
Network Motif Discovery: A GPU Approach
Wenqing Lin†,‡ Xiaokui Xiao‡ Xing Xie§ Xiao-Li Li†

†Institute for Infocomm Research, A*STAR, Singapore
{linw, xlli}@i2r.a-star.edu.sg

‡Nanyang Technological University, Singapore
xkxiao@ntu.edu.sg

§Microsoft Research Asia
xing.xie@microsoft.com

Abstract— The identification of network motifs has important
applications in numerous domains, such as pattern detection
in biological networks and graph analysis in digital circuits.
However, mining network motifs is computationally challenging,
as it requires enumerating subgraphs from a real-life graph, and
computing the frequency of each subgraph in a large number
of random graphs. In particular, existing solutions often require
days to derive network motifs from biological networks with
only a few thousand vertices. To address this problem, this
paper presents a novel study on network motif discovery using
Graphical Processing Units (GPUs). The basic idea is to employ
GPUs to parallelize a large number of subgraph matching tasks
in computing subgraph frequencies from random graphs, so as to
reduce the overall computation time of network motif discovery.
We explore the design space of GPU-based subgraph matching
algorithms, with careful analysis of several crucial factors that
affect the performance of GPU programs. Based on our analysis,
we develop a GPU-based solution that (i) considerably differs
from existing CPU-based methods, and (ii) exploits the strengths
of GPUs in terms of parallelism while mitigating their limitations
in terms of the computation power per GPU core. With extensive
experiments on a variety of biological networks, we show that
our solution is up to two orders of magnitude faster than the best
CPU-based approach, and is around 20 times more cost-effective
than the latter, when taking into account the monetary costs of
the CPU and GPUs used.

I. INTRODUCTION

Given a graph G, a network motif in G is a subgraph
g of G, such that g appears much more frequently in G
than in random graphs whose degree distributions are similar
to that of G [1]. The identification of network motifs finds
important applications in numerous domains. For example,
network motifs are used (i) in system biology to predict protein
interactions in biological networks and discover functional
sub-units [2], (ii) in electronic engineering to understand the
characteristics of circuits [3], and (iii) in brain science to study
the functionalities of brain networks [4].

Numerous techniques [5]–[13] have been proposed to iden-
tify network motifs from sizable graphs. Roughly speaking,
all existing techniques adopt a common two-phase framework
as follows:

• Subgraph Enumeration: Given a graph G and a parameter
k, enumerate the subgraphs g of G with k vertices each;

• Frequency Estimation: For each subgraph g identified in the
subgraph enumeration phase, estimate its expected frequency
(i.e., expected number of occurrences) in a random graph with
identical degree distribution to G; if g’s frequency in G is
significantly higher than the expected frequency in a random
graph, then return g as a motif.

The above framework, albeit conceptually simple, is difficult
to implement efficiently due to the significant computation
overhead incurred by the frequency estimation phase. Specif-
ically, to estimate the expected frequency of a subgraph g in
a random graph, the standard approach [10] is to generate
a sizable number r of random graphs (e.g., r = 1000), and
then take the average frequency of g in those graphs as an
estimation. To compute the frequency of g in a random graph
G′, however, we need to derive the number of subgraphs of
G that are isomorphic to g – this requires a large number
of subgraph isomorphism tests [14], which are known to
be computationally expensive. The high costs of subgraph
isomorphism tests, coupled with the large number r of random
graphs, render the frequency estimation phase a computational
challenge. Existing techniques attempt to resolve this issue by
improving the efficiency of subgraph isomorphism tests, but
only achieve limited success. As shown in Section VII, even
the state-of-the-art solutions require days to derive network
motifs from graphs with only a few thousand vertices.

Motivated by the deficiency of existing work, we present
an in-depth study on efficient solutions for network motif
discovery. Instead of focusing on the efficiency of individual
subgraph isomorphism tests, we propose to utilize Graphics
Processing Units (GPUs) to parallelize a large number of
isomorphism tests, in order to reduce the computation time
of the frequency estimation phase. This idea is intuitive, and
yet, it presents a research challenge since there is no exist-
ing algorithm for testing subgraph isomorphisms on GPUs.
Furthermore, as shown in Section III, existing CPU-based al-
gorithms for subgraph isomorphism tests cannot be translated
into efficient solutions on GPUs, as the characteristics of GPUs
make them inherently unsuitable for several key procedures
used in CPU-based algorithms.

To address above challenges, we propose a novel sub-
graph matching technique tailored for GPUs. Our technique
adopts the filter-refinement paradigm, and is developed with
careful considerations of three crucial factors that affect the
performance of GPU programs, namely, load balancing on
GPU cores, branch divergences in GPU codes, and memory
access patterns on the GPU (see Section II-B). Based on
those considerations, we make design choices that (i) drasti-
cally differ from existing CPU-based methods, but (ii) lead
to superior efficiency on GPUs. In addition, our technique
incorporates several optimization methods that considerably
improve scalability and efficiency. We experimentally evaluate
our solution against the state-of-the-art CPU-based methods on
a variety of biological networks using two machines, each of



which has a 500-dollar CPU, a low-end 300-dollar GPU, and a
high-end 2700-dollar GPU. We show that, when running with
the high-end (resp. low-end) GPU, our solution outperforms
the best CPU-based approach by two orders of magnitude
(resp. one order of magnitude) in terms of computation
efficiency. Furthermore, the per-dollar performance of our
solution is roughly 20 times higher than that of the best CPU-
based method. This note only establishes the superiority of
our solution, but also demonstrates that, for network motif
discovery, GPU-based methods are much more cost-effective
than CPU-based ones.

In summary, we present the first study on GPU-based algo-
rithms for network motif discovery, and make the following
contributions. First, we analyze the deficiency of the existing
CPU-based methods, and pinpoint the reasons that they cannot
be translated into efficient algorithms on GPUs. Based on
our analysis, we propose a novel solution that exploits the
strengths of GPUs in terms of parallelism, and mitigates their
limitations in terms of the computation power per GPU core.
(Sections III, IV, and V)

Second, we develop three optimization techniques that im-
prove the scalability of our solution, avoid under-utilization of
GPU, and eliminate redundant computation. Together, those
optimizations reduce the computation cost of our solution by
75%, and enable our solution to handle graphs that are ten
times larger than those studied in previous work. (Section VI)

Finally, we empirically compare our solution against the
state-of-the-art CPU-based methods, using the largest datasets
ever tested in the literature of network motif discovery. We
show that, even with a low-end GPU, our solution runs
10 times faster than the best CPU-based method, and this
performance gap is further widen by 10-fold when a high-end
GPU is used. Furthermore, our solution is around 20 times
more cost-effective than the best CPU-based method, when
taking into account the monetary costs of the CPU and GPUs
used. (Section VII)

II. PRELIMINARIES

This section first defines several basic concepts and formal-
izes the network motif discovery problem, and then introduces
the architecture of Graphics Processing Units (GPUs).

A. Problem Definition

Let G = (V,E) be a directed, unlabelled graph1 with a set
V of vertices and a set E of edges. For any two vertices u, v in
V , we say that v is an out-neighbor of u if there is a directed
edge from u to v, i.e., (u, v) ∈ E. Conversely, we refer to u as
an in-neighbor of v. We define the in-degree (resp. out-degree)
of u as the number of in-neighbors (resp. out-neighbors) of
u. In addition, we define the bi-degree of u as the number of
vertices that are both in-neighbors and out-neighbors of u, and
we refer to those vertices as the bi-neighbors of u.

Let g = (Vg, Eg) be a connected graph. We say that g is
a subgraph of G (denoted by g ⊆ G), if and only if there

1We consider that G is directed and unlabelled, as it is a standard
assumption in the literature. Nevertheless, our solution can be easily extended
to handle undirected or labelled graphs.

exists at least one injective function ζ : Vg → V , such that (i)
for any vertex v ∈ Vg , we have ζ(v) ∈ V , (ii) for any edge
(u, v) ∈ Eg , there is an edge

(
ζ(u), ζ(v)

) ∈ E. For each
subgraph of G that is isomorphic to g, we refer to it as an
occurrence of g in G. The frequency of g in G, denoted by
f(g,G), is the total number of occurrences of g in G. g is a
size-k subgraph, if it contains exactly k vertices.

We say that a graph G′ = (V ′, E′) is degree-equivalent to
G, if and only if (i) |V ′| = |V | and |E ′| = |E|, and (ii) there
exists a bijection ψ : V → V ′, such that for any node v ∈ V , v
and ψ(v) have the same in-degree, out-degree, and bi-degree.

