the best of our knowledge, this is the first attempt to
generate symbolic policies in a cost-effective manner by com-
bining the strengths of NN and SR in RL. The contributions of
this work are highlighted as follows: (i) During the learning
process, the periodic knowledge transfer from NN to SR miti-
gates the computational costs of symbolic regression through-
out all training episodes. (ii) Both NN and SR are trained con-
currently in our approach, allowing flexibility in the choice of
the learned approximators, and on completion of the training,
any of the two learnt approximators can be used for predic-
tion. (iii) Experimental results demonstrate that our proposed
approach outperforms its baseline counterpart in terms of in-
terpretability and performance.

2. THE PROPOSED APPROACH

Our proposed approach for generating symbolic policies con-
sists of three steps: (i) an NN is trained to update the numer-
ical parameters of a policy along its gradient, (ii) an SR is
fitted to extract a symbolic policy at regular intervals, concur-
rently while training the NN, and (iii) the extracted symbolic
policy is utilized through importance sampling (IS) at regular
intervals to obtain improved rewards during training.

2.1. Policy Gradient: S-REINFORCE

Here, we investigate sequential decision-making tasks mod-
eled as Markov Decision Processes (MDPs). At time step
t, the agent observes its current state st and takes an action
at, which moves it to the next state st+1 with a reward rt+1.
Typically, an MDP is defined by a tuple of information: <
S,A,P, R, γ, T >, where S denotes a set of states, A is a set
of actions, P = {p(s′ = st+1, r

′ = rt+1|s = st, a = at)}
represents a set of transition probabilities, R is the reward
function; γ is the discount factor, and T is the horizon of a
trajectory τ = {s0, a0, s1, r1, ...., sT−1, aT−1, sT , rT } gen-
erated by following a policy. A policy π is a mapping from S
to a probability distribution over A, and ρπ(s) is the proba-
bility of being in state s while following policy π.
The return expected from a trajectory τ (of horizon T ) gen-
erated by following a parameterized policy πθ, is given by:
J(θ) = Eτ∼πθ [R(τ)] ; R(τ) =

∑T−1
t=0 γtrt+1. The objective

function, J(θ), is maximized by updating the policy param-
eters along its gradient ascent direction. The policy gradient

is evaluated by: ∇θJ(θ) = Eτ∼πθ [R(τ)
T−1∑
t=0

∇θ log πθ(at|st)].

In accordance with REINFORCE, the return from a trajec-
tory R(τ) is estimated through the discounted future rewards
(rewards-to-go) [Williams(1992)]; the rewards-to-go at the

tth transition is: Gt =
∑T

k=t+1 γ
k−t−1rk ∀t ∈ {0, 1, ..., T − 1}.

Then, the associated policy gradient turns into

∇θJmc(θ) = Eτ∼πθ
[

T−1∑
t=0

∇θ log πθ(at|st)Gt] . (1)

Note that the REINFORCE algorithm finds an unbiased esti-
mate of the gradient (1) using Monte Carlo sampling, without
assistance of any value function [Sutton et al.(1999)]. Let
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Fig. 1: A high-level visualization of the proposed RL-framework composed
of two function approximators, NN and SR. Note that (Etf < E % Eδ =
0 < Ets) ≡ (Etf < E < Ets) and (E % Eδ = 0).

us consider that data D contains the set of state-action pairs
encountered in a trajectory sampled using the current pol-
icy [Hanna and Stone(2019)]. In this context, the Monte
Carlo estimator of the policy gradient can be expressed as:
∇θJmc(D) = Es∼ρD,a∼πD [

∑T−1
t=0 ∇θ log πθ(at|st)Gt], where

∇θJmc(D) is an unbiased estimator rendering an accurate es-
timate for repeatedly sampled batches of data. However, for a
single batch of data, only a limited number of states are visited
prior to evaluating the gradient, which leads to an inaccurate
estimate. The sampling error arises because the expectation in
∇θJmc is taken over a deviated action distribution πD instead
of the actual action distribution πθ [Hanna and Stone(2019)].
The correct state distribution is usually unknown; however,
the availability πθ can be utilized through IS to design a
sampling correction [Hanna and Stone(2019)]. The gradi-
ent estimate’s variance due to the stochastic nature of action
selection is also reduced by such a sampling correction.

