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Abstract
Matrix eigen-decomposition is a classic and
long-standing problem that plays a fundamental
role in scientific computing and machine learn-
ing. Despite some existing algorithms for this
inherently non-convex problem, the study re-
mains inadequate for the need of large data nowa-
days. To address this gap, we propose a Doubly
Stochastic Riemannian Gradient EIGenSolver,
DSRG-EIGS, where the double stochasticity
comes from the generalization of the stochastic
Euclidean gradient ascent and the stochastic Eu-
clidean coordinate ascent to Riemannian mani-
folds. As a result, it induces a greatly reduced
complexity per iteration, enables the algorithm to
completely avoid the matrix inversion, and con-
sequently makes it well-suited to large-scale ap-
plications. We theoretically analyze its conver-
gence properties and empirically validate it on
real-world datasets. Encouraging experimental
results demonstrate its advantages over the deter-
ministic counterpart.

1. Introduction
Matrix eigen-decomposition, aiming at a group of top
eigenvectors of a given matrix (Golub & Van Loan, 1996),
has found widespread applications in many areas of
scientific and engineering computing, e.g., numerical
computation (Press et al., 2007) and structure analysis
(Torbjorn Ringertz, 1997)). Particularly, it plays a fun-
damental role in many machine learning tasks, such
as spectral clustering (Ng et al., 2002), dimensional-
ity reduction (Jolliffe, 2002), and kernel approximation
(Drineas & Mahoney, 2005), etc. Despite the great im-
portance of this problem, existing solutions, i.e., eigen-
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solvers, have been relatively lacking. Among them, the
power method (Golub & Van Loan, 1996) and the (block)
Lanczos algorithm (Parlett, 1998) belong to well-known
eigensolvers, while randomized SVD (Halko et al., 2011)
and online learning of eigenvectors (Garber et al., 2015)
are recently proposed. In addition, matrix eigendecom-
postion can be formulated as a quadratically constrained
quadratic program, and thus can be addressed from the
optimization perspective, for example, the trace penalty
minimization (Wen et al., 2013). Notably, its non-convex
constraint set constitutes a Riemannian manifold, or more
precisely, Stiefel manifold, which turns it into a Rieman-
nian optimization problem that can be tackled by the meth-
ods of optimization on manifolds (Edelman et al., 1999;
Absil et al., 2008; Wen & Yin, 2013). However, most of
existing eigensolvers belong to batch learning, i.e., using
the entire dataset at each update step, and thus are not
suitable to large-scale matrices, especially those unable to
completely fit into memory. To address this issue, we usu-
ally could resort to stochastic optimization, which enables
the algorithm to work through access to only a subset of the
data each time. And stochastic algorithms often converge
faster than their batch counterparts even if no memory issue
arises.

To overcome the limitations of existing batch learning
eigensolvers, we propose a doubly stochastic Riemannian
gradient method to obtain the DSRG-EIGS algorithm, a
new eigensolver. The method simultaneously generalizes
the stochastic gradient ascent (SGA) and the stochastic co-
ordinate ascent (SCA) (Nesterov, 2012) from the Euclidean
space to the Riemannian space, and arrives at a combina-
tion of their Riemannian counterparts: stochastic Rieman-
nian gradient ascent (SRGA) and stochastic Riemannian
coordinate ascent (SRCA). Specifically, SRGA works by
sampling data sub-matrices, while SRCA proceeds by sam-
pling column blocks of Riemannian gradient coordinates in
our problem. Both methods keep iterates remaining on the
manifold and stochastic Riemannian gradients staying in
the tangent space during iterations. They greatly reduce
the complexity per iteration of the algorithm, especially for
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dense matrices. Meanwhile, the algorithm becomes able to
completely avoid the matrix inversion required in its deter-
ministic version, and thus can work effectively in the case
of desiring a large number of eigenvectors. Furthermore,
we provide a progressive analysis on the theoretical con-
vergence properties of DSRG-EIGS, which shows the con-
vergence of the algorithm to global solutions at a sub-linear
rate in expectation and that the algorithm is able to take ad-
vantage of importance sampling (Zhao & Zhang, 2014) to
improve the convergence rate.