Let G denote the set of all graphs that are degree-equivalent
to G. For any subgraph g of G, its expected frequency f(g)
is defined as its average frequency in all graphs in G, i.e.,

f(g) =
1

|G|
∑
G′∈G

f(g,G′). (1)

Note that the exact value of f(g) is difficult to compute due
to the enormous size of G. Following the standard practice in
the literature [1], we estimate f(g) using a sample set of G
with r graphs, denoted as Gr. The estimation thus obtained is

f̃(g) =
1

r

∑
G′∈Gr

f(g,G′), (2)

and the corresponding sample standard deviation is

σ̃(g) =

√
1

r − 1

∑
G′∈Gr

(
f(g,G′)− f̃(g)

)2
. (3)

Definition 1 (Motif): Let θ > 0 be a user-defined threshold.
Given G, Gr, and θ, a subgraph g of G is a motif of G, if
and only if σ̃(g) > 0 and

f(g,G)− f̃(g) ≥ θ · σ̃(g). (4)

In other words, a motif of G is a subgraph of G that appears
more frequently in G than in random graphs that are degree-
equivalent to G.

Problem Statement. Given G, r > 0, k > 2, and θ > 0, the
problem of network motif discovery asks for all size-k motifs
of G with respect to Gr (i.e., a sample set of G with r random
graphs).

B. Graphics Processing Units

GPUs were initially designed for graphical processing, but
are now widely used for general-purpose parallel computing,
e.g., sorting [15] and data mining [16]. Figure 1 shows the
general architecture of a GPU. Compared with a CPU (which
usually contains only a few cores), a GPU can easily have
thousands of computation units. Specifically, a GPU contains
several multiprocessors (MPs), each of which has a large num-
ber of stream processors (SPs). The SPs in each multiprocessor
work in single-instruction multiple-data (SIMD) manner, i.e.,
they execute the same instructions at the same time on different
input data. Each MP has a small but fast memory that is shared
by all of its SPs. In addition, all SPs in the GPU share accesses
to a large but slower global memory of the GPU. Data can
be exchanged between GPU’s global memory and the main



Main Memory GPU Global Memory

CPU Cores

SP SP
SP SP

SP SP
……

SP SP
SP SP

SP SP
…………

MP MP
GPU Cores

PCI-Express

Fig. 1. The general architecture of a GPU.

memory via a high speed I/O bus (e.g., PCI-Express), albeit
at a relatively slow rate.

For parallel computing on GPUs, we adopt the Nvidia
CUDA programming framework. In the following, we intro-
duce several key concepts in CUDA, so as to facilitate our
discussions in the subsequent sections.

Kernels. A CUDA program alternates between codes running
on the CPU and those on the GPU. The latter are referred
to as kernels, and they are invoked only by the CPU. Each
kernel starts by transferring input data from the main memory
to the GPU’s global memory, and then processes the data on
the GPU; after that, it copies the results from the GPU’s global
memory back to the main memory, and then terminates.

Thread Hierarchy. The GPU executes each kernel with a user-
specified number of threads. The threads are divided into
a number of blocks, each of which is assigned to one MP
(and cannot be re-assigned at runtime). In turn, each MP
divides an assigned block of threads into smaller warps, and
executes each warp of threads concurrently. Note that threads
in the GPU cannot communicate with each other directly, but
are allowed to retrieve data from, or write data to, arbitrary
locations of the GPU’s global memory.

Branch Divergences. Due to the SIMD nature of the GPU’s
SPs, all threads on the GPU cannot execute different programs
at a given time. As a consequence, if two threads in a warp
have different execution paths, then the GPU would execute
those paths sequentially. For example, suppose that a piece of
GPU code contains a statement “if A then B, else C”. For this
statement, the GPU first asks each thread in a warp to evaluate
condition A. Then, if A equals true in some threads, the
GPU executes B on those threads; Meanwhile, the remaining
threads in the warp remain idle, and they execute C only after
all other threads finish performing B. Such branch divergence
is detrimental to the efficiency of GPU programs and should
be avoided whenever possible [17].

Memory Coalescing. Suppose that the threads in a warp
request to access data in the GPU’s global memory, and the set
of data requested is stored in consecutive memory addresses.
In that case, the MP responsible for the warp would retrieve
all data with one memory access and then distribute them to
each thread, instead of issuing one access for each thread
individually. This is referred to as memory coalescing, and
it helps reduce memory access overheads. In contrast, if the
data to be accessed is stored in k disjoint memory spaces, then
k random accesses are required. Thus, it is important that we
carefully arrange data in the GPU’s global memory, so that the
data required by each warp resides in consecutive locations.

III. CPU-BASED METHODS REVISITED

This section revisits existing CPU-based methods for net-
work motif discovery. Section III-A summarizes the existing
methods, while Section III-B elaborates why they cannot be
translated into efficient solutions on GPUs.

A. Summary of CPU-Based Methods

As mentioned in Section I, existing CPU-based methods [5],
[8]–[13] for motif discovery typically run in two steps:

1) Subgraph enumeration: Compute the set Sk of all sub-
graphs in the input graph G, as well as the frequency
f(g,G) of each subgraph g in G.

2) Frequency estimation: Generate a set Gr of r random
graphs that are degree-equivalent to G. For each sub-
graph g ∈ Sk and each random graph G ′ ∈ Gr, compute
the frequency f(g,G′) of g in G′, and then determine
whether g is a motif of G according to Equation 4.

Among the above two phases, frequency estimation incurs by
far the highest overhead due to the large number of random
graphs in Gr that need to be examined. To alleviate this
overhead, existing methods construct indices on the subgraphs
in Sk for efficient subgraph search. In what follows, we first
clarify the indices utilized by existing methods, and then
explain the details of each phase.

CL-Index and AM-Index. Consider a random graph G ′ in
Gr. To derive subgraph frequencies in G ′, we need to identify,
for any given subgraph g ′ in G′, whether g′ appears in Sk.
For this purpose, existing methods index the subgraphs in S k

as follows. First, for each subgraph g in Sk, they compute the
canonical labeling [14] of g, which is a sequence of numbers
that uniquely identifies a graph, i.e., two graphs have the same
canonical labeling if and only if they are isomorphic. A hash
index, referred to as the canonical labeling index (CL-index), is
built to map each canonical labeling to each subgraph g ∈ Sk.

Given the CL-index, we can determine whether a subgraph
g′ appears in Sk, by first computing the canonical labeling of
g′ and then checking whether the labeling appears in the CL-
index. However, deriving the canonical labeling of g ′ is often
computationally expensive. To mitigate this issue, existing
methods construct an additional hash index, referred to as
the adjacency matrix index (AM-index), that maps adjacency
matrices to subgraphs in Sk. Specifically, for each subgraph g
in Sk, the AM-index records the adjacency matrix of at least
one graph that is isomorphic to g. (Note that two isomorphic
graphs may have different adjacency matrices.) As such, when
we are to check whether a subgraph g ′ is in Sk, we can first
examine whether the adjacency matrix of g ′ is indexed by
AM-index. If it is indexed, then we have g ′ ∈ Sk; otherwise,
we proceed to compute the canonical labeling of g ′, and check
if it appears in the CL-index. This filter-refinement approach
leads to higher efficiency, as the adjacency matrix of g ′ is
much easier to compute than its canonical labeling.

Phase 1: Subgraph Enumeration. To enumerate all size-k
subgraphs in a given graph G, a naive approach is to examine
all possible combinations of k vertices in G. This approach,
however, incurs prohibitive overheads due to the enormous



number of vertex combinations that need to be inspected. In
fact, most of the vertex combinations do not induce connected
graphs, and hence, could have been ignored. (Recall that
we require any subgraph to be connected.) Motivated by
this, existing methods adopt the following heuristic to avoid
inspecting all vertex combinations in subgraph enumeration.
For each vertex v in G, they first identify a set nbr(v, k) of
vertices that are at most k hops to v in G (regardless of the
directions of the edges). Observe that if a size-k subgraph
contains v, then all vertices in the subgraph must appear in
nbr(v, k) ∪ {v}. Accordingly, existing methods enumerate all
size-k subgraphs containing v, by inspecting the combinations
of k vertices in nbr(v, k) ∪ {v}; if a vertex combination
induces a connected graph g containing v, then g’s adjacency
matrix and canonical labeling are computed and inserted into
the AM-index and CL-index, respectively. Once the k-hop
neighborhood nbr(v, k) of each vertex v is processed, the
subgraph enumeration step terminates.

Phase 2.1: Random Graph Generation. Existing methods
adopt Monte Carlo techniques to generate random graphs that
are degree-equivalent toG. The most well adopted technique is
the switching algorithm [1], which runs in an iterative manner.
In each iteration, the algorithm randomly selects two directed
edges 〈v1, v2〉 and 〈v3, v4〉 from G, and then replaces them
with two new edges 〈v1, v4〉 and 〈v3, v2〉, if the replacement
does not result in a self-loop or two identical edges in G. The
algorithm terminates after α|E| iterations, where α is a large
pre-defined constant.