In this regard, the expected return from a trajectory
is computed via IS that exploits a symbolic policy, π̃sym

(≈ πD when fitted), for sample collection, which is com-
pensated by a ratio of probability distributions in the ob-
jective as: J(θ) = Eτ∼π̃sym [ πθ(τ)

π̃sym(τ)
R(τ)], where the ratio

πθ(τ)
π̃sym(τ)

=
∏T−1

i=0 πθ(at|st)∏T−1
i=0 π̃sym(at|st)

can be simplified by means of
the likelihood ratios, using Markov’s principle of causality
[Jie and Abbeel(2010)]. Consequently, the policy gradient
form in Eq. (1) turns into

∇θJis(θ) = Eτ∼π̃sym
[

T−1∑
t=0

πθ(at|st)
π̃sym(at|st)

∇θ log πθ(at|st)Gt].

(2)



Note that the variance induced by the IS-based estimator,
i.e. V ar[ πθ(τ)

π̃sym(τ)
R(τ)] = Eτ∼πθ [

πθ(τ)
π̃sym(τ)

R2(τ)] − J2, be-
comes high when πθ and π̃sym are different and low when
π̃sym(τ) ∝ πθ(τ)|R(τ)| is satisfied [Jie and Abbeel(2010),
Tokdar and Kass(2010)], indicating IS to be applied when an
RL agent receives high rewards during the training phase.

The proposed symbolic variant of the REINFORCE algo-
rithm is dubbed as S-REINFORCE, and the related flow and
training schedule are depicted in Figs. 1 and 2, respectively.

Fig. 2: Low-level visualization of two approximators trained concurrently:
NN is trained throughout all episodes; SR fitting starts at episode E = Etf ,
and thereafter continues at regular intervals of E % Eδ = 0. Actions are
sampled from the numerical policy (πθ) more often except for episodes
Etf < E % Eδ = 0 < Ets, when sampled from the symbolic policy (π̃sym);
the respective NN loss functions are Lmc(θ) and Lis(θ).

2.2. Neuro-Symbolic Function Approximation

To numerically approximate the mapping from states to action
probabilities, which is the solution to Equation (1), an NN is
used. The generated policy evolves by updating NN weights

to minimize the loss: Lmc(θ) = −Eτ∼πθ [
T−1∑
t=0

log πθ(at|st)Gt].

While an NN is being trained, we fit an SR to capture the
functional forms of the evolving policy distributions. Along
with the NN-training episodes, the SR is fitted starting from
episode Etf , and thereafter, the fitting is continued at regular
intervals of Eδ episodes. For training episodes Etf ≤ E % Eδ =

0, the input to the SR contains the states encountered in the
preceding trajectory, i.e. {st}T−1

t=0 ∈ ℜT×d, formed using ac-
tions sampled from the NN-approximated policy, and the tar-
get is composed of the action-probabilities responsible for the
state transitions in that trajectory, i.e. {πθ(at|st)}T−1

t=0 ∈ ℜT×1.
An SR seeks to find the mathematical expression of a pol-

icy by minimizing an error functional, em, between the target,
πθ(a|s), and the predicted output, π̃sym(s). The solution to
this functional optimization problem is the optimal function:
π̃∗
sym(s) = argminπ̃sym em(πθ(a|s), π̃sym(s)). In practice, we

use genetic programming (GP) to solve this regression, pro-
moting an evolving population of candidate programs to at-
tain the optimal solution that best captures the relations be-
tween the given input and the targeted output. Each candidate
program is represented by a tree made up of numbers, pro-
cess variables, and symbolic basis functions [Stephens(2018),

Soni et al.(2022)]. During the evolutionary search, the ex-
ploitation and exploration of the solution space are taken care
of by crossover and mutation operators, respectively.