The rest of the paper is organized as follows. In Section
2, we review some basics of matrix eigen-decomposition
and Riemannian optimization. We present our doubly
stochastic Riemannian gradient eigensolver, abbreviated as
DSRG-EIGS in Section 3, followed by the progressive the-
oretical analysis in Section 4. Experimental results are
shown in Section 5. Section 6 discusses related work. Fi-
nally, Section 7 concludes the paper.

2. Preliminaries
2.1. Matrix Eigen-decomposition

The eigen-decomposition of a symmetric1 matrix A ∈
Rn×n says that A = UΛUT where U = [u1, · · · ,un]
(uj represents the jth column of U) is an orthogonal ma-
trix, i.e., U⊤U = UU⊤ = I (I represents the identity
matrix of appropriate size), Λ = diag(λ1, · · · , λn) is a di-
agonal matrix, and uj is called the eigenvector correspond-
ing to the eigenvalue λj , i.e., Auj = λjuj . For the con-
venience in the sequel, we assume that λ1 ≥ · · · ≥ λn

and define V , [u1, · · · ,uq] and V⊥ , [uq+1, · · · ,un],
Σ , diag(λ1, · · · , λq) and Σ⊥ , diag(λq+1, · · · , λn),
where q is the number of top eigenvectors to be sought.

From the point of view of optimization, in practice, matrix
eigen-decomposition can be defined by the following non-
convex quadratically constrained quadratic program:

max
X∈Rn×q:X⊤X=I

(1/2)tr(X⊤AX), (1)

where q < n and tr(·) represents the trace of a square ma-
trix, i.e., sum of its diagonal entries. It can be easily verified
that X = V maximizes the trace value at (1/2)

∑q
i=1 λi.

2.2. Riemannian Gradient

Given a Riemannian manifold (Lee, 2012)M, its tangent
space at a point X ∈ M, denoted as TXM, is a Euclidean
space that locally linearizes M around X. Analogous to
the Euclidean case, one iterate of the first-order optimiza-

1The given matrix A is assumed to be symmetric throughout
the paper, i.e., AT = A.

tion onM takes the form (Absil et al., 2008):

X(t+1) = RX(t)(αtξX(t)), (2)

where ξX(t) ∈ TX(t)M (namely, ξX(t) is a tangent vector
ofM at X(t)) represents the search direction, αt is the step
size, and RX(t)(·) represents the retraction at X(t) which
maps a tangent vector ξ ∈ TX(t)M to a point onM.

Tangent vectors serving as search directions are generally
gradient-related. The gradient of a function f(X) defined
onM, denoted as Gradf(X), depends on the Riemannian
metric, which is a family of smoothly varying inner prod-
ucts on tangent spaces, i.e., ⟨ξ, η⟩X, where ξ, η ∈ TXM
for any X ∈ M. The Riemannian gradient Gradf(X) ∈
TXM is the unique tangent vector that satisfies

⟨Gradf(X), ξ⟩X = Df(X)[ξ], (3)

for any ξ ∈ TXM, where Df(X)[ξ] represents the direc-
tional derivative of f(X) in the tangent direction ξ.

2.2.1. EIGS VIA RIEMANNIAN GRADIENT

The constraint set in problem (1) constitutes a Stiefel man-
ifold, i.e., St(n, q) = {X ∈ Rn×q : X⊤X = I}, which
turns the problem into a Riemannian one:

max
X∈St(n,q)

f(X),

where f(X) , (1/2)tr(X⊤AX). Under the canonical
metric ⟨ξ, η⟩X = tr(ξ⊤(I − 1

2XX⊤)η) and by (3), the
Riemannian gradient of f(X) is

Gradf(X) = (I−XX⊤)AX.

Furthermore, we use the Cayley transformation based re-
traction (Wen & Yin, 2013):

RX(ξ) = (I− 1

2
S(ξ))−1(I+

1

2
S(ξ))X, (4)

for any ξ ∈ TXSt(n, q), where S(ξ) = (PXξ)X⊤ −
X(PXξ)⊤ and PX = I− 1

2XX⊤.