Phase 2.2: Frequency Computation. To compute the fre-
quency of each subgraph g ∈ Sk in each random graph
G′ ∈ Gr, existing methods enumerate each size-k subgraph
g′ of G′, and then utilize the AM-index and CL-index to
check if it appears in Sk. In addition, if g ′ appears in the
CL-index but not the AM-index, then its adjacency matrix m
is inserted into the AM-index, so that any other subgraph with
the same adjacency matrix can be efficiently processed without
inspecting the CL-index. Once all size-k subgraphs from all
random graphs are examined, the estimated frequency of each
subgraph in Sk (with respect to Gr) is computed, based on
which the motifs of G are identified.

B. Difficulties in GPU Translations

The CPU-based methods reviewed in Section III-A are
difficult to be adopted on GPUs, for three reasons. First,
both phases of the existing methods require computing the
canonical labelings of numerous subgraphs. The algorithms
[14], [18] for computing canonical labelings, however, contain
complicated execution paths with a large number of branches.
As a consequence, if we are to directly adopt those algorithms
on GPUs, the execution of the algorithms would be highly
inefficient due to the effects of branch divergences (see Sec-
tion II-B).

Second, CPU-based methods rely on the CL-index and AM-
index to check whether a subgraph appears in Sk. If we adopt
the same approach on a GPU, then we need to store the CL-
index and AM-index in the GPU’s global memory, and ask
each GPU thread to probe the indices for subgraph matching.

Algorithm 1: FreqComp

input : g ∈ Sk and G′ ∈ Gr
output: f(g,G′)

1 [CPU]: Choose a matching order of the vertices in g, denoted
as 〈u1, u2, . . . , uk〉 (see Section V-B);

2 Let g(2) be the subgraph of g induced by {u1, u2};
3 [CPU]: Identify the set C2 of all subgraphs in G′ that are

isomorphic to g2;
4 for i = 3, · · · , k do
5 Let g(i) be the subgraph of g induced by {u1, u2, . . . , ui};
6 [GPU]: Based on Ci−1, compute the set Ci of subgraphs

in G that are isomorphic to g(i) (see Algorithm 2);

7 return |Ck|;

In that case, the GPU threads in each warp are likely to access
drastically different memory, which prevents the GPU from
applying memory coalescing to reduce memory access costs.
Furthermore, when G is large, the CL-index and AM-index
can become so large that they do not even fit in the global
memory of the GPU.

Finally, if we are to ask each GPU thread to examine
whether a subgraph appears in Sk, then it is likely that
some threads will incur considerably higher overheads than
the others, since the subgraphs in random graphs may have
much different structures. Therefore, there can be significant
imbalance in the GPU threads’ workload. In that case, all
GPU threads in the same warp would need to wait for the
slowest thread to finish, before they can be terminated to allow
new GPU threads to be created. This leads to severe under-
utilization of the GPU’s parallel processing power.

IV. SOLUTION OVERVIEW

As with existing CPU-based methods, our solution also
consists a subgraph enumeration phase and a frequency es-
timation phase. In particular, the subgraph enumeration phase
of our solution adopts the CPU-based method in [12], and
the frequency estimation phase also utilizes the CPU-based
switching algorithm [1] to generate the set Gr of random
graphs that are degree-equivalent toG. To compute the average
frequency of each subgraph g ∈ Sk with respect to Gr,
however, we employ a GPU-based algorithm that provides
much higher efficiency than existing CPU-based methods.
The reason that we focus on optimizing the computation
of average subgraph frequency is that it incurs significantly
higher overheads than the other components of our solution
(due to the large number of random graphs to be processed).
In the following, we present an overview of our GPU-based
algorithm, assuming that G, Sk, and Gr are given.

In a nutshell, our algorithm examines each pair of g and G ′

where g ∈ Sk and G′ ∈ Gr, and it computes the frequency
of g in G′ with the FreqComp method in Algorithm 1.
The algorithm first arranges the vertices in g in a certain
sequence 〈u1, u2, . . . , uk〉 (Line 1), such that for any i ∈ [2, k],
u1, u2, . . . , ui induces a connected subgraph of g (denoted as
g(i)). We refer to 〈u1, u2, . . . , uk〉 as a matching order, and
we clarify how it is derived in Section V-B. After that, it
identifies all subgraphs of G′ that are isomorphic to g(2), and
stores them in a set C2 (Lines 2-3).



The subsequent part of the algorithm runs in k−2 iterations
(Lines 4-6), such that each iteration utilizes the GPU to
transform Ci−1 (i ∈ [3, k]) into Ci, i.e., the set of all subgraphs
of G′ that are isomorphic to g(i). Once Ck is computed,
the algorithm terminates and returns |Ck|, which equals the
frequency of g in G′ (Line 7). We clarify the generation of
Ci in Section V-B.

Compared with the existing CPU-based methods [5], [8]–
[13], FreqComp does not compute any canonical labeling or
construct any index on Sk, which helps avoid the branch
divergence and memory coalescing issues that render existing
methods inefficient on GPUs. Instead, FreqComp adopts an
incremental approach that first identifies the subgraphs of G ′

that can be matched to parts of g (i.e., g(2), g(3), . . ., g(k−1)),
and then utilizes such “partial occurrences” of g to pinpoint
the size-k subgraphs of G′ that are isomorphic to g. This
incremental approach is not as efficient as the CPU-based
indexing methods in deciding whether a single subgraph of
G′ is isomorphic to g, but it is much more amendable to GPU
paralellization.

It is noteworthy that FreqComp is similar in spirit to existing
CPU-based algorithms [18]–[21] for subgraph isomorphism
tests, which incrementally match the vertices in a small graph
g to those in a larger graph G′ to decide whether g appears in
G′. However, FreqComp aims to decide the exact number of
occurrences of g in G′, whereas the algorithms in [18], [20],
[21] only determine whether g has at least one occurrence
in G′. Furthermore, as the algorithms in [18]–[21] are CPU-
based, they involve complex execution paths, which render
them unsuitable for GPU adoptions, due to the effect of branch
divergences. In contrast, FreqComp is devised with careful
considerations of GPUs’ characteristics, which lead to design
choices that drastically differ from those in [18]–[21], as we
demonstrate in Section V.

V. GPU-BASED SUBGRAPH MATCHING

This section presents the details of the FreqComp algorithm.
Section V-A clarifies how we represent each random graph G ′

in a GPU’s global memory. Sections V-B and V-C elaborates
each step of FreqComp. Section V-D proves FreqComp’s
correctness.

A. Representation of Graphs

We represent each random graphG ′ ∈ Gr using six arrays in
the GPU’s global memory, namely, Eout, Ein, Ebi, Oout, Oin,
and Obi. Each element in Eout (resp. Ein) is an ordered pair
of vertices 〈va, vb〉, such that vb is an out-neighbor (resp. in-
neighbor) of va. Meanwhile, each element in Ebi is an ordered
pair of vertices that are bi-neighbors of each other. All pairs
in Eout, Ein, and Ebi are sorted by their first vertices, with
ties broken based on the second vertices. As a consequence,
the pairs with the same first vertices are stored as a block of
consecutive elements in Eout, Ein, and Ebi. We refer to Eout,
Ein, and Ebi as the edge arrays.

On the other hand, Oout is an array that maps each vertex
in G′ to its corresponding block in Eout. Specifically, for the
i-th vertex vi in G′, if it has at least one out-neighbor, then the

i-th element in Oout records the position of the first element
in Eout where vi is the first vertex. If vi has no out-neighbor,
however, then the i-th element in Oout is identical to the (i+
1)-th element. For convenience, we append an extra element
to the end of Oout, and set its value to the total number of
elements in Eout plus one. We refer to Oout as the offset array
for Eout. Accordingly, Oin and Obi are the offset arrays for
Ein and Ebi, respectively, and are defined in the same manner.

By the way Oout is constructed, if we are to identify the
out-degree of the i-th vertex in G ′, then we can simply subtract
the i-th element in Oout from the (i+ 1)-th element. The in-
degree (resp. bi-degree) of any vertex can be computed from
Oin (resp. Obi) in the same manner.

B. Construction of Ci

As mentioned in Section IV, the FreqComp algorithm first
determines a matching order 〈u1, u2, . . . , uk〉 for the vertices
in g, and then iteratively identifies the set Ci (i ∈ [2, k]) of
subgraphs in G′ that are isomorphic to g(i), i.e., the subgraph
of g induced by {u1, u2, . . . , ui}. For ease of exposition, we
defer the discussion of the matching order to end of Section V-
B. In what follows, we first clarify the construction of C i,
assuming that 〈u1, u2, . . . , uk〉 are given.