3. EMPIRICAL RESULTS

We apply our proposed approach on two commonly used
benchmark and one real-world environments.

In the CartPole-v0 environment with a discrete action
space [Duan et al.(2016)], an SR is fitted along with train-
ing an NN for 2000 episodes (Table 1). The reward profiles
in Fig. 3a reveal that the performance of S-REINFORCE
improves over REINFORCE towards the end of training
(> 1500 episodes), leading to a higher final reward (Table 2).
The extracted symbolic policies are shown in Table 2, which
indicate that the action selection is independent of s0, s1.
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(b) Lunar Lander environment.
Fig. 3: Performance comparison of the obtained rewards: the solid lines
along with the shaded regions show (mean ± standard deviation) of the av-
erage rewards across five different random seeds.

In the LunarLanderContinuous-v2 environment with a
continuous action space [Asadi et al.(2017)], along with
training two NNs, four distinct SRs are fitted to find the sym-
bolic means and variances of two Gaussian action-probability
distributions (Table 1). Usually, it takes around 20,000
episodes to solve the LunarLander environment with RE-
INFORCE [Asadi et al.(2017)]. In this study, we present
a performance comparison between REINFORCE and S-
REINFORCE agents up to 2000 episodes. The rewards ob-
tained with REINFORCE increase gradually after around 500
episodes in Fig. 3b, although this increase is not consistent.
On the other hand, the increase in the rewards is well main-
tained by S-REINFORCE and the reward profile has less
fluctuations compared to REINFORCE. By maintaining a
consistent increase in rewards and exhibiting reduced fluctua-
tions, S-REINFORCE demonstrates its capability to generate
more reliable and well-performing policies. The obtained ex-
pressions in Table 2 signify that the expected first and second
actions depend on five and four states, respectively; however,
the choice of actions is independent of s2.
Reinforcement Learning for Structural Evolution (Re-
LeaSE): This environment consists of two deep neural net-
works, a generator and a predictor. During pre-training, the
generator learns to produce chemically viable molecules and
the predictor learns to evaluate the generator’s performance
using a supervised learning algorithm [Popova et al.(2018)].



Scenario NN parameters SR parameters SR occurrence IS
(FC-128 with tanh)+(FC-128 population size= 2000, tournament size= 20, p crossover

CartPole with tanh)+(FC-128 with softmax) = 0.7, p subtree mutation= 0.1, p hoist mutation= 0.05, E ≥ 400 and E % 10 = 0 500 ≤ E ≤ 1800

learning rate= 5 × 10−4 p point mutation= 0.1, Basis: [add, sub, mul, div, inv, cos] and E % 10 = 0
(FC-128 with tanh)+(FC-128 population size= 2000, tournament size= 20, p crossover

Lunar Lander with tanh)+FC-128# = 0.7, p subtree mutation= 0.1, p hoist mutation= 0.05, E ≥ 400 and E % 10 = 0 500 ≤ E ≤ 1800

learning rate= 5 × 10−4 p point mutation= 0.1, Basis: [add, sub, mul, div, min, max] and E % 10 = 0

Table 1: Implementation details for benchmark environments: ‘FC-128’ denotes a fully-connected layer with 128 neurons; # the output layers are different
for approximating the mean and variance of a Gaussian action-probability distribution.

Next, an RL-agent is leveraged to produce molecules with a
desired property by fine-tuning the pre-trained generator.

Scenario Rewardp Rewardb Policy Expression
CartPole 196.25 183.73 π(a1) = 0.49 − 2s2 − 0.78s3

±2.28 ±7.41 π(a2) = 0.51 + 2s2 + 0.78s3
µ(a0) = 3.61 − s0 − 7.04s1 − 5s3−

−2s4 − 1.45s5 − s25
Lunar −274.91 −294.72 σ(a0) = max(0.01, 0.95

s4s5s7
s1

)

Lander ±83.35 ±66.45 µ(a1) = 0.95
s4s5s7

s1
σ(a1) = max(0.01, 0.95

s4s5s7
s1

)

Table 2: Performance evaluation: Rewardp and Rewardb, expressed
as (mean ± standard deviation), denote the rewards achieved with S-
REINFORCE and REINFORCE, respectively, after 2000 episodes of training
across five different random seeds. The reported policy expression represents
the best performing symbolic policy.