Given a line search method for determining the step size
such as Amijo-Wolf conditions (Nocedal & Wright, 2006)
or non-monotone line search (Wen & Yin, 2013), we can
arrive at the Riemannian Gradient EIGenSolver (RG-
EIGS)

X(t+1) = RX(t)(αtGradf(X(t))).

3. Doubly Stochastic Riemannian Gradient
In this section, we propose a doubly stochastic Riemannian
gradient eigensolver, denoted as DSRG-EIGS, which gen-
eralizes Euclidean SGA and SCA to Stiefel manifolds and



Matrix Eigen-decomposition via Doubly Stochastic Riemannian Optimization

meanwhile extends RG-EIGS to the doubly stochastic op-
timization setting.

One update of the stochastic Riemannian gradient ascent
takes the form (Bonnabel, 2013):

X(t+1) = RX(t)(αtG(yt,X
(t))),

where αt > 0, yt is an observation of the random variable
y that follows some distribution and satisfies E[f(y,X)] =
f(X), and G(y,X) ∈ TXSt(n, p) is a stochastic Rieman-
nian gradient such that E[G(y,X)] = Gradf(X).

3.1. Sampling over Data

We first consider the stochastic Riemannian gradient based
on sampling over data. The given matrix A ∈ Rn×n can be
written as a matrix summation. Although this summation
could be made quite general, in our case, it’s based on the
following partitioning of A into a block matrix of size nr×
nc for simplicity:

A =

 A11 · · · A1nc

· · · · · · · · ·
Anr1 · · · Anrnc

 =

nr∑
k=1

nc∑
l=1

Ekl ⊙A,

where Ekl ∈ {0, 1}n×n represents the element indicator of
Akl in A. Define

f(s,X) , p−1
s tr(X⊤(Es ⊙A)X)

and
G(s,X) , p−1

s (I−XX⊤)(Es ⊙A)X,

where s is a random variable taking on pair values from
{(k, l) : k = 1, · · · , nr, l = 1, · · · , nc}, with respective
probabilities ps > 0 subject to

∑
s ps = 1. It holds that

E[f(s,X)] = f(X) and E[G(s,X)] = Gradf(X).

We then get the stochastic Riemannian gradient G(s,X)
by sampling over data, which greatly reduces the complex-
ity per iteration for data scanning, from that of a full scan,
O(n2q) for dense matrices, to that of a partial scan. How-
ever, the complexity per iteration for updating variable X
remains the same as that with the batch version RG-EIGS,
i.e., O(nq2)+O(q3). Hence, when q is large, it’s still com-
putationally cumbersome.

3.2. Sampling over Riemannian Gradient Coordinates

To further reduce the complexity per iteration, we
now consider the stochastic Riemannian gradient based
on sampling over Riemannian gradient coordinates
{[Gradf(X)]ij : i = 1, · · · , n, j = 1, · · · , q}. This is
exactly the idea of stochastic coordinate ascent (Nesterov,
2012). However, SCA is intended to solve unconstrained or
separately constrained convex problems, and thus not suit-
able for ours, an inherently non-convex problem. In fact,

the variable space St(n, q) (i.e., Stiefel manifold) and the
gradient space TXSt(n, q) (i.e., Euclidean space) are not
the same one. Hence, the direct application of this method
to our problem may be not well-defined, because a partial
update of coordinates could make either X(t) drift off the
manifold, i.e., X(t) ̸∈ St(n, q), or ξX(t) step out of the tan-
gent space, i.e., ξX(t) ̸∈ TX(t)St(n, q).

To tackle this issue, we propose to sample intrinsic co-
ordinates of Riemannian gradients in the tangent space.
Note that the tangent space of Stiefel manifold (Absil et al.,
2008) at X can be explicitly represented as

TXSt(n, q) =

{XΩ+X⊥K : Ω⊤ = −Ω ∈ Rq×q,K ∈ R(n−q)×q},

where X⊥ ∈ Rn×(n−q) represents the orthonormal com-
plement of X in Rn×n such that (X X⊥) is othogonal.
By this representation, we can identify the intrinsic coor-
dinates of a tangent vector ξX with corresponding Ω and
K. We can also find the dimensionality of St(n, q) is
1
2q(q − 1) + (n− q)q.