Construction of C2. First, consider the case when i = 2. If
u1 and u2 are bi-neighbors, then C2 consists of all 2-cycles in
G′; otherwise, C2 contains all forward (resp. backward) edges
in G′ if u2 is an out-neighbor (resp. in-neighbor) of u 1. In
any of those three cases, C2 can be constructed with a linear
scan of Ein, Eout, or Ebi.

For each graph c ∈ C2, we record the two vertices of the
graph as an ordered pair, where the first and second vertices
are mapped to u1 and u2, respectively, in the isomorphism of
c and g(2). In case that there exist multiple isomorphisms (i.e.,
when u1 and u2 are bi-neighbors), we store in C2 one ordered
pair of each mapping. In general, for graph c ∈ C i and each
isomorphism of c and g(i), we store a sequence of i vertices
in Ci, such that the j-th (j ∈ [1, i]) vertex in the sequence is
the vertex in c mapped to uj in the isomorphism. (We discuss
in Section V-C how we may reduce the number of sequences
in Ci without affecting the correctness of our solution.) For
convenience, we refer to each sequence s in C i as a size-i
candidate, and we abuse notation by using s to refer to the
graph that it represents.

Construction of C3, C4, . . . , Ck. Next, suppose that we
have constructed Ci−1 (i ∈ [3, k]), based on which we are
to compute Ci by launching a kernel on the GPU. Our basic
idea is to invoke a large number of parallel GPU threads, such
that each thread (i) examines a size-(i−1) candidate c ∈ Ci−1

and (ii) tries to transform c into a size-i candidate c∗ by adding
one vertex in G′ into c.

To explain, recall that c is a size-(i − 1) subgraph of G ′

that is isomorphic to g(i − 1). Let vj (j ∈ [1, i − 1]) be the
vertex in c that is mapped to uj in g(i− 1). To convert c into
a graph isomorphic to g(i), a natural approach is to inspect
each neighbor v of each vj to see if v can be mapped to ui.
That is, we check whether the following condition holds:



Algorithm 2: BuildCi

input : g, G′, and Ci−1

output: Ci

1 {Ao, Av} = InitArray (g, Ci−1); // see Algorithm 3
2 {I,A′

o} = GenCand(Ao, Av , g, G′, Ci−1); // see
Algorithm 4

3 Ci = CleanCand(I , A′
o); // see Algorithm 5

4 return Ci;

• Vertex Validity Condition: For all j ∈ [1, i − 1], if uj is
an in-neighbor of ui in g, then vj is an in-neighbor of
vi; furthermore, if uj is an out-neighbor of ui in g, then
vj is an out-neighbor of vi.

If the above condition holds for v, the subgraph of G ′ induced
by {v1, . . . , vi−1, v} must be isomorphic to g(i); accordingly,
we can record the sequence 〈v1, . . . , vi−1, v〉 as a size-i
candidate in Ci.

To implement the above approach on a GPU, a straightfor-
ward method is to create one GPU thread for each neighbor v
of a vertex in c ∈ Ci−1, to check whether the vertex validity
condition holds for v. This method, however, requires different
threads in the same warp to access the neighbors of different
vertices v, which diminishes the chance of memory coalescing
since the edges of different vertices are unlikely to reside in
consecutive memory addresses. Furthermore, the method leads
to workload unbalance among the threads, as different vertices
v may have drastically different numbers of neighbors.

We address the above deficiencies with a more advanced
method as follows. Without loss of generality, assume that u i

is an out-neighbor of a vertex uα (α ∈ [1, i− 1]) in g. Then,
for each vertex v in G′ that is an out-neighbor of vα, we
create |E(v)| GPU threads, where E(v) is the set of all edges
incident to v in G′. (We refer to vα as the anchor vertex.) In
particular, the �-th thread examines the �-th edge e ′ ∈ E(v),
and checks whether the following edge validity conditions hold
simultaneously:

1) e′ connects v to some vj (j ∈ [1, i− 1]) in c.
2) If e′ is an outgoing edge from v, then uj is an out-

neighbor of u.
3) If e′ is an incoming edge to v, then uj is an in-neighbor

of u.

The thread returns true if all of the above conditions hold,
and false otherwise. After all |E(v)| threads terminate, we
count the number of threads that return true. If this number
equals the number of edges incident to u i, then we confirm
that v satisfies the validity condition. In that case, we insert
〈v1, . . . , vi−1, v〉 into Ci as a size-i candidate.

Compared with the straightforward method, the advanced
method increases the total workload on GPU, since the latter
examines all |E(v)| edges of each v, whereas the former
only needs to perform |E(ui)| binary searches on v’s edge
lists. As a trade-off, however, the advanced approach has a
much smaller running time for two reasons. First, it ensures a
balanced workload for each GPU thread. Second, it facilitates
memory coalescing, because (i) the threads in the same warp
are likely to handle the neighbors of the same v, and (ii) the
edges of v are stored in consecutive addresses.

Algorithm 3: InitArray
input : g and Ci−1

output: Ao and Av

1 create arrays Adeg and Av , both of size |Ci−1|;
2 for each x = 1, 2, . . . , |Ci−1| in parallel do
3 let cx = 〈v1, . . . , vi−1〉 be the x-th graph in Ci−1;
4 identify the vertex vα in cx with the smallest non-zero

relevant degree;
5 Adeg[x]← the relevant degree of vα;
6 Av[x]← vα;

7 run a parallel prefix sum on Adeg; let Ao be the resulting array;
8 return Av and Ao;

It remains to discuss how we select the anchor vertex vα
(α ∈ [1, i− 1]) to start the exploration of candidate vertices v.
For any j ∈ [1, i− 1], we define vj’s relevant neighbor set as:

R(vj) =

⎧⎪⎪⎨
⎪⎪⎩

vj’s out-neighbor set, if ui is uj’s out-neighbor;
vj’s in-neighbor set, if ui is uj’s in-neighbor;
vj’s bi-neighbor set, if ui is uj’s bi-neighbor;
∅, otherwise.

We also define |R(vj)| as the relevant degree of vj . Observe
that (i) we can set vα = vj only if R(vj) 
= ∅, and (ii) if
vα = vj , then the advanced method needs to explore |R(v j)|
of vj’s relevant neighbors. To minimize the number of vertices
that need to be explored, we set vα to the vertex in c with the
smallest non-zero relevant degree.

Implementation. Algorithm 2 shows the pseudo-code of our
method (dubbed BuildCi) for constructing C i from Ci−1

(i ∈ [3, k]). The algorithm first invokes the InitArray function
(Algorithm 3) to create two arrays Av andAo. In particular,Av

stores |Ci−1| vertices, such that the x-th vertex is the anchor
vertex in the x-th graph in Ci−1. Meanwhile, Ao records
|Ci−1| offset values, such that the x-th offset equals the sum of
the relevant degrees of first x vertices in Av . These offsets are
used to indicate the memory locations where the GPU threads
in the subsequent step should write their outputs to.

Next, BuildCi feeds Av and Ao as inputs to the GenCand
function (Algorithm 4). Let cx denote the x-th graph in Ci−1.
GenCand examines each cx = 〈v1, . . . , vi−1〉, and retrieves
from Av the anchor vertex vα in cx. For each vertex v in the
relevant neighbor set of vα, GenCand regards 〈v1, . . . , vi−1, v〉
as a potential size-i candidate, and uses a GPU thread to write
it into an array I . In addition, GenCand creates an array A ′

deg ,
where the j-th element equals the number of edges incident
to the vertex v associated with the j-th element in I . It then
generates an array A′

o of offset values, by computing the prefix
sum of A′

deg . Finally, it returns I and A′
o.

Finally, BuildCi applies the RefineCand function (Algo-
rithm 5) to refine the potential size-i candidates in I . In
particular, for each 〈v1, . . . , vi−1, v〉 recorded in I , RefineCand
creates |E(v)| GPU threads, each of which (i) checks whether
an edge of v satisfies all of the edge validity conditions, and
(ii) writes the result of the check into an array B. Then,
RefineCand examines B to identify those vertices v that has
E(ui) edges passing the validity check; for each such v, it
inserts 〈v1, . . . , vi−1, v〉 into Ci as a size-i candidate. After
that, the algorithm returns Ci and terminates.