The generator and predictor architectures are adopted
from an earlier study [Isayev(2018)], [Popova et al.(2018)],
with parameters: number of iterations or n iterations = 50,
number of trajectories or n policy = 15, number of batches or
n policy replay = 10, and number of molecules generated for
logP prediction = 1000. The training loss is averaged over
all the batches, and the molecule properties are monitored
over 50 × 15 = 750 episodes. Distinct SRs are employed
to capture functional relations in 45 action-probabilities,
with parameters: population size= 500, tournament size=20,
p crossover = 0.7, p subtree mutation= 0.1, p hoist mutation=
0.05, p point mutation= 0.1, the basis functions = [add, sub,
mul, div, cos]. The SRs are fitted for (n iterations >= 5 and
%5 = 0) and (n policy replay %10 = 0), and IS is applied for
(n iterations > 10 and %5 = 0) and (n policy replay %10 = 0).
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Fig. 4: Performance of the generator fine-tuned with RL. Example of two
generated molecules: SMILES - Brc1ccccc1, C=C(C=CC)Sc1ccccc1 with
logP values 2.45 and 3.87, respectively.

After 750 episodes of training, the maximum aver-
age reward (9.5) achieved with the symbolic ReLeaSE (S-
ReLeaSE) is slightly better than the baseline (9.2), although
the slopes of both the reward profiles are similar in Fig. 4a.
Here, IS does not give much improvement in rewards as
numerous visited states from multiple trajectories are consid-
ered in repeatedly sampled batches of data prior to updating

the policies. Fig. 4b exhibits that the logP distribution
over 1000 molecules predicted with the fine-tuned generator
shifts into the desired zone effectively, as compared to the
same predicted with the pre-trained generator. However, the
logP distributions predicted with ReLeaSE and S-ReLeaSE
are similar. The density curves indicate that the fine-tuned
(biased) generator is able to produce much more desired
molecules than the pre-trained (unbiased) one.
The log-probability expressions for the first two actions are:

log π(a0) =
cos(s577)

cos3(s287)− cos(s234)
× {cos3(s572 × s342+

+ cos2(cos(s577) + cos(s583 × s33))− s248) + cos(s697)};
log π(a1) = s697 − cos(s408)− cos(s621)− s936 − s131 − cos(s408).

Prior to sampling actions, the above functional policies are
normalized,

∑44
i=0 π(ai) = 1. Note that π(a0), π(a1) are un-

correlated as they do not depend on any common states. In-
terestingly, each policy relates to a limited number of states.
Discussion: The achieved results justify that the proposed al-
gorithm can produce explicit policy expressions with causal-
ity, while offering a higher final reward than the baseline. IS is
applied in this study to correct the policy shift using on-policy
data, rather than off-policy data [Levine and Koltun(2013)].
Figs. 3a and 3b reveal noticeable dips in the reward profiles
after 500 episodes due to inadequate fitting of the associated
SRs, which disappear gradually as the accuracy of symbolic
regression improves and the adopted IS becomes more effec-
tive. Therefore, achieving optimal performance requires ac-
curate symbolic regression in conjunction with training NN.
The choice of basis functions and hyper-parameters in SR is
crucial here, in addition to the proper tuning of knowledge
transfer-related parameters: Etf , Eδ and Ets.

4. CONCLUSION

By simultaneously training numerical and symbolic approxi-
mators, the proposed approach not only improves the rewards
received by the RL agent but also generates interpretable pol-
icy expressions. Our methodology has been tested in dynamic
scenarios with low and high dimensional action spaces, and
shown to be effective in generating appropriate policies. This
work serves as a proof-of-concept for combining numerical
and symbolic policy approximators into an RL framework.
While this is a significant step forward, in the future, we will
extend the underlying idea to more advanced RL techniques
that require both value and policy approximations.
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