Recall that our Riemannian gradient is Gradf(X) =
(I −XX⊤)AX, which can be rewritten as Gradf(X) =
X⊥X

⊤
⊥AX. Hence, its intrinsic coordinates are Ω = 0 and

K = X⊤
⊥AX. We only need to sample coordinates from

K. To gain advantages as with SCA, we sample columns
of K, which is equivalent to sample columns of X. To this
end, assume X is partitioned into a block matrix of size
1× qc (i.e., column block matrix):

X = (X·1,X·2, · · · ,X·qc) =

qc∑
m=1

E·m ⊙X,

where E·m ∈ {0, 1}n×q similarly represents the element
indicator of X·m in X. Define

f(r,X) , p−1
r tr(X⊤A(E·r ⊙X))

and
G(r,X) , p−1

r (I−XX⊤)A(E·r ⊙X),

where r is a random variable taking on values 1, · · · , qc,
with respective probabilities pr > 0 subject to

∑
r pr =

1. It holds that E[f(r,X)] = f(X) and E[G(r,X)] =
Gradf(X). As we will see shortly, only one column block
of X needs be updated at each step.

We now get the stochastic Riemannian gradient G(r,X) by
sampling over Riemannian intrinsic coordinates. It keeps
X and G(r,X) staying on the manifold and in the tangent
space, respectively, and meanwhile the update step works
like a Euclidean SCA step.

3.3. Doubly Stochastic Riemannian Gradient (DSRG)

By sampling over both data and intrisic Riemannian gradi-
ent coordinates, we arrive at our doubly stochastic Rieman-
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nian gradient G(s, r,X) ∈ TXSt(n, q):

G(s, r,X) = p−1
s p−1

r (I−XX⊤)(Es ⊙A)(E·r ⊙X).

It’s easy to see that it is an unbiased estimate of the true Rie-
mannian gradient, i.e., E[G(s, r,X)] = Gradf(X). We
then arrive at our DSRG ascent method:

X(t+1) = RX(t)(αtG(st, rt,X
(t))). (5)

To simplify the above update, first let g , G(s, r,X), Ũ ,
(g,X) and Ṽ , (X,−g). Since g ∈ TXSt(n, q), we have
g⊤X = 0, which implies that PX(g) = (I− 1

2XX⊤)g = g

and thus S(g) = ŨṼ⊤. We then can write

RX(αg) = (I− α

2
S(g))−1(I+

α

2
S(g))X

= X+ αŨ(I− α

2
Ṽ⊤Ũ)−1Ṽ⊤X,

by the Sherman-Morrison-Woodbury formula (Press et al.,
2007). Note that

Ṽ⊤X =

(
I
0

)
and Ṽ⊤Ũ =

(
0 I
−g⊤g 0

)
.

Accordingly,

(I− α

2
Ṽ⊤Ũ)−1 =

(
W α

2W
−α

2 g
⊤gW W

)
where W = (I+ α2

4 g⊤g)−1. We then get

RX(αg) = X+ α(I− α

2
Xg⊤)gW (6)

= −X+ (αg + 2X)W.

To see the properties of this method, let’s focus on W.
Note that

g⊤g = diag(0, · · · ,0,C,0, · · · ,0),

where C = p−2
s p−2

r D is the rth diagonal block of g⊤g,
and

D = X⊤
·r(Es ⊙A)⊤(I−XX⊤)(Es ⊙A)X·r

= (AklXlr)
⊤(AklXlr)

− (X⊤
k·AklXlr)

⊤(X⊤
k·AklXlr),

supposing s = (k, l) (note that subscripts k, l, r are all
block indices). Therefore, we get

W = diag(I, · · · , I,B−1, I, · · · , I),

where B = I + α2

4 C. We now can see that in (5) only
the rth column block of X needs be updated, while the left
ones remain unchanged:

X·m ←


(αp−1

s p−1
r (H⊤ −XX⊤

k·)AklXlm

+2X·m)B−1 −X·m, m = r

X·m, m ̸= r

where H = (0, · · · ,0, I,0, · · · ,0) with I being the kth

column block.