Algorithm 4: GenCand

input : Ao, Av, g, G′, and Ci−1

output: I and A′
o

1 let θ be the last element of Ao;
2 create arrays A′

deg and I , both of the size θ;
3 for each y = 1, 2, . . . , θ in parallel do
4 identify the integer x such that Ao[x] ≤ y < Ao[x+ 1];
5 let cx be the x-th graph in Ci−1;
6 let vα be the vertex recorded in Av[x];
7 let z = y −Ao[x];
8 v ← the z-th vertex in vα’s relevant neighbor set;
9 I [y]← 〈v1, . . . , vi−1, v〉;

10 A′
deg[y]← the number of edges incident to v in G′;

11 run a parallel prefix sum on A′
deg; let A′

o be the resulting array;
12 return I and A′

o;

Matching Order. We now discuss how we decide the match-
ing order for the vertices in g. In general, we aim to select a
matching order that minimizes the sizes of Ci (i ∈ [2, k− 1]),
so as to reduce computation overheads. That is, we aim to
arrange the vertices in g into a sequence u1, u2, . . . , uk, such
that each subgraph induced by u1, u2, . . . , uj (j ∈ [2, k]) has
as fewer occurrences in G′ as possible. This problem has
been studied in the context of subgraph isomorphism tests,
and there exist several CPU-based heuristic solutions [18]–
[21]. In our solution, we adopt the CPU-based technique in
[21] for choosing a matching order for g. We do not consider
GPU-based techniques, since the costs of generating matching
orders are insignificant when compared with the overheads of
the other parts of our solution.

C. Avoiding Duplicates

Let g′i be an occurrence of gi in G′. As mentioned in
Section V-B, if there are multiple isomorphisms of g ′

i and gi,
then we record each isomorphism as a vertex sequence in C i.
This could lead to an excessive number of vertex sequences
in Ci. For example, if gi is a clique, then there exist i!
isomorphisms of gi and g′i, which result in i! vertex sequences
in Ci. Previous work [6] addresses this problem with technique
that exploits graph automorphism, and we adopt the same
technique in our GPU-based solution. To explain, we first
introduce the concept of automorphism groups.

Definition 2 (Automorphism Groups): An automorphism
group of g is a set A of ordered pairs that satisfy the following
conditions:

1) The two elements in each order pair are vertices in g.
2) In each ordered pair (u, u′), the vertex ID of u is smaller

that that of u′.
3) The set of edges in g remains unchanged even if, for

each ordered pair (u, u′) ∈ A, we exchange u and u′ in
all edges incident to u or u′.

For example, consider the graph g1 in Figure 2, assuming
that the ID of each node ui (i ∈ [1, 6]) equals i. A1 =
{(u1, u2)} is an automorphism group of g3 because (i) there
are only two edges in g3 that are incident to u1 or u2,
namely, 〈u1, u3〉 and 〈u2, u3〉, and (ii) even if we exchange
u1 and u2 into those two edges, we still have 〈u2, u3〉 and
〈u1, u3〉, i.e., the set of edges in g3 remain unchanged. It

Algorithm 5: RefineCand

input : I and A′
o

output: Ci

1 let γ be the number of edges incident to ui in g ;
2 create an array B of size γ · |I |, with all elements set to 0 ;
3 let θ′ be the value of the last element of A′

o;
4 for each z = 1, 2, . . . , θ′ in parallel do
5 identify the integer y such that A′

o[y] ≤ z < A′
o[y + 1];

6 let � = z −A′
o[y];

7 let 〈v1, . . . , vi−1, v〉 be the y-th element of I ;
8 let e′ be the �-th edge incident to v in G′;
9 let v′ be the node that is connected to v by e ;

10 if there exists vj = v′ (j ∈ [1, i− 1]) then
11 scan the edges of u;
12 if the β-th edge e connects u to uj then
13 if (e starts from v and e′ starts from u) or (e

starts from vj and e′ starts from uj ) then
14 B[y · γ + β] = 1;

15 create an array B∗ of size |I | with all elements set to 0;
16 for each y = 1, 2, . . . , |I | in parallel do
17 if B[y × γ + �] equals 1 for each � ∈ [1, γ] then
18 B∗[y] = 1;

19 run a parallel prefix sum on B∗; let A∗
o be the result;

20 let θ∗ be the last element of A∗
o;

21 create an array Ci of size θ∗;
22 for each y = 1, 2, . . . , |I | in parallel do
23 if B∗[y] equals 1 then
24 Ci[A

∗
o[y]]← I [y];

25 return Ci;

u2

u3 u4

u1

u6

u5

Fig. 2. A graph g1 with several automorphism groups.

can be verified that g3 has another two automorphism groups
A2 = {(u1, u5), (u2, u6), (u3, u4)} and A3 = {(u5, u6)}.

Based on g’s automorphism groups, we construct a symme-
try constraint set (SCS) Q for g, which contains exactly one
ordered pair from each automorphism group. For example,
for the graph g3 in Figure 2, {(u1, u2), (u3, u4), (u5, u6)} is
an SCS, since, as mentioned, (i) g3 has three automorphism
groups A1, A2, and A3, and (ii) (u1, u2) ∈ A1, (u3, u4) ∈ A2,
and (u5, u6) ∈ A3.

Given an SCS Q for g, we impose the following symmetry
constraint on each size-i candidate c = 〈v1, v2, . . . , vi〉 in Ci:

• Symmetry Constraint: For any ordered pair (ux, uy) ∈ Q
with 1 ≤ x < y ≤ i, the vertex vx in c has a smaller ID
than the vertex vy does.

It is proved in [6] that even if there are multiple isomorphisms
of g and a subgraph of G′, only one of them satisfies the
symmetry constraint given an SCS. Hence, imposing the
symmetry constraint eliminates duplicates2 in Ck , and ensures
that the frequency of g can be correctly computed from C k.

In our solution, we compute an SCS Q for g using the CPU-
based algorithm in [6], and we impose the symmetry constraint

2It also reduces the number of duplicates in Ci (i ∈ [2, k − 1]) but
does not necessarily eliminate them, since an SCS is computed based on
the automorphism groups of g instead of g(i).



on Ci during its generation in our GPU-based Algorithm 4. In
particular, after Line 9 of Algorithm 4 constructs a potential
size-i candidate c = 〈v1, v2, . . . , vi〉, we test whether c satisfies
the symmetry constraint by inspecting all ordered pairs in Q
that contain ui. If c fails the test, then we set A′

deg[y] = 0 in
Line 10; this ensures that c will be subsequently eliminated
by the RefineCand function.

D. Correctness

The following lemma shows the correctness of our solution.

Lemma 1: For any g and G′ ∈ Gr, Algorithm 1 correctly
computes the frequency of g in G′.

Proof: [Proof Sketch] To prove the lemma, we show that
the set Ck constructed by Algorithm 2 contains exactly one
vertex sequence for each occurrence of g in G ′. First, due
to the symmetry constraint approach [6] in Section V-C, Ck

contains at most one vertex sequence for each occurrence of
g in G′. Second, by an induction on i, we can prove that there
is at least one vertex sequence in Ci for each occurrence of gi
in G′, since (i) each occurrence of gi in G′ can be obtained by
extending an occurrence of g i−1 in G′ by one vertex, and (ii)
Algorithm 2 considers all such extensions when constructing
Ci from Ci−1.

VI. OPTIMIZATIONS

This section presents several crucial techniques for optimiz-
ing the performance of our GPU-based method.

A. Handling Large Candidate Sets

Our GPU-based solution requires generating a few inter-
mediate results, e.g., the size-i candidate sets Ci and the
temporary arrays (e.g., Adeg , Ao, I , B) utilized in Algorithms
3, 4, and 5. When Gr is sizable, those intermediate results
could be too large to fit in the global memory of the GPU.
To address this issue, one straightforward approach is to
use the machine’s main memory (and harddisk, if necessary)
as a secondary storage for the GPU. In particular, if the
intermediate results in the conversion from C i to Ci+1 (i ∈
[2, k− 1]) exceed the size of the GPU memory, then we may
store Ci in the main memory, and divide it into several subsets
C

(1)
i , C

(2)
i , . . . , C

(β)
i , such that each subset is small enough to

be processed by the GPU. After that, we transfer the subsets
to the GPU one by one, and ask the GPU to (i) convert each
subset C(j)

i into a partial set C(j)
i+1 of size-(i+ 1) candidates

and (ii) send each C (j)
i+1 back to the main memory. Once all

C
(j)
i+1 are produced, we take their union to obtain the size-

(i+ 1) candidate set Ci+1.
The above approach, however, is inefficient as it requires

numerous rounds of data transfers between the main memory
and the GPU memory, which are only connected via a (rel-
atively slow) I/O bus. To address this problem, we propose
a divide-and-conquer approach that processes all data in the
GPU’s global memory, without utilizing the main memory as
a secondary storage. To explain, assume that the GPU memory
is sufficient to construct C2, C3, . . . , Ci, but not Ci+1. That is,
the GPU would first run out of memory when transforming

Ci to Ci+1. We first clarify how our approach works when
i = k− 2, and then extend our discussion to the general case.

Given Ck−2, we first invoke Algorithm 3 to obtain two
arrays Av and Ao. Recall that the j-th element of Ao equals
the number of potential size-(k−1) candidates that we need to
generate from the z-th graphs in Ck−2 where z ≤ j. Therefore,
based on Ao, we can calculate the amount of memory required
in processing each graph in Ck−2. Given this information, we
divide Ck−2 into subsets, such that each subset C (j)

k−2 can be

converted into a set C (j)
k−1 of size-(k − 1) candidates using a

fraction λ of the vacant memory on the GPU. (We will discuss
the setting of λ shortly.) Then, we process each C (j)

k−2 in turn.

Whenever a size-(k − 1) candidate subset C (j)
k−1 is generated,

however, we do not transfer it to the main memory of the
machine; instead, we use the remaining 1− λ fraction of the
vacant GPU memory to convert C (j)

k−1 into a size-k candidate

subset C(j)
k . In case that this conversion requires more memory

than available, we further divide C (j)
k−1 into subsets and process

each subset in turn, in the same manner as the processing
of Ck−2. Once a subset of size-k candidates are produced,
we record the size of the subset, and then delete the subset
from the GPU memory to make room for the processing of
other subsets of C (j)

k−1. In summary, we partition the vacant
memory of the GPU into two parts, and use them to pipeline
the generation of size-(k − 1) and size-k candidates.

In general, if we have sufficient GPU memory to construct
C2, . . . , Ci but not Ci+1, we start pipelining right after Ci

is generated. Specifically, we divide the vacant GPU memory
into k − i parts, and assign the j-th part for the conversion
from Ci+j−1 to Ci+j . We heuristically set the size of the j-
th part to be λ fraction of the GPU memory that is vacant
after the first j− 1 parts are assigned, except that the last part
utilizes all remaining GPU memory. To choose an appropriate
value for λ, we model the total number of candidate subsets
produced in the pipelining process (i.e., the total number of
“splits” required on Ci, . . . , Ck−1) as a function of λ, and we
derive the λ that minimizes the function. The rationale is as
follows: each candidate subset needs to be processed with a
few GPU kernels, each of which takes a certain amount of
time to start up; therefore, if the total number of candidate
subsets is large, then the total start-up overhead of the GPU
kernels would be significant, which leads to inferior efficiency.

Let M be the amount of vacant GPU memory right after
Ci is constructed. Observe that, in the conversion from C i

to Ci+1, the total size of the intermediate results is O(|Ci|).
Given that we assign λM GPU memory for the conversion
from Ci to Ci+1, the number of subsets of Ci generated
is roughly proportional to |Ci|

λM . By the same reasoning, the
number of subsets of Cj (j > i) produced is approximately
proportional to⎧⎪⎪⎨

⎪⎪⎩

|Cj |
λ · (1− λ)j−i ·M , if j ∈ [i+ 1, k − 2];

|Ck−1|
(1− λ)k−i−1 ·M , if j = k − 1.

Observe that |Cj+1| ≤ d·|Cj |, where d is the maximum vertex
degree in G. We consider that |Cj+1| = d · |Cj |, in which case



the total number of subsets produced in the pipelining process
is roughly proportional to:(

k−2∑
j=i

dj−i · |Ci|
λ · (1− λ)j−i ·M

)
+

dk−i−1 · |Ci|
(1− λ)k−i−1 ·M . (5)

It can be verified that Equation 5 is minimized when λ = 1
k−i .

Therefore, we set λ = 1
k−i in our solution.

B. Handling Multiple Graphs

Our previous discussions have focused on computing sub-
graph frequencies in one random graph G ′ ∈ Gr. When G′

contains relatively small numbers of vertices and edges, the
frequency computation processes on G ′ may not engage all
GPU cores, which leads to under-utilization of the GPU. We
address this issue as follows. First, we divide the random
graphs in Gr into several groups, each of which contains
μ graphs, where μ is a tunable parameter. After that, for
each group R of random graphs, we regard it as a graph G ∗

consisting of |R| disjoint components, each of which is a graph
in R. Then, we invoke our GPU-based frequency estimation
method on G∗, with additional bookkeeping to (i) record the
subgraph frequencies in each random graph separately, and
(ii) ignore any subgraph of G∗ that contains vertices from
different graphs in R. In other words, we process the random
graphs in each group in a batch manner, and thus, we avoid
under-utilizing the GPU.

One crucial question remains: How do we decide the
number μ of random graphs in each group? A naive approach
is to set μ = |Gr|, i.e., we process all random graphs in
Gr in one batch. This, however, severely exacerbates the
GPU memory issue discussed in Section VI-A, and leads to
inferior efficiency. To tackle the problem, we choose μ using a
heuristic method, as explained in the following. First, observe
that for any subgraph g in G and any random graph G ′ ∈ Gr,
the size-2 candidate set of G′ (i.e., C2) has a size at most
μ · m, where m is the number of edges in G ′. In addition,
each size-2 candidate in C2 leads to at most d possible size-3
candidates in Algorithm 4, where d is the maximum vertex
degree in G. Given μ ·m and d, we can derive an upperbound
τ of the amount of GPU memory required in the conversion
from C2 to C3, and we set μ to the maximum integer such
that the upperbound τ no more than 1

k−2 fraction of the
vacant GPU memory. In other words, we ensure that the
conversion from C2 to C3 can be performed without invoking
the divide-and-conquer method in Section VI-A, which helps
avoid overloading the GPU. Although such a μ thus obtained
does not guarantee that the GPU won’t be overloaded in
the computation of C4, C5, . . . , Ck, we find that it leads to
satisfactory performance in our experiments.

C. Matching Tree

Let g and g′ be two size-k subgraphs of G (i.e., g, g ′ ∈ Sk)
that differ in only one node. Further assume that the matching
orders of g and g ′ share a common prefix of length k−1, e.g.,
g1 = 〈u1, . . . , uk−1, uk〉 and g2 = 〈u1, . . . , uk−1, u

′
k〉. Then,

when we compute the frequency of g in a random graph G ′ ∈
Gr (i.e., f(g,G′)), the size-(k− 1) candidate set would be the

u1 u2 u3' u4

u1 u2 u3' u4'

u1 u2 u3 u4

u1 u2 u3 u4'

u1 u2 u3 u4''

g1

g2

g3

g4

g5

u3

u4 u4' u4''

u2

u4 u4'

u3'

u1

...

ϕ 
...

g1 g2 g3 g4 g5

(a) 5 of the graphs in Sk. (b) The matching tree for Sk.

Fig. 3. Illustration of a matching tree.

same as in the computation of the frequency of f(g ′, G′). In
other words, the computation of f(g,G ′) overlaps significantly
with that of f(g′, G′).

Generally, if two graphs in Sk share a common prefix in
their matching order, then the frequency estimation processes
for the two graphs share a common component. A natural
question is: How can we avoid redundant computation in the
processing of such “similar” graphs? We answer this question
with a method that carefully arranges the order in which we
process the graphs in Sk.

Specifically, we first compute the matching order for every
graph in Sk. After that, we organize all matching orders into a
prefix tree, referred as the matching tree. Then, we perform a
depth-first search (DFS) on the matching tree, and we process
the graphs in Sk in the order in which they are encountered
during the DFS. We refer to such a sequence of graphs induced
by the DFS as the DFS order.

For example, Figure 3 illustrates 5 graphs in an Sk with
k = 4, as well as a matching tree for Sk. The DFS order
corresponding to the matching tree is g1, g2, g3, g4, g5, . . ..
Given this DFS order, we avoid redundant computation in
processing gi (i ∈ [1, 5]) as follows. First, given any random
graph G′ ∈ Gr, we compute g1’s size-2 candidate set C2

and size-3 candidate set C3. Based on C3, we derive the
occurrences of g1 in G′, as well as those of g2 and g3, i.e.,
we avoid recomputing C3 for g2 and g3. This is feasible since
the matching orders of g1, g2, and g3 share a common prefix
〈u1, u2, u3〉. After that, we reuse C2 to the derive the size-3
candidate set C ′

3 for g4 (as g1 and g4 have a common prefix
of length 2), and then utilize C ′

3 to compute f(g4, G′) and
f(g5, G

′) in one batch.

In general, for any size-i (i ≥ 2) candidate set C i that
corresponds to a node pi in the matching tree, we compute
Ci only once and reuse it for deriving the occurrences of any
graph in Sk that corresponds to a leaf node in the subtree under
pi. As such, we avoid all redundant computation of candidate
sets. The downside of this approach is that it requires retaining
Ci until all graphs in the subtree of pi are processed, but
this issue can be easily addressed with the divide-and-conquer
method in Section VI-A. That is, we divide Ci into several
subsets and process each subset in turn. For each subset C (j)

i ,
we derive the occurrences of all graphs depending on C

(j)
i ,

and transfer the relevant results to the main memory of the
machine. After that, we remove C (j)

i from the GPU’s memory
and use the freed space to process the next subset C (j+1)

i .