Our DSRG-EIGS algorithm is summarized in Algorithm 1,
which enjoys the advantages over RG-EIGS from the dou-
ble stochasticity: 1) it achieves a greatly reduced complex-
ity per iteration, O(nq), especially when A is dense or q is
large; 2) only a size-controlled small matrix B needs be in-
verted; 3) there is no need of matrix inversion when qc = q,
i.e., single column sampling over X.

Algorithm 1 DSRG-EIGS
Input: A, T , η > 0, ζ > 0
Output: X(T )

1: Initialize X(0) and ps = ∥As∥F∑
s̃ ∥As̃∥F

for any s ∈ S =

{(k, l) : k = 1, · · · , nr, l = 1, · · · , nc}.
2: for t = 1, 2, · · · , T do
3: Sample st = (kt, lt) from S according to {ps}.
4: Sample rt from {1, 2, · · · , qc} uniformly.
5: Set αt =

η
1+ζt .

6: Update X
(t+1)
·rt = −X(t)

·rt + (αtqcp
−1
st (H(t)⊤ −

X(t)X
(t)⊤

kt· )AktltX
(t)
ltrt

+ 2X
(t)
·rt)(B

(t))−1

and X
(t+1)
·r = X

(t)
·r for r ̸= rt, where B(t) and H(t)

are as defined in Section 3.3.
7: end for

4. Theoretical Analysis
We analyze convergence properties of Algorithm 1 in this
section.

4.1. Local Convergence

We note the following facts. Stiefel manifold is smooth,
connected and compact, with a positive global injectiv-
ity radius (Lee, 2012; Bonnabel, 2013). In addition, the
function f(X) to be maximized in our problem is three
times continuously differentiable, the retraction (4) is twice
continuously differentiable, and the stochastic Riemannian
gradient (5) is unbiased, and bounded since both A and X
are bounded. According to (Bonnabel, 2013), we have

Theorem 4.1. If step sizes satisfy
∑

t αt = ∞ and∑
t α

2
t < ∞, then for Algorithm 1, f(X(t)) converges al-

most surely and Gradf(X(t)) converges to 0 almost surely,
as t→∞.

Note that only convergence to a local solution is guaranteed
by Theorem 4.1.

4.2. Global Convergence

In fact, Theorem 4.1 can be strengthened to achieve a
global convergence for our problem. Specifically, we in-
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vestigate the squared cosine value of the principal angle
between2 Xt and the ground truth V, which is defined as

cos2⟨Xt,V⟩ , λmin(X
⊤
t VV⊤Xt)

= min
y ̸=0
∥V⊤Xty∥22/∥y∥22.

Note that if cos2⟨Xt,V⟩ = 1, then Xt = V up to a q × q
orthogonal matrix, that is, our goal is achieved. Actually
we have the following strengthened theorem:

Theorem 4.2. Define Θt = 1 − E[cos2⟨Xt,V⟩]. Assume
that A has a positive eigen-gap, i.e., τ = λq − λq+1 > 0,
αt = c

t with c > 2
τ , and cos2⟨Xs,V⟩ ≥ 1

2 with s ≥ 0.
Then we have Θt = O( 1t ) for t ≥ s.

Theorem 4.2 shows that our DSRG-EIGS algorithm con-
verges to a global solution at a sub-linear rate in expec-
tation. We note that the requirement on the initialization
X0, which makes cos2⟨Xs,V⟩ ≥ 1

2 at certain iteration
s ≥ 0, is theoretically non-trivial. However, empirically a
random initialization works well as we will observe in our
experiments. Hence, Theorem 4.2 amounts to the conver-
gence analysis at a later stage of the algorithm starting from
t0 = s instead of t0 = 0.

Similar to (Balsubramani et al., 2013), we have the follow-
ing theorem which shows the concrete convergence rate
of our algorithm. Before that, we define some stochastic
quantities:

At , p−1
st (Est ⊙A), Yt , p−1

rt (E·rt ⊙Xt), and

Zt , Z̃t(Z̃
⊤
t Z̃t)

−1/2, where Z̃t = Xt + αtAtYt.

Theorem 4.3. Under the conditions of Theorem 4.2, as-
sume that a = cτ , b = γE[∥At∥22]E[∥Yt∥22] with γ > 9,
and t > s ≥ 1. Then it holds that

Θt+1 ≤ Θs(
s

t+ 1
)a +

4b

a− 1
(1 +

1

s+ 1
)a−1 1

t+ 1
.