NemoGPU (K20)QuateXelero NetModeKavosh DistributedNM NemoGPU (Q2000)

100
101
102
103
104
105
106

YE HS YP MM DM AT CE

dataset

total processing time (sec)

100
101
102
103
104
105
106

YE HS YP MM DM AT CE

dataset

total processing time (sec)

100
101
102
103
104
105
106

YE HS YP MM DM AT CE

dataset

total processing time (sec)

(a) Total running time. (b) Running time for the first phase. (c) Running time for the second phase.

Fig. 4. Computation time on all datasets.

TABLE I

SPECIFICATIONS OF E5645, Q2000, AND K20C.

Name # of cores Core freq. GPU memory Price (USD)3

E5645 6 2400MHz N/A 513.39
Q2000 192 625MHz 1GB 277.77
K20 2496 706MHz 5GB 2695.00

VII. EXPERIMENTS

A. Experimental Settings

We implement our GPU-based algorithm for network motif
discovery (dubbed NemoGPU) in C++ under Nvidia CUDA
5.5, and compare it against four state-of-the-art CPU-based
algorithms: Kavosh [8], QuateXelero [10], NetMode [11], and
DistributedNM [12]. We adopt the C++ implementations of
Kavosh, QuateXelero, and NetMode made available by their
respective inventors, and we implement DistributedNM in C++
with multi-core optimizations. All of our experiments are con-
ducted on two machines with identical hardware and software
configurations. In particular, each machine runs CentOS 5.0,
and has 32GB main memory, an Intel Xeon E5645 CPU, a
low-end Nvidia Quadro 2000 (Q2000) GPU, as well as a high-
end Nvidia Telsa K20 GPU. Table I shows the specifications
of the CPU and GPUs. We run NetMode, DistributedNM, and
the CPU part of NemoGPU with 6 threads (i.e., one thread per
CPU core), but Kavosh and QuateXelero with only one thread
as their implementations do not support parallelism. The GPU
part of NemoGPU is ran on Q2000 and K20 separately.

We use seven biological networks in our experiments, as
shown in Table II. In particular, Yeast (YE) is the transcrip-
tion network of yeasts; H.sapiens (HS) captures the protein-
protein interaction (PPI) in the MINT dataset; YeastPPI (YP),
M.musculus (MM), and D.melanogaster (DM) are the PPI
networks of the budding yeast, fly genes, and mouse genes,
respectively; A.thaliana (AT) describes the shared domains
in Arabidopsis proteins; C.elegans (CE) represents the co-
expression of worm genes. YE and YP are obtained from [22],
while the other datasets are available from [23]. Our datasets
are relatively small compared with those (with millions of
nodes and edges) used in the literature of graph databases [19],
[24], but we note that (i) biological networks are typically
small, and (ii) identifying network motifs from our data is
highly challenging due to the large number of random graphs
that we need to process, and the huge number of subgraph
isomorphism tests required. Furthermore, to our knowledge,
YP is the largest dataset used in the previous work on network
motif discovery [5]–[11]. In other words, the datasets that we

3These prices were obtained from Amazon.com in August 2014.

TABLE II

DATASETS.
Name |V | |E| AVG deg. MAX out-deg. MAX in-deg.

YE 688 1,079 3.14 71 13
HS 1,509 5,598 7.42 71 45
YP 2,361 6,646 5.63 64 47
MM 4,293 7,987 3.72 91 111
DM 6,303 18,224 5.78 88 122
AT 9,216 50,669 11.00 58 89
CE 17,179 124,599 14.51 67 107

use are up to one order of magnitude larger than those used in
previous work, in terms of the numbers of nodes and edges.

Following previous work [6], [9], [11], [12], we vary k (i.e.,
the size of the network motifs to be discovered) from 4 to 8,
and set the default value of r (i.e., the number of random
graphs) to 1000. However, if an algorithm’s running time
exceeds 24 hours in an experiment, then we reduce r to 100
for that particular algorithm in the experiment, and measure
its computation time t1 (resp. t2) for the first (resp. second)
phase of network motif discovery; after that, we estimate the
running time of the algorithm for r = 1000 as t1+10 ·t2. That
said, if the algorithm does not terminate within 24 hours even
when r = 100, then we omit it from the experiment. We repeat
each experiment 3 times and report the average computation
cost of each method.

B. Comparisons with CPU-Based Techniques

In the first set of experiments, we evaluate the computation
time of all algorithms on all datasets, setting k = 6. Figure 4
illustrates the results. As shown in Figure 4a, our NemoGPU
algorithm, when running with the high-end K20 GPU, outper-
forms all CPU-based methods by two orders of magnitude in
terms of computation efficiency, regardless of the dataset used.
When running with the low-end Q2000 GPU, NemoGPU is
approximately ten times slower than with K20, as Q2000 has a
much smaller GPU memory and considerable few GPU cores.
However, even with Q2000, NemoGPU is still significantly
more efficient than all CPU-based solutions. Among the CPU-
based methods, NetMode and DistributedNM yield similar
performance, with the latter slightly outperforming the former
in most cases. Meanwhile, Kavosh and QuateXelero incur
noticeably larger overheads than NetMode and DistributedNM.

Figure 4b and 4c illustrate the running time of each al-
gorithm’s first and second phases, respectively. Observe that,
for all algorithms, the computation overhead of the first phase
is negligible compared with that of the second phase, which
justifies our choice of optimizing only the second phase in
our GPU-based solution. The first phase of NemoGPU incurs
exactly the same overhead as DistributedNM does, since they



NemoGPU (K20)NemoGPU (Q2000)QuateXelero NetModeKavosh DistributedNM

100
101
102
103
104
105
106

4 5 6 7 8

k

total processing time (sec)

100
101
102
103
104
105
106

4 5 6 7 8

k

total processing time (sec)

100
101
102
103
104
105
106

4 5 6 7 8

k

total processing time (sec)

100
101
102
103
104
105
106

4 5 6 7 8

k

total processing time (sec)

(a) YE. (b) HS. (c) YP. (d) MM.

Fig. 5. Computation time vs. k.

100

101

102

103

YE HS YP MM DM AT

dataset

improvement ratio
K20

Q2000

0

10

20

30

40

50

YE HS YP MM DM AT

dataset

performance-price ratio
K20

Q2000

(a) Improvements over DistributedNM. (b) Performance-price ratio.

Fig. 6. NemoGPU (with Q2000 and K20) vs. DistributedNM.

adopt the same CPU-based algorithm for the first phase, as
mentioned in Section IV.

To more clearly illustrate the superiority of our GPU-based
solution, we compute the improvement ratio of NemoGPU
over DistributedNM (i.e., the most efficient CPU-based
method), defined as the running time of the latter divided by
that of the former. Figure 6a shows the improvement ratio
of NemoGPU when k = 6, on all datasets except CE (as
DistributedNM fails to terminate on CE). On the other hand,
we also take into account the price differences among the
CPU and GPUs, and compute the performance-price ratio of
NemoGPU, defined as

Improvement ratio of NemoGPU × Price of the E5625 CPU

Price of the GPU
.

Figure 6b plots the performance-price ratio of NemoGPU with
Q2000 and K20. The ratio for K20 (resp. Q2000) is up to 33
(resp. 27), and is above 18 (resp. 15) in all cases. This indicates
that both K20 and Q2000 yield much higher “performance per
dollar” than the E5625 CPU does. In other words, if one is to
improve the efficiency of network motif discovery, it is much
more economical to invest in GPUs instead of CPUs.

Next, we evaluate the effects of k on the efficiency of
network motif discovery. Figure 5 shows the computation time
of each algorithm as a function of k, using datasets YE, HS,
YP, and MM. We omit DM, AT, and CE from this experiment,
as all CPU-based methods incur prohibitive overheads on those
datasets. In addition, we omit NetMode when k > 6, since it
is exclusively designed for the cases when k ≤ 6. As shown in
Figure 5, our GPU-based solutions still outperform all CPU-
based methods by large margins, regardless of the value of k.
In particular, when running with K20, NemoGPU is more than
250 times faster than DistributedNM for k ≥ 7.

C. Effects of Optimizations

Finally, we evaluate the effects of the three optimization
techniques proposed in Section VI: the divide-and-conquer

(DC) method for handling large candidate sets, the graph
merging (GM) technique for processing multiple random
graphs simultaneously, and the matching tree (MT) approach
for avoiding redundant computation. We consider three “crip-
pled” versions of NemoGPU on K20: one with all three
optimization disabled (denoted as NA), one with only DC
enabled (denoted as DC), and one with only DC and GM
enabled (denoted as DC-GM). For each crippled version of
NemoGPU, we define its relative overhead on a dataset D
as its running time on D divided by the running time of
NemoGPU with all three optimizations enabled.