To prove Theorem 4.2-4.3, we need some lemmas.

Lemma 4.4. Assume cos2⟨Xt,V⟩ ≥ 1
2 and let βt =

E[∥At∥22]E[∥Yt∥22]. Then

1− E[cos2⟨Zt,V⟩]
≤ (1− αtτ)(1− E[cos2⟨Xt,V⟩]) + 5βtα

2
t +O(α3

t ).

Lemma 4.5.

cos2⟨Xt+1,V⟩
≥ cos2⟨Zt,V⟩ − 4α2

t ∥At∥22∥Yt∥22 ±O(α3
t ).

Lemma 4.6. Assume the constant γ > 9. Then

Θt+1 ≤ (1− αtτ)Θt + γβtα
2
t .

2For notational convenience, we place iteration indices about
t as subscripts hereafter.

All the proofs are given in the supplementary. We no-
tice that Theorem 4.3 and Lemma 4.6 provide a convenient
form that enables us to leverage sampling distributions for
improving the convergence rate.

4.3. Accelerated Global Convergence

Since the inequalities in Theorem 4.3 and Lemma 4.6 hold
for general sampling distributions, we are able to improve
the convergence rate by optimizing sampling distributions
over data or gradient coordinates, i.e., importance sampling
(Zhao & Zhang, 2014).

We only need to minimize βt w.r.t. two sampling distribu-
tions, {ps} and {pr}, which is equivalent to two indepen-
dent problems:

min∑
s ps=1

E[∥At∥22] and min∑
r pr=1

E[∥Yt∥22].

Let h({ps}, η) be the Lagrange function for the first con-
strained optimization problem. Then

h({ps}, η) = E[∥At∥22] + η(
∑
s

ps − 1)

=
∑
k,l

p−1
kl ∥Akl∥22 + η(

∑
k,l

pkl − 1),

∂h

∂pkl
= −∥Akl∥22

p2kl
+ η,

∂2h

∂p2kl
= 2
∥Akl∥22
p3kl

> 0.

Setting ∂h
∂pkl

= 0, followed by normalization, yields the so-
lution p∗kl = ∥Akl∥2/

∑
k,l ∥Akl∥2. However, the spectral

norm of a matrix is not quite easy to compute. We can re-
lax3 using an easy-to-compute upper bound of the spectral
norm: min∑

s ps=1 E[∥At∥22] ≤ min∑
s ps=1 E[∥At∥2F ],

and work on the latter problem. Likewise, we can find that
p∗kl = ∥Akl∥F /

∑
k,l ∥Akl∥F . This says that the blocks

with a larger norm value should be sampled with a higher
probability, which is quite a useful property for sparse ma-
trix eigen-decomposition in that it can avoid frequent use
of less informative blocks especially those zero or nearly
zero blocks.

On the other hand, it holds that p∗r = ∥X·r∥2∑
r ∥X·r∥2

similarly.
Since ∥X·r∥2 = 1 always, we get p∗r = q−1

c , which says
that the optimal sampling over gradient coordinates turns
out to be a uniform sampling. Two optimal sampling dis-
tributions are used in Algorithm 1.

5. Experimental Results
In this section, we empirically validate the effectiveness
of our proposed doubly stochastic Riemannian gradient

3We acutally can use a tighter upper bound on spectral norm:
∥A∥2 ≤ ∥A∥1∥A∥∞.
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method for matrix eigen-decomposition, DSRG-EIGS, by
comparing it with its deterministic counterpart, RG-EIGS
(Wen & Yin, 2013), and using Matlab’s EIGS function for
benchmarking. Both DSRG-EIGS and RG-EIGS were im-
plemented in Matlab on a machine with Windows OS, 8G
of RAM.

5.1. Experimental Setting

We detail the experimental settings in this subsection, in-
cluding the RG-EIGS implementation, initialization of X
at t = 0, step size αt, and quality measures for perfor-
mance evaluation.

We adopt the original author’s implementation for the RG-
EIGS4. It uses the non-monotone line search with the well-
known Barzilai-Borwein step size, which significantly re-
duces the iteration number, and performs well in practice.
Both RG-EIGS and DSRG-EIGS are fed with the same
initial value of X, where each entry is sampled from the
standard normal distribution N (0, 1) and then they all as a
whole are orthogonalized. We set αt for DSRG-EIGS to
take the form of αt =

η
1+ζt , where ζ is fixed to 2 through-

out the experiments and η will be tuned.

The performance of different algorithms is evaluated using
three quality measures: feasibilities ∥X⊤

t Xt − I∥F , ob-
jective function values 1

2 tr(X
⊤
t AXt) and squared cosine

values of the principal angle between each iterate Xt and
the ground truth V, i.e., cos2⟨Xt,V⟩. Lower values of
feasibility are better, while large values of objective func-
tion and squared cosine are better. The output by EIGS
is taken as the ground truth. We report the convergence
curves of these measures, where the empirical convergence
rate of each algorithm in terms of objective function values
or squared cosine values can be observed.

5.2. Performance on Sparse Matrices

We first examine the performance of the algorithms on
sparse matrices, which are downloaded from the univer-
sity of Florida sparse matrix collection5. Their statistics
are given in Table 1. Each of them is uniformly partitioned
into a block matrix of size mr ×mc given in Table 1. We
use q = 100 and uniformly partition X into a block matrix
of size 1× qc with qc = q/2.

The convergence curves of three quality measures for RG-
EIGS and DSRG-EIGS on sparse matrices are shown in
Figure 1, with one row of plots for each matrix and one
column of plots for each measure. Each point on the
convergence curve for RG-EIGS corresponds to one batch
step6, while it spans a fixed number of stochastic steps for

4optman.blogs.rice.edu/
5www.cise.ufl.edu/research/sparse/matrices/
6The decrease steps in Figure 1(b) are caused by the non-

Table 1. Sparse Matrices.
dataset n nnz(A) mr mc

hangGlider 10,260 92,703 10 1
indef 64,810 565,996 50 1
IBMNA 169,422 1,279,274 150 1

Table 2. Dense Matrices.
dataset n nnz(A) mr mc

citeseer 3,312 10,969,344 10 10
usps 9,298 86,452,804 20 20
pubmed 19,717 388,760,089 40 40
news20 19,928 397,125,184 40 40
a8a 32,561 1,060,218,721 40 40

DSRG-EIGS. We tested four different step sizes for DSRG-
EIGS on each dataset. In each plot, the output of matlab’s
EIGS function, as a reference, is shown as a single point
represented by a red pentagram. These performance re-
sults show that DSRG-EIGS consistently and significantly
outperforms RG-EIGS in term of each quality measure.
Specifically, DSRG-EIGS converges faster than RG-EIGS
in terms of objective function values as shown in the middle
column of plots, which clearly demonstrates the effective-
ness and superiority of our algorithm to its deterministic
version. Similar conclusions can be drawn for the right
column of plots in terms of squared cosine values.

Moreover, we observe that the feasibility of RG-EIGS de-
teriorates in a manner similar to step functions. This
is because that RG-EIGS relies heavily on the Sherman-
Morrison-Woodbury formula which suffers from the nu-
merical instability, and that the caused error will accumu-
late with iterations. In contrast, our DSRG-EIGS achieves
a better feasibility especially on the first two sparse matri-
ces, indicating that this issue is mitigated.

5.3. Performance on Dense Matrices

We now report the performance of the algorithms on dense
matrices, which are RBF kernels generated using feature
datasets: citeseer and pubmed7, usps, news20 and a8a8.
The statistics of resultant dense matrices are shown in Table
2, including their block sizes of uniform partitioning. We
use q = 10 here. X is uniformly partitioned into qc = q/2
column blocks as well.

Figure 2 shows the convergence curves of different mea-
sures on two dense matrices (results on left dense ma-
trices are placed in the supplementary). As we can see,

monotone step size used in the implementation of RG-EIGS.
7linqs.cs.umd.edu/projects/projects/lbc
8www.csie.ntu.edu.tw/˜cjlin/libsvmtools
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Figure 1. Performance on sparse matrices.

the performance of DSRG-EIGS is similar to the case of
sparse matrices, compared to RG-EIGS. Especially on the
a8a dataset, RG-EIGS fails to run due to running out of
memory, while our DSRG-EIGS can still work (where the
ground truth results were computed on a machine with the
same CPU but a larger RAM). Therefore, the effectiveness
and superiority of our algorithm are validated on dense ma-
trices as well.