Figure 7 shows the relative overheads of DC-GM, DC, and
NA on each dataset. DC-GM’s relative overhead is around 2
in all cases, which indicates that the MT optimization reduces
the running time of NemoGPU by half. Meanwhile, the
relative overhead of DC is roughly two times that of DC-GM,
implying that the GM optimization improves the efficiency
of NemoGPU by a factor of 2. On the other hand, NA’s
relative overhead is slightly lower than that of DC on the two
smallest datasets, YE and HS. The reason is that the pipelining
approach employed by DC incurred additional costs in terms
of the running time of NemoGPU. However, NA fails to handle
any of the four larger graphs due to its excessive demand
on the GPU’s global memory. This shows that, although DC
entails additional overheads, it is crucial for the scalability of
NemoGPU. In summary, the three optimizations in Section VI
improve the efficiency of NemoGPU by four-fold, and help
scale NemoGPU to large graphs whose candidate sets do not
fit in the GPU memory.

VIII. RELATED WORK

A plethora of CPU-based techniques [5]–[12], [25] have
been proposed for network motif discovery. As discussed
in Section III, those techniques typically utilize indices and
complex algorithms to improve the efficiency of individual
subgraph isomorphism tests in the frequency estimation phase,
which make them unsuitable for GPU adoption. Furthermore,
as we show in Section VII, our GPU-based solution signifi-
cantly outperforms the state-of-the-art CPU-based methods in
terms of both computation efficiency and cost-effectiveness.

Besides the aforementioned algorithms, there exist a number
of CPU-based algorithms [26]–[28] for approximate network
motif discovery. The basic idea is to heuristically sample
subgraphs from the input graph G and the random graphs in
Gr, and then identify motifs from the those samples. Those
algorithms are generally more efficient than conventional
methods for network motif discovery, but due to their heuristic



0
1
2
3
4
5
6

YE HS YP MM DM AT CE

dataset

relative overhead
DC-GM DC NA

Fig. 7. Effects of optimization vs. dataset.

nature, they fail to provide any quality guarantees on the
results produced.

In addition, there are several recent studies [29], [30] on
subgraph listing, i.e., identify the occurrences of a query graph
g in a large graph G. Although this problem is closely related
to network motif discovery, the techniques in [29], [30] focus
on the scenario where G is a sizable graph (with billions
of nodes and edges) that does not fit in the main memory
of a single machine, and they employ distributed systems
(e.g., MapReduce) to address the scalability issues that arise
from this particular scenario. In contrast, in network motif
discovery, we focus on the case where (i) G is relatively
small, but (ii) there exist a large number of random graphs
whose subgraphs need to be compare with those in G. As a
consequence, the techniques in [29], [30] are not suitable for
network motif discovery.

Finally, there exist numerous techniques for frequent sub-
graph mining (see [24] for a survey) and significant subgraph
mining [31]–[33], but those two problems are considerably dif-
ferent from network motif discovery. In particular, in frequent
subgraph mining, we are given a set of graph G, and we aim
to identify the subgraphs that appear in a large portion of the
graphs in G, disregarding the number of occurrences of each
subgraph g in each individual graph. Similarly, significant sub-
graph mining also focuses on the portion of graphs in G where
each subgraph g appears, and it quantifies the significance
of g based on this portion instead of the frequency of g in
each graph in G. Therefore, algorithms for frequent subgraph
mining and significant subgraph mining are inapplicable for
identifying network motifs.

IX. CONCLUSIONS

This paper studies the problem of network motif discovery,
and proposes the first GPU-based solution to the problem. Our
solution is considerably different from the existing CPU-based
method, due to the design choices that we make to exploit
the strengths of GPUs in terms of parallelism and mitigates
their limitations in terms of the computation power per GPU
core. With extensive experiments on a variety of biological
networks, we show that our solution is up to two orders
of magnitude faster than the best CPU-based approach, and
is around 20 times more cost-effective than the latter, when
taking into account the monetary costs of the CPU and GPUs
used. For future work, we plan to investigate how our solution
can be extended to other network analysis tasks.

ACKNOWLEDGEMENT

Xiaokui Xiao was supported by a grant (ARC19/14) from
MOE, Singapore and a gift from Microsoft Research Asia.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks.”
Science, vol. 298, no. 5594, pp. 824–827, October 2002.

[2] R. Sole and S. Valverde, “Are network motifs the sprandrels of cellular
complexity?” Trends Ecol. Evol., vol. 21, no. 8, pp. 419–422, 2006.

[3] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and U. Alon,
“Coarse-graining and self-dissimilarity of complex networks,” Phys. Rev.
E, vol. 71, p. 016127, 2005.

[4] O. Sporns and R. Ktter, “Motifs in brain networks,” PLoS Biol, vol. 2,
no. 11, p. e369, 10 2004.

[5] S. Wernicke and F. Rasche, “Fanmod: a tool for fast network motif
detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006.

[6] J. A. Grochow and M. Kellis, “Network motif discovery using subgraph
enumeration and symmetry-breaking,” in RECOMB, 2007, pp. 92–106.

[7] S. Omidi, F. Schreiber, and A. Masoudi-Nejad, “MODA: an efficient
algorithm for network motif discovery in biological networks.” Genes
& genetic systems, vol. 84, no. 5, pp. 385–395, 2009.

[8] Z. R. M. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. S.
Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-
Nejad, “Kavosh: a new algorithm for finding network motifs,” BMC
Bioinformatics, vol. 10, p. 318, 2009.

[9] P. M. P. Ribeiro and F. M. A. Silva, “g-tries: an efficient data structure
for discovering network motifs,” in SAC, 2010, pp. 1559–1566.

[10] S. Khakabimamaghani, I. Sharafuddin, N. Dichter, I. Koch, and
A. Masoudi-Nejad, “Quatexelero: An accelerated exact network motif
detection algorithm,” PLoS ONE, vol. 8, no. 7, p. e68073, 07 2013.

[11] X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu, and G. Wang, “Netmode:
Network motif detection without nauty,” PLoS ONE, vol. 7, no. 12, p.
e50093, 12 2012.

[12] P. M. P. Ribeiro, F. M. A. Silva, and L. M. B. Lopes, “Parallel discovery
of network motifs,” JPDC, vol. 72, no. 2, pp. 144–154, 2012.

[13] T. Wang, J. W. Touchman, W. Zhang, E. B. Suh, and G. Xue, “A parallel
algorithm for extracting transcription regulatory network motifs,” in
BIBE, 2005, pp. 193–200.

[14] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” J. Symb.
Comput., vol. 60, pp. 94–112, 2014.

[15] E. Sintorn and U. Assarsson, “Fast parallel gpu-sorting using a hybrid
algorithm,” JPDC, vol. 68, no. 10, pp. 1381–1388, 2008.

[16] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, “Frequent itemset mining
on graphics processors,” in DaMoN, 2009, pp. 34–42.

[17] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in gpu
programs,” in GPGPU, 2011, p. 3.

[18] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in ICDM, 2002, pp. 721–724.

[19] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases,” in SIGMOD
Conference, 2013, pp. 337–348.

[20] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, 1976.

[21] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism,” PVLDB, vol. 1,
no. 1, pp. 364–375, 2008.

[22] http://lbb.ut.ac.ir/Download/LBBsoft/QuateXelero/networks/.
[23] http://genemania.org.
[24] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining

algorithms,” Knowledge Eng. Review, vol. 28, no. 1, pp. 75–105, 2013.
[25] J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng, “Nemofinder: dissecting

genome-wide protein-protein interactions with meso-scale network mo-
tifs,” in KDD, 2006, pp. 106–115.

[26] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient sampling
algorithm for estimating subgraph concentrations and detecting network
motifs,” Bioinformatics, vol. 20, no. 11, pp. 1746–1758, 2004.

[27] I. Bordino, D. Donato, A. Gionis, and S. Leonardi, “Mining large
networks with subgraph counting,” in ICDM, 2008, pp. 737–742.

[28] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
in ISMB, 2008, pp. 241–249.

[29] F. N. Afrati, D. Fotakis, and J. D. Ullman, “Enumerating subgraph
instances using map-reduce,” in ICDE, 2013, pp. 62–73.

[30] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, “Parallel subgraph
listing in a large-scale graph,” in SIGMOD Conference, 2014, pp. 625–
636.

[31] S. Ranu and A. K. Singh, “Graphsig: A scalable approach to mining
significant subgraphs in large graph databases,” in ICDE, 2009, pp. 844–
855.

[32] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph
patterns by leap search,” in SIGMOD Conference, 2008, pp. 433–444.

[33] H. He and A. K. Singh, “Graphrank: Statistical modeling and mining of
significant subgraphs in the feature space,” in ICDM, 2006, pp. 885–890.