The experimental studies on both sparse and dense ma-
trices demonstrate that the proposed algorithm is broadly
effective and can be superior to its deterministic version.
The advantages could be more pronounced in some cases.
If the memory can not hold an input matrix, for exam-
ple, a full matrix of size 32000 × 32000 like a8a, RG-
EIGS clearly fails to run. In some real applications of ma-
trix eigen-decomposition, when suboptimal solutions suf-
fice to achieve satisfactory results in terms of third-party or

domain-specific quality measures, such as modularity for
spectral clustering, DSRG-EIGS would be a better choice
than RG-EIGS.

6. Related Work
Typical existing approaches to matrix eigen-decomposition
include the power method, the Lanczos algorithms,
and Riemannian methods. The power method
(Golub & Van Loan, 1996), finding the leading eigen-
pair (i.e., eigenvalue with the largest absolute value), starts
from some initial vector, and then repeatedly alternates
matrix-vector multiplication and vector normalization.
Although it can be used on large sparse matrices, it may
be slow and even diverge. Instead of disregarding the
information in previous iterations as in power method, the
Lanczos algorithm (Cullum & Willoughby, 2002) utilizes
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Figure 2. Performance on dense matrices.

it to iteratively construct a basis of the Krylov subspace
for eigen-decomposition. Riemannian methods address the
problem from the Riemannian optimization perspective,
such as optimization on Stiefel or Grassmann manifolds
(Torbjorn Ringertz, 1997; Absil et al., 2008). One recently
proposed method, Randomized SVD (Halko et al., 2011),
finds the truncated SVD by random projections. All these
methods perform the batch learning, while our focus in this
paper is on stochastic algorithms. Another recent method,
called MSEIGS (Si et al., 2014), tries to utilize graph clus-
ter structure to speedup eigen-decomposition, while we
consider more general matrices. The work most related to
ours include online learning of eigenvectors (Garber et al.,
2015), which only targets the leading eigenvector, i.e.,
q = 1, and coordinate descent on orthogonal matrices
(Shalit & Chechik, 2014), which is a special case of Stiefel
manifolds. (Garber et al., 2015) is based on the power
method, and provides the regret analysis without empirical
validation. We address the problem from a stochastic
Riemannian optimization perspective. Stochastic coor-
dinate descent is realized through Givens rotations with
only local convergence guaranteed in (Shalit & Chechik,
2014), while we work on general Stiefel manifolds with
global convergence guaranteed. On the other hand,
doubly stochastic gradient has been used for scaling up
kernel (Dai et al., 2014) and nonlinear component analysis
(Xie et al., 2015), which rely on the primal feature data in
vectors as with other PCA algorithms (Mitliagkas et al.,
2013; Boutsidis et al., 2015), instead of relational data

in square matrices as we target. In addition, importance
sampling (Zhao & Zhang, 2014) has been considered for
convex problems, while we extend its use on a non-convex
problem in this paper.

7. Conclusion
We proposed the doubly stochastic Riemannian gradient
ascent algorithm for matrix eigen-decomposition (DSRG-
EIGS), i.e., a new eigensolver, which generalized the
Euclidean stochastic gradient ascent and the Euclidean
stochastic coordinate ascent to the Riemannian setting, or
more precisely, Stiefel manifolds. The algorithm enjoys the
advantages from both sides to achieve a greatly reduced
complexity per iteration and be able to avoid the matrix
inversion. We conducted a progressive convergence analy-
sis, which shows that DSRG-EIGS converges to a global
solution at a sub-linear rate in expectation, and that the
convergence rate can be improved by leveraging sampling
distributions. The effectiveness and superiority are veri-
fied on both sparse and dense matrices. For future work,
we may address the limitations of DSRG-EIGS, including
the non-trivial initialization and dependence on a positive
eigen-gap. We may also conduct more empirical investiga-
tions on the algorithm.
